101
|
Mochizuki H, Choong CJ, Masliah E. A refined concept: α-synuclein dysregulation disease. Neurochem Int 2018; 119:84-96. [PMID: 29305061 DOI: 10.1016/j.neuint.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
α-synuclein (αSyn) still remains a mysterious protein even two decades after SNCA encoding it was identified as the first causative gene of familial Parkinson's disease (PD). Accumulation of αSyn causes α-synucleinopathies including PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent advances in therapeutic approaches offer new antibody-, vaccine-, antisense-oligonucleotide- and small molecule-based options to reduce αSyn protein levels and aggregates in patient's brain. Gathering research information of other neurological disease particularly Alzheimer's disease, recent disappointment of an experimental amyloid plaques busting antibody in clinical trials underscores the difficulty of treating people who show even mild dementia as damage in their brain may already be too extensive. Prodromal intervention to inhibit the accumulation of pathogenic protein may advantageously provide a better outcome. However, treatment prior to onset is not ethically justified as standard practice at present. In this review, we initiate a refined concept to define early pathogenic state of αSyn accumulation before occurrence of brain damage as a disease criterion for αSyn dysregulation disease.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Eliezer Masliah
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
102
|
Abstract
Attenuated total reflection FTIR (ATR-FTIR) has been used for decades to study protein secondary structures. More recently, it reveals also to be an exquisite and sensitive tool to study and discriminate amyloid aggregates. Based on the analysis of specific spectral features of β-sheet structures, we present here a detailed protocol to differentiate oligomers vs. fibrils. This protocol, applicable to all amyloid proteins, demonstrates the power of this inexpensive, rapid, and low protein material-demanding method.
Collapse
Affiliation(s)
- Jean-Marie Ruysschaert
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Raussens
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
103
|
Karaballi RA, Merchant S, Power SR, Brosseau CL. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Phys Chem Chem Phys 2018; 20:4513-4526. [DOI: 10.1039/c7cp06838g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EC-SERS is used for the first time to characterize protein aggregate–biomembrane interactions.
Collapse
Affiliation(s)
| | | | - Sasha R. Power
- Department of Chemistry
- Saint Mary's University
- Halifax
- Canada
| | | |
Collapse
|
104
|
Candreva J, Chau E, Aoraha E, Nanda V, Kim JR. Hetero-assembly of a dual β-amyloid variant peptide system. Chem Commun (Camb) 2018; 54:6380-6383. [DOI: 10.1039/c8cc02724b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Creation of a dual peptide system where beta-amyloid variants hetero-assemble but do not homo-assemble, sharing similarities with typical amyloid self-assemblies.
Collapse
Affiliation(s)
- Jason Candreva
- Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Edward Chau
- Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Edwin Aoraha
- Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Vikas Nanda
- Biochemistry and Molecular Biology
- Robert Wood Johnson Medical School
- Rutgers University
- USA
| | - Jin Ryoun Kim
- Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| |
Collapse
|
105
|
Morel B, Carrasco MP, Jurado S, Marco C, Conejero-Lara F. Dynamic micellar oligomers of amyloid beta peptides play a crucial role in their aggregation mechanisms. Phys Chem Chem Phys 2018; 20:20597-20614. [DOI: 10.1039/c8cp02685h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aβ40 and Aβ42 peptides form micellar precursors of amyloid nuclei contributing to important differences in their aggregation pathways.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Maria Paz Carrasco
- Departamento de Bioquímica y Biología Molecular I
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Samuel Jurado
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Carmen Marco
- Departamento de Bioquímica y Biología Molecular I
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| |
Collapse
|
106
|
Abstract
Amyloid assemblies of certain proteins, including the Parkinson disease-related protein α-synuclein, are commonly associated with the development and spreading of neurodegenerative diseases, although the nature of the most toxic forms and the mechanisms by which they trigger neurodegeneration remain largely unknown. This is at least in part due to the inherent challenges involved in the preparation of stable and structurally homogeneous samples of amyloid assemblies that could be used in toxicity experiments. Here, we describe the preparation of two different types of stable α-synuclein amyloid assemblies, namely a kinetically trapped oligomeric species and a propagating-competent fibrillar polymorph. The degree of heterogeneity in the samples has been defined and carefully minimized, thus allowing for meaningful structure-toxicity relationships in different α-synuclein amyloid assemblies to be established.
Collapse
|
107
|
Lomont JP, Rich KL, Maj M, Ho JJ, Ostrander JS, Zanni MT. Spectroscopic Signature for Stable β-Amyloid Fibrils versus β-Sheet-Rich Oligomers. J Phys Chem B 2017; 122:144-153. [PMID: 29220175 DOI: 10.1021/acs.jpcb.7b10765] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We use two-dimensional IR (2D IR) spectroscopy to explore fibril formation for the two predominant isoforms of the β-amyloid (Aβ1-40 and Aβ1-42) protein associated with Alzheimer's disease. Two-dimensional IR spectra resolve a transition at 1610 cm-1 in Aβ fibrils that does not appear in other Aβ aggregates, even those with predominantly β-sheet-structure-like oligomers. This transition is not resolved in linear IR spectroscopy because it lies under the broad band centered at 1625 cm-1, which is the traditional infrared signature for amyloid fibrils. The feature is prominent in 2D IR spectra because 2D lineshapes are narrower and scale nonlinearly with transition dipole strengths. Transmission electron microscopy measurements demonstrate that the 1610 cm-1 band is a positive identification of amyloid fibrils. Sodium dodecyl sulfate micelles that solubilize and disaggregate preaggregated Aβ samples deplete the 1625 cm-1 band but do not affect the 1610 cm-1 band, demonstrating that the 1610 cm-1 band is due to very stable fibrils. We demonstrate that the 1610 cm-1 transition arises from amide I modes by mutating out the only side-chain residue that could give rise to this transition, and we explore the potential structural origins of the transition by simulating 2D IR spectra based on Aβ crystal structures. It was not previously possible to distinguish stable Aβ fibrils from the less stable β-sheet-rich oligomers with infrared light. This 2D IR signature will be useful for Alzheimer's research on Aβ aggregation, fibril formation, and toxicity.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kacie L Rich
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
108
|
Matthes D, Gapsys V, Griesinger C, de Groot BL. Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation. ACS Chem Neurosci 2017; 8:2791-2808. [PMID: 28906103 DOI: 10.1021/acschemneuro.7b00325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The diphenyl-pyrazole compound anle138b is a known inhibitor of oligomeric aggregate formation in vitro and in vivo. Therefore, anle138b is considered a promising drug candidate to beneficially interfere with neurodegenerative processes causing devastating pathologies in humans. The atomistic details of the aggregation inhibition mechanism, however, are to date unknown since the ensemble of small nonfibrillar aggregates is structurally heterogeneous and inaccessible to direct structural characterization. Here, we set out to elucidate anle138b's mode of action using all-atom molecular dynamics simulations on the multi-microsecond time scale. By comparing simulations of dimeric to tetrameric aggregates from fragments of four amyloidogenic proteins (Aβ, hTau40, hIAPP, and Sup35N) in the presence and absence of anle138b, we show that the compound reduces the overall number of intermolecular hydrogen bonds, disfavors the sampling of the aggregated state, and remodels the conformational distributions within the small oligomeric peptide aggregates. Most notably, anle138b preferentially interacts with the disordered structure ensemble via its pyrazole moiety, thereby effectively blocking interpeptide main chain interactions and impeding the spontaneous formation of ordered β-sheet structures, in particular those with out-of-register antiparallel β-strands. The structurally very similar compound anle234b was previously identified as inactive by in vitro experiments. Here, we show that anle234b has no significant effect on the aggregation process in terms of reducing the β-structure content. Moreover, we demonstrate that the hydrogen bonding capabilities are autoinhibited due to steric effects imposed by the molecular geometry of anle234b and thereby indirectly confirm the proposed inhibitory mechanism of anle138b. We anticipate that the prominent binding of anle138b to partially disordered and dynamical aggregate structures is a generic basis for anle138b's ability to suppress toxic oligomer formation in a wide range of amyloidogenic peptides and proteins.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department
of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| |
Collapse
|
109
|
Fauerbach JA, Jovin TM. Pre-aggregation kinetics and intermediates of α-synuclein monitored by the ESIPT probe 7MFE. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:345-362. [PMID: 29255947 PMCID: PMC5982440 DOI: 10.1007/s00249-017-1272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/04/2023]
Abstract
The defining feature of the extensive family of amyloid diseases is the formation of networks of entangled elongated protein fibrils and amorphous aggregates exhibiting crossed β-sheet secondary structure. The time course of amyloid conversion has been studied extensively in vitro with the proteins involved in the neurodegenerative pathology of Parkinson's disease (α-synuclein), Alzheimer's disease (Tau) and Huntington's disease (Huntingtin). Although much is known about the thermodynamics and kinetics of the transition from a soluble, intrinsically disordered monomer to the fibrillar end state, the putative oligomeric intermediates, currently considered to be the major initiators of cellular toxicity, are as yet poorly defined. We have detected and characterized amyloid precursors by monitoring AS aggregation with ESIPT (excited state intramolecular protein transfer) probes, one of which, 7MFE [7-(3-maleimido-N-propanamide)-2-(4-diethyaminophenyl)-3-hydroxychromone], is introduced here and compared with a related compound, 6MFC, used previously. A series of 140 spectra for sparsely labeled AS was acquired during the course of aggregation, and resolved into the relative contributions (spectra, intensities) of discrete molecular species including the monomeric, fibrillar, and ensemble of intermediate forms. Based on these findings, a kinetic scheme was devised to simulate progress curves as a function of key parameters. An essential feature of the model, one not previously invoked in schemes of amyloid aggregation, is the catalysis of molecular fuzziness by discrete colloidal nanoparticles arising spontaneously via monomer condensation upon exposure of AS to ≥ 37 °C.
Collapse
Affiliation(s)
- Jonathan A Fauerbach
- Miltenyi Biotec GmbH, Friedrich-Ebert Str. 42, 51429, Bergisch-Gladbach, Germany
| | - Thomas M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
110
|
Serrano AL, Lomont JP, Tu LH, Raleigh DP, Zanni MT. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP. J Am Chem Soc 2017; 139:16748-16758. [PMID: 29072444 DOI: 10.1021/jacs.7b08830] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transiently populated oligomers formed en route to amyloid fibrils may constitute the most toxic aggregates associated with many amyloid-associated diseases. Most nucleation theories used to describe amyloid aggregation predict low oligomer concentrations and do not take into account free energy costs that may be associated with structural rearrangements between the oligomer and fiber states. We have used isotope labeling and two-dimensional infrared spectroscopy to spectrally resolve an oligomeric intermediate during the aggregation of the human islet amyloid protein (hIAPP or amylin), the protein associated with type II diabetes. A structural rearrangement includes the F23G24A25I26L27 region of hIAPP, which starts from a random coil structure, evolves into ordered β-sheet oligomers containing at least 5 strands, and then partially disorders in the fibril structure. The supercritical concentration is measured to be between 150 and 250 μM, which is the thermodynamic parameter that sets the free energy of the oligomers. A 3-state kinetic model fits the experimental data, but only if it includes a concentration independent free energy barrier >3 kcal/mol that represents the free energy cost of refolding the oligomeric intermediate into the structure of the amyloid fibril; i.e., "oligomer activation" is required. The barrier creates a transition state in the free energy landscape that slows fibril formation and creates a stable population of oligomers during the lag phase, even at concentrations below the supercritical concentration. Largely missing in current kinetic models is a link between structure and kinetics. Our experiments and modeling provide evidence that protein structural rearrangements during aggregation impact the populations and kinetics of toxic oligomeric species.
Collapse
Affiliation(s)
- Arnaldo L Serrano
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11790, United States
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11790, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
111
|
Fallah MA, Gerding HR, Scheibe C, Drescher M, Karreman C, Schildknecht S, Leist M, Hauser K. Simultaneous IR-Spectroscopic Observation of α-Synuclein, Lipids, and Solvent Reveals an Alternative Membrane-Induced Oligomerization Pathway. Chembiochem 2017; 18:2312-2316. [PMID: 28980756 DOI: 10.1002/cbic.201700355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/15/2022]
Abstract
The intrinsically disordered protein α-synuclein (αS), a known pathogenic factor for Parkinson's disease, can adopt defined secondary structures when interacting with membranes or during fibrillation. The αS-lipid interaction and the implications of this process for aggregation and damage to membranes are still poorly understood. Therefore, we established a label-free infrared (IR) spectroscopic approach to allow simultaneous monitoring of αS conformation and membrane integrity. IR showed its unique sensitivity for identifying distinct β-structured aggregates. A comparative study of wild-type αS and the naturally occurring splicing variant αS Δexon3 yielded new insights into the membrane's capability for altering aggregation pathways.
Collapse
Affiliation(s)
- Mohammad A Fallah
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Hanne R Gerding
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christian Scheibe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christiaan Karreman
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
112
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
113
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
114
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
115
|
Almandoz-Gil L, Welander H, Ihse E, Khoonsari PE, Musunuri S, Lendel C, Sigvardson J, Karlsson M, Ingelsson M, Kultima K, Bergström J. Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-synuclein through different pathways. Free Radic Biol Med 2017; 110:421-431. [PMID: 28690195 DOI: 10.1016/j.freeradbiomed.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022]
Abstract
Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal inclusions found in brains with Parkinson's disease and dementia with Lewy bodies. A body of evidence implicates oxidative stress in the pathogenesis of these diseases. For example, a large excess (30:1, aldehyde:protein) of the lipid peroxidation end products 4-oxo-2-nonenal (ONE) or 4-hydroxy-2-nonenal (HNE) can induce alpha-synuclein oligomer formation. The objective of the study was to investigate the effect of these reactive aldehydes on alpha-synuclein at a lower molar excess (3:1) at both physiological (7.4) and acidic (5.4) pH. As observed by size-exclusion chromatography, ONE rapidly induced the formation of alpha-synuclein oligomers at both pH values, but the effect was less pronounced under the acidic condition. In contrast, only a small proportion of alpha-synuclein oligomers were formed with low excess HNE-treatment at physiological pH and no oligomers at all under the acidic condition. With prolonged incubation times (up to 96h), more alpha-synuclein was oligomerized at physiological pH for both ONE and HNE. As determined by Western blot, ONE-oligomers were more SDS-stable and to a higher-degree cross-linked as compared to the HNE-induced oligomers. However, as shown by their greater sensitivity to proteinase K treatment, ONE-oligomers, exhibited a less compact structure than HNE-oligomers. As indicated by mass spectrometry, ONE modified most Lys residues, whereas HNE primarily modified the His50 residue and fewer Lys residues, albeit to a higher degree than ONE. Taken together, our data show that the aldehydes ONE and HNE can modify alpha-synuclein and induce oligomerization, even at low molar excess, but to a higher degree at physiological pH and seemingly through different pathways.
Collapse
Affiliation(s)
- Leire Almandoz-Gil
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hedvig Welander
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Elisabet Ihse
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | - Sravani Musunuri
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | - Mikael Karlsson
- Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
116
|
Zhang T, Tian Y, Li Z, Liu S, Hu X, Yang Z, Ling X, Liu S, Zhang J. Molecular Dynamics Study to Investigate the Dimeric Structure of the Full-Length α-Synuclein in Aqueous Solution. J Chem Inf Model 2017; 57:2281-2293. [DOI: 10.1021/acs.jcim.7b00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tingting Zhang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Siming Liu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiang Hu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaotong Ling
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
117
|
Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 2017; 114:8770-8775. [PMID: 28760994 DOI: 10.1073/pnas.1705091114] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register β-sheet structures and identifies a target for structure-based therapeutics in ALS.
Collapse
|
118
|
Cremades N, Dobson CM. The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 2017; 109:178-190. [PMID: 28709995 DOI: 10.1016/j.nbd.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's, Parkinson's and the prion diseases, are characterized by a conformational conversion of normally soluble proteins or peptides into pathological species, by a process of misfolding and self-assembly that leads ultimately to the formation of amyloid fibrils. Recent studies support the idea that multiple intermediate species with a wide variety of degrees of neuronal toxicity are generated during such processes. The development of a high level of knowledge of the nature and structure of the pathogenic amyloid species would significantly enhance efforts to underline the molecular origins of these disorders and also to develop both accurate diagnoses and effective therapeutic interventions for these types of conditions. In this review, we discuss recent biophysical and structural information concerning different types of amyloid aggregates and the way in which such information can guide rational therapeutic approaches designed to target specific pathogenic events that occur during the development of these highly debilitating and increasingly common diseases.
Collapse
Affiliation(s)
- Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
119
|
Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, Barros-Aragão F, Santos LE, Gonçalves RA, Romão L, Zamberlan DC, Soares FAA, Braga C, Foguel D, Gomes FCA, De Felice FG, Ferreira ST, Clarke JR, Figueiredo CP. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice. Behav Brain Res 2017; 333:150-160. [PMID: 28668282 DOI: 10.1016/j.bbr.2017.06.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.
Collapse
Affiliation(s)
- Juliana T S Fortuna
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Matthias Gralle
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda S Neves
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luan P Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luís E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Rafaella A Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Daniele C Zamberlan
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Felix A A Soares
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carolina Braga
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
120
|
Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death. Sci Rep 2017; 7:43153. [PMID: 28256519 PMCID: PMC5335665 DOI: 10.1038/srep43153] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.
Collapse
|
121
|
High-Throughput Screening Methodology to Identify Alpha-Synuclein Aggregation Inhibitors. Int J Mol Sci 2017; 18:ijms18030478. [PMID: 28257086 PMCID: PMC5372494 DOI: 10.3390/ijms18030478] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 11/17/2022] Open
Abstract
An increasing number of neurodegenerative diseases are being found to be associated with the abnormal accumulation of aggregated proteins in the brain. In Parkinson's disease, this process involves the aggregation of alpha-synuclein (α-syn) into intraneuronal inclusions. Thus, compounds that inhibit α-syn aggregation represent a promising therapeutic strategy as disease-modifying agents for neurodegeneration. The formation of α-syn amyloid aggregates can be reproduced in vitro by incubation of the recombinant protein. However, the in vitro aggregation of α-syn is exceedingly slow and highly irreproducible, therefore precluding fast high throughput anti-aggregation drug screening. Here, we present a simple and easy-to-implement in-plate method for screening large chemical libraries in the search for α-syn aggregation modulators. It allows us to monitor aggregation kinetics with high reproducibility, while being faster and requiring lower protein amounts than conventional aggregation assays. We illustrate how the approach enables the identification of strong aggregation inhibitors in a library of more than 14,000 compounds.
Collapse
|
122
|
Haney CM, Cleveland CL, Wissner RF, Owei L, Robustelli J, Daniels M, Canyurt M, Rodriguez P, Ischiropoulos H, Baumgart T, Petersson EJ. Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules. Biochemistry 2017; 56:683-691. [PMID: 28045494 PMCID: PMC5520965 DOI: 10.1021/acs.biochem.6b01060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson's disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson's disease.
Collapse
Affiliation(s)
- Conor M. Haney
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Christina L. Cleveland
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Rebecca F. Wissner
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Lily Owei
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Jaclyn Robustelli
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Malcolm Daniels
- Pharmacology Graduate Group; University of Pennsylvania; 3400 Civic Center Blvd, Philadelphia, PA 19104
| | | | | | - Harry Ischiropoulos
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| |
Collapse
|
123
|
González-Lizárraga F, Socías SB, Ávila CL, Torres-Bugeau CM, Barbosa LRS, Binolfi A, Sepúlveda-Díaz JE, Del-Bel E, Fernandez CO, Papy-Garcia D, Itri R, Raisman-Vozari R, Chehín RN. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 2017; 7:41755. [PMID: 28155912 PMCID: PMC5290535 DOI: 10.1038/srep41755] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 12/03/2022] Open
Abstract
Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug.
Collapse
Affiliation(s)
- Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina.,Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Sergio B Socías
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - César L Ávila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - Clarisa M Torres-Bugeau
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo - IFUSP, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Andres Binolfi
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Julia E Sepúlveda-Díaz
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil, Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Claudio O Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Dulce Papy-Garcia
- Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo - IFUSP, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Rita Raisman-Vozari
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Rosana N Chehín
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| |
Collapse
|
124
|
Roeters SJ, Iyer A, Pletikapić G, Kogan V, Subramaniam V, Woutersen S. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Sci Rep 2017; 7:41051. [PMID: 28112214 PMCID: PMC5253669 DOI: 10.1038/srep41051] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Collapse
Affiliation(s)
- Steven J Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aditya Iyer
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Galja Pletikapić
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Vladimir Kogan
- Dannalab BV, Wethouder Beversstraat 185, 7543 BK Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
125
|
The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep 2017; 7:40859. [PMID: 28102321 PMCID: PMC5244355 DOI: 10.1038/srep40859] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism.
Collapse
|
126
|
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plast 2017; 2017:5012129. [PMID: 28133550 PMCID: PMC5241463 DOI: 10.1155/2017/5012129] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.
Collapse
|
127
|
Structural Characteristics of α-Synuclein Oligomers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 329:79-143. [DOI: 10.1016/bs.ircmb.2016.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
128
|
van Diggelen F, Tepper AWJW, Apetri MM, Otzen DE. α-Synuclein Oligomers: A Study in Diversity. Isr J Chem 2016. [DOI: 10.1002/ijch.201600116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Femke van Diggelen
- Crossbeta Biosciences; Padualaan 8 3584CH Utrecht The Netherlands
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| | | | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| |
Collapse
|
129
|
Al-Hilaly YK, Biasetti L, Blakeman BJF, Pollack SJ, Zibaee S, Abdul-Sada A, Thorpe JR, Xue WF, Serpell LC. The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson's disease. Sci Rep 2016; 6:39171. [PMID: 27982082 PMCID: PMC5159849 DOI: 10.1038/srep39171] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/18/2016] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy bodies in post-mortem tissue using electron microscopy and immunogold labeling and revealed dityrosine crosslinks in Lewy bodies in brain tissue from PD patients. In vitro, we show that dityrosine cross-links in α-syn are formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress by fluorescence and confirmed using mass-spectrometry. A covalently cross-linked dimer isolated by SDS-PAGE and mass analysis showed that dityrosine dimer was formed via the coupling of Y39-Y39 to give a homo dimer peptide that may play a key role in formation of oligomeric and seeds for fibril formation. Atomic force microscopy analysis reveals that the covalent dityrosine contributes to the stabilization of α-syn assemblies. Thus, the presence of oxidative stress induced dityrosine could play an important role in assembly and toxicity of α-syn in PD.
Collapse
Affiliation(s)
- Youssra K Al-Hilaly
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK.,College of Sciences, Chemistry Department, Al-Mustansiriyah University, Baghdad, Iraq
| | - Luca Biasetti
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Ben J F Blakeman
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Saskia J Pollack
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Shahin Zibaee
- Laboratory of Molecular Biology, MRC Centre, Hills Rd, Cambridge, CB2 OQH, UK
| | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Julian R Thorpe
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Wei-Feng Xue
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| |
Collapse
|
130
|
Sivanesam K, Andersen NH. Modulating the Amyloidogenesis of α-Synuclein. Curr Neuropharmacol 2016; 14:226-37. [PMID: 26517049 PMCID: PMC4857621 DOI: 10.2174/1570159x13666151030103153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-Synuclein is found in the neuronal cells but its native function is not well known. While α -synuclein is an intrinsically disordered protein that adopts a helical conformation upon membrane binding, numerous studies have shown that oligomeric β-forms of this protein are cytotoxic. This response to misfolded species contributes to Parkinson's Disease etiology and symptoms. The resulting amyloid fibrils are an established diagnostic in Parkinson's Disease. In this review, we focus on strategies that have been used to inhibit the amyloidogenesis of α -synuclein either by stabilizing the native state, or by redirecting the pathway to less toxic aggregates. Small molecules such as polyphenols, peptides as well as large proteins have proven effective at protecting cells against the cytotoxicity of α-synuclein. These strategies may lead to the development of therapeutic agents that could prove useful in combating this disease.
Collapse
Affiliation(s)
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
131
|
Sierecki E, Giles N, Bowden Q, Polinkovsky ME, Steinbeck J, Arrioti N, Rahman D, Bhumkar A, Nicovich PR, Ross I, Parton RG, Böcking T, Gambin Y. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence. Sci Rep 2016; 6:37630. [PMID: 27892477 PMCID: PMC5385372 DOI: 10.1038/srep37630] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Quill Bowden
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Mark E. Polinkovsky
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Janina Steinbeck
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Nicholas Arrioti
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Diya Rahman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Ian Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| |
Collapse
|
132
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
133
|
Seo J, Hoffmann W, Warnke S, Huang X, Gewinner S, Schöllkopf W, Bowers MT, von Helden G, Pagel K. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat Chem 2016; 9:39-44. [PMID: 27995915 DOI: 10.1038/nchem.2615] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.
Collapse
Affiliation(s)
- Jongcheol Seo
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Waldemar Hoffmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Stephan Warnke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Xing Huang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
134
|
Galante D, Ruggeri FS, Dietler G, Pellistri F, Gatta E, Corsaro A, Florio T, Perico A, D'Arrigo C. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J Biochem Cell Biol 2016; 79:261-270. [PMID: 27592450 DOI: 10.1016/j.biocel.2016.08.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 01/26/2023]
Abstract
A wide consensus based on robust experimental evidence indicates pyroglutamylated amyloid-β isoform (AβpE3-42) as one of the most neurotoxic peptides involved in the onset of Alzheimer's disease. Furthermore, AβpE3-42 co-oligomerized with excess of Aβ1-42, produces oligomers and aggregates that are structurally distinct and far more cytotoxic than those made from Aβ1-42 alone. Here, we investigate quantitatively the influence of AβpE3-42 on biophysical properties and biological activity of Aβ1-42. We tested different ratios of AβpE3-42/Aβ1-42 mixtures finding a correlation between the biological activity and the structural conformation and morphology of the analyzed mixtures. We find that a mixture containing 5% AβpE3-42, induces the highest disruption of intracellular calcium homeostasis and the highest neuronal toxicity. These data correlate to an high content of relaxed antiparallel β-sheet structure and the coexistence of a population of big spheroidal aggregates together with short fibrils. Our experiments provide also evidence that AβpE3-42 causes template-induced misfolding of Aβ1-42 at ratios below 33%. This means that there exists a critical concentration required to have seeding on Aβ1-42 aggregation, above this threshold, the seed effect is not possible anymore and AβpE3-42 controls the total aggregation kinetics.
Collapse
Affiliation(s)
- Denise Galante
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy; Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Francesco Simone Ruggeri
- Ecole Polytechnique Federale de Lausanne (EPLF), 1015 Lausanne, Switzerland; Department of Chemistry, University of Cambridge, CB21EW, United Kingdom
| | - Giovanni Dietler
- Ecole Polytechnique Federale de Lausanne (EPLF), 1015 Lausanne, Switzerland
| | | | - Elena Gatta
- Department of Physics, University of Genova, 16100 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Angelo Perico
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy
| | - Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy.
| |
Collapse
|
135
|
Oliveri V, Sgarlata C, Vecchio G. Cyclodextrins 3-Functionalized with 8-Hydroxyquinolines: Copper-Binding Ability and Inhibition of Synuclein Aggregation. Chem Asian J 2016; 11:2436-42. [PMID: 27432795 DOI: 10.1002/asia.201600824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Neurodegenerative diseases such as Parkinson's and Alzheimer's diseases are multifactorial disorders related to protein aggregation, metal dyshomeostasis, and oxidative stress. To advance understanding in this area and to contribute to therapeutic development, many efforts have been directed at devising suitable agents that can target metal ions associated with relevant biomolecules such as α-synuclein. This paper presents a new cyclodextrin-8-hydroxyquinoline conjugate and discusses the properties of four cyclodextrins 3-functionalized with 8-hydroxyquinoline as copper(II) chelators and inhibitors of copper-induced synuclein aggregation. The encouraging results establish the potential of cyclodextrin-8-hydroxyquinoline conjugates as chelators for the control of copper toxicity.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125, Catania, Italy
| | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
136
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|
137
|
Gallea JI, Sarroukh R, Yunes-Quartino P, Ruysschaert JM, Raussens V, Celej MS. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:501-10. [DOI: 10.1016/j.bbapap.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/24/2022]
|
138
|
Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. Proc Natl Acad Sci U S A 2016; 113:3815-9. [PMID: 26993805 PMCID: PMC4833232 DOI: 10.1073/pnas.1516546113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
New strategies for visualizing self-assembly processes at the nanoscale give deep insights into the molecular origins of disease. An example is the self-assembly of misfolded proteins into amyloid fibrils, which is related to a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Here, we probe the links between the mechanism of α-synuclein (AS) aggregation and its associated toxicity by using optical nanoscopy directly in a neuronal cell culture model of Parkinson's disease. Using superresolution microscopy, we show that protein fibrils are taken up by neuronal cells and act as prion-like seeds for elongation reactions that both consume endogenous AS and suppress its de novo aggregation. When AS is internalized in its monomeric form, however, it nucleates and triggers the aggregation of endogenous AS, leading to apoptosis, although there are no detectable cross-reactions between externally added and endogenous protein species. Monomer-induced apoptosis can be reduced by pretreatment with seed fibrils, suggesting that partial consumption of the externally added or excess soluble AS can be significantly neuroprotective.
Collapse
|
139
|
Salveson PJ, Spencer RK, Nowick JS. X-ray Crystallographic Structure of Oligomers Formed by a Toxic β-Hairpin Derived from α-Synuclein: Trimers and Higher-Order Oligomers. J Am Chem Soc 2016; 138:4458-67. [PMID: 26926877 PMCID: PMC4825732 DOI: 10.1021/jacs.5b13261] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Oligomeric
assemblies of the protein α-synuclein are thought
to cause neurodegeneration in Parkinson’s disease and related
synucleinopathies. Characterization of α-synuclein oligomers
at high resolution is an outstanding challenge in the field of structural
biology. The absence of high-resolution structures of oligomers formed
by α-synuclein impedes understanding the synucleinopathies at
the molecular level. This paper reports the X-ray crystallographic
structure of oligomers formed by a peptide derived from residues 36–55
of α-synuclein. The peptide 1a adopts a β-hairpin
structure, which assembles in a hierarchical fashion. Three β-hairpins
assemble to form a triangular trimer. Three copies of the triangular
trimer assemble to form a basket-shaped nonamer. Two nonamers pack
to form an octadecamer. Molecular modeling suggests that full-length
α-synuclein may also be able to assemble in this fashion. Circular
dichroism spectroscopy demonstrates that peptide 1a interacts
with anionic lipid bilayer membranes, like oligomers of full-length
α-synuclein. LDH and MTT assays demonstrate that peptide 1a is toxic toward SH-SY5Y cells. Comparison of peptide 1a to homologues suggests that this toxicity results from
nonspecific interactions with the cell membrane. The oligomers formed
by peptide 1a are fundamentally different than the proposed
models of the fibrils formed by α-synuclein and suggest that
α-Syn36–55, rather than the NAC, may nucleate
oligomer formation.
Collapse
Affiliation(s)
- Patrick J Salveson
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| | - Ryan K Spencer
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
140
|
Abstract
The aggregation of α-synuclein (αSN) into oligomeric structures has received increasing interest during the last 10-15 years. The oligomers' potential involvement in Parkinson's disease makes them a promising therapeutic target. Therefore reproducible protocols to prepare and analyze oligomers are very important to allow direct comparison of results obtained by different research groups. In this chapter we present one established method to obtain αSN oligomers from a monomeric ensemble in a relatively easy manner. Also, we briefly discuss a selection of biophysical methods which allow for a quick characterization of oligomer purity and structure.
Collapse
Affiliation(s)
- Wojciech Paslawski
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 171 77
| | - Nikolai Lorenzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Protein Biophysics and Formulation, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Daniel E Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
141
|
Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin. Prog Lipid Res 2015; 61:73-82. [PMID: 26703192 DOI: 10.1016/j.plipres.2015.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University & DZNE, 81377 Munich, Germany
| | - Ruben Cauchi
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|
142
|
Ibrahim T, McLaurin J. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol. Biochem Biophys Res Commun 2015; 469:529-34. [PMID: 26697752 DOI: 10.1016/j.bbrc.2015.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Biological Sciences, Sunnybrook Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON, Canada.
| |
Collapse
|
143
|
Herrera MG, Benedini LA, Lonez C, Schilardi PL, Hellweg T, Ruysschaert JM, Dodero VI. Self-assembly of 33-mer gliadin peptide oligomers. SOFT MATTER 2015; 11:8648-60. [PMID: 26376290 DOI: 10.1039/c5sm01619c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer peptide, which might offer new perspectives for the understanding and treatment of gliadin intolerance disorders.
Collapse
Affiliation(s)
- M G Herrera
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| | - L A Benedini
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| | - C Lonez
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB30ES, UK.
| | - P L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET - Departamento de Química, Facultad de Ciencias Exactas, UNLP, CC16, Suc. 4(1900) La Plata, Buenos Aires, Argentina.
| | - T Hellweg
- Universität Bielefeld, Fakultät für Chemie, Physikalische und Biophysikalische Chemie, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - J-M Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Belgium.
| | - V I Dodero
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
144
|
Nam MK, Han JH, Jang JY, Yun SE, Kim GY, Kang S, Rhim H. A novel link between the conformations, exposure of specific epitopes, and subcellular localization of α-synuclein. Biochim Biophys Acta Gen Subj 2015; 1850:2497-505. [PMID: 26391842 DOI: 10.1016/j.bbagen.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic studies and the abundance of alpha-synuclein (α-Syn) in presynaptic terminals suggest that α-Syn plays a critical role in maintaining synaptic vesicle pools. However, there are still few experimental tools for elucidating its physiological roles. METHODS Unexpectedly, we detected various cellular distribution patterns of endogenous α-Syn by immunofluorescence assays (IFAs). To provide new molecular insights into α-Syn research, we identified associations between epitopes, conformations, and subcellular localization of α-Syn and categorized them. RESULTS The α-Syn exposing Y125 was found to coexist with F-actin at the edge of the cells, including the plasma membrane. α-Syn conformations exposing P128 or both F94 and K97 were partly localized to the mitochondria. These results indicate that various conformations of α-Syn are associated with specific subcellular localizations. Intriguingly, we demonstrate for the first time that the phosphorylated α-Syn at Ser129, also known as a Parkinson's disease (PD)-causing form, is targeted to the mitochondria. CONCLUSIONS Our study showed that different subcellular distribution patterns of α-Syn reflect the existence of various α-Syn conformations under normal conditions. GENERAL SIGNIFICANCE This study provides novel clues for deciphering the physiological function of α-Syn in connection with subcellular localization. Dissecting the specific α-Syn conformations may lead to useful strategies in PD therapy and diagnosis.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ji-Hye Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ja-Young Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Si-Eun Yun
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Goo-Young Kim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hyangshuk Rhim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
145
|
Villar-Piqué A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 2015; 139 Suppl 1:240-255. [PMID: 26190401 DOI: 10.1111/jnc.13249] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease belongs to a group of currently incurable neurodegenerative disorders characterized by the misfolding and accumulation of alpha-synuclein aggregates that are commonly known as synucleinopathies. Clinically, synucleinopathies are heterogeneous, reflecting the somewhat selective neuronal vulnerability characteristic of each disease. The precise molecular underpinnings of synucleinopathies remain unclear, but the process of aggregation of alpha-synuclein appears as a central event. However, there is still no consensus with respect to the toxic forms of alpha-synuclein, hampering our ability to use the protein as a target for therapeutic intervention. To decipher the molecular bases of synucleinopathies, it is essential to understand the complex triangle formed between the structure, function and toxicity of alpha-synuclein. Recently, important steps have been undertaken to elucidate the role of the protein in both physiological and pathological conditions. Here, we provide an overview of recent findings in the field of alpha-synuclein research, and put forward a new perspective over paradigms that persist in the field. Establishing whether alpha-synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders. Alpha-synuclein is the speculated cornerstone of several neurodegenerative disorders known as Synucleinopathies. Nevertheless, the mechanisms underlying the pathogenic effects of this protein remain unknown. Here, we review the recent findings in the three corners of alpha-synuclein biology - structure, function and toxicity - and discuss the enigmatic roads that have accompanied alpha-synuclein from the beginning. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Tomás Lopes da Fonseca
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany. .,Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa, Portugal. .,CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
146
|
Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J 2015; 471:323-33. [PMID: 26272943 DOI: 10.1042/bj20150617] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown. In the present study, we investigated the ability of different α-syn aggregates to trigger inflammatory responses. We showed that α-syn induced inflammation through activation of Toll-like receptor 2 (TLR2) and the nucleotide oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome only when folded as amyloid fibrils. Oligomeric species, thought to be the primary species responsible for the disease, were surprisingly unable to trigger the same cascades. As neuroinflammation is a key player in PD pathology, these results put fibrils back to the fore and rekindles discussions about the primary toxic species contributing to the disease. Our data also suggest that the inflammatory properties of α-syn fibrils are linked to their intrinsic structure, most probably to their cross-β structure. Since fibrils of other amyloids induce similar immunological responses, we propose that the canonical fibril-specific cross-β structure represents a new generic motif recognized by the innate immune system.
Collapse
|
147
|
Dimerization propensities of Synucleins are not predictive for Synuclein aggregation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1658-64. [DOI: 10.1016/j.bbadis.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/07/2015] [Accepted: 05/02/2015] [Indexed: 12/13/2022]
|
148
|
Jakova E, Lee JS. Superposition of an AC field improves the discrimination between peptides in nanopore analysis. Analyst 2015; 140:4813-9. [PMID: 25699656 DOI: 10.1039/c4an02180k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In standard nanopore analysis a constant DC voltage is used to electrophoretically drive small molecules and peptides towards a pore. Superposition of an AC voltage at particular frequencies causes molecules to oscillate as they approach the pore which can alter the event parameters, the blockade current (I) and blockade time (T). Four peptides with similar structures were studied. Alpha-helical peptides A10 (FmocDDA10KK), A14, A18 and retro-inverso A10. It was shown that the ratio of translocations to bumping events could be manipulated by a combination of AC voltages and frequencies. In particular, A10 could be studied without interference from retro-inverso A10. Similarly, a large, intrinsically disordered protein of 140 amino acids, α-synuclein, which translocates the pore readily in a DC field could be prevented from doing so by application of an AC field of 200 mV at 100 MHz.
Collapse
Affiliation(s)
- Elisabet Jakova
- Department of Biochemistry, 107, Wiggins Road, University of Saskatchewan, Saskatoon, SK, S7N 0W0 Canada.
| | | |
Collapse
|
149
|
Hubin E, Deroo S, Schierle GK, Kaminski C, Serpell L, Subramaniam V, van Nuland N, Broersen K, Raussens V, Sarroukh R. Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cell Mol Life Sci 2015; 72:4899-913. [PMID: 26190022 PMCID: PMC4648968 DOI: 10.1007/s00018-015-1983-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/06/2015] [Accepted: 07/02/2015] [Indexed: 12/22/2022]
Abstract
Most Alzheimer’s disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased β-amyloid accumulation, and Aβ deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aβ1–42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aβ both form fibrils characterized by the cross-β architecture, but with distinct β-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aβ1–42 oligomers and fibrils both display an antiparallel β-sheet structure, in comparison with the parallel β-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aβ fibrils in a pH-dependent manner, in terms of their underlying β-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel β-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.,Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Stéphanie Deroo
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Gabriele Kaminksi Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Clemens Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Louise Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Vinod Subramaniam
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.,FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Nico van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kerensa Broersen
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Vincent Raussens
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Rabia Sarroukh
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium.
| |
Collapse
|
150
|
Breydo L, Uversky VN. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 2015; 589:2640-8. [PMID: 26188543 DOI: 10.1016/j.febslet.2015.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation are known to play a crucial role in a number of important human diseases (Alzheimer's, Parkinson's, prion, diabetes, cataracts, etc.) as well as in a multitude of physiological processes. Protein aggregation is a highly complex process resulting in a variety of aggregates with different structures and morphologies. Oligomeric protein aggregates (amyloid oligomers) are formed as both intermediates and final products of the aggregation process. They are believed to play an important role in many protein aggregation-related diseases, and many of them are highly cytotoxic. Due to their instability and structural heterogeneity, information about structure, mechanism of formation, and physiological effects of amyloid oligomers is sparse. This review attempts to summarize the existing information on the major properties of amyloid oligomers.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|