101
|
Isberg RR, O'Connor TJ, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 2008; 7:13-24. [PMID: 19011659 PMCID: PMC2631402 DOI: 10.1038/nrmicro1967] [Citation(s) in RCA: 514] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathogenesis of Legionella pneumophila is derived from its growth within lung macrophages after aerosols are inhaled from contaminated water sources. Interest in this bacterium stems from its ability to manipulate host cell vesicular-trafficking pathways and establish a membrane-bound replication vacuole, making it a model for intravacuolar pathogens. Establishment of the replication compartment requires a specialized translocation system that transports a large cadre of protein substrates across the vacuolar membrane. These substrates regulate vesicle traffic and survival pathways in the host cell. This Review focuses on the strategies that L. pneumophila uses to establish intracellular growth and evaluates why this microorganism has accumulated an unprecedented number of translocated substrates that are targeted at host cells.
Collapse
Affiliation(s)
- Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
102
|
Weber SS, Ragaz C, Hilbi H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 2008; 11:442-60. [PMID: 19021631 DOI: 10.1111/j.1462-5822.2008.01266.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates within a specific vacuole in amoebae and macrophages. To form these 'Legionella-containing vacuoles' (LCVs), the bacteria employ the Icm/Dot type IV secretion system and effector proteins, some of which anchor to the LCV membrane via the host glycolipid phosphatidylinositol 4-phosphate [PtdIns(4)P]. Here we analysed the role of inositol polyphosphate 5-phosphatases (IP5Ps) during L. pneumophila infections. Bacterial replication and LCV formation occurred more efficiently in Dictyostelium discoideum amoebae lacking the IP5P Dd5P4, a homologue of human OCRL1 (Oculocerebrorenal syndrome of Lowe), implicated in retrograde endosome to Golgi trafficking. The phenotype was complemented by Dd5P4 but not the catalytically inactive 5-phosphatase. Ectopically expressed Dd5P4 or OCRL1 localized to LCVs in D. discoideum via an N-terminal domain previously not implicated in membrane targeting, and OCRL1 was also identified on LCVs in macrophages. Dd5P4 was catalytically active on LCVs and accumulated on LCVs harbouring wild-type but not DeltaicmT mutant L. pneumophila. The N-terminal domain of OCRL1 bound L. pneumophila LpnE, a Sel1-like repeat protein involved in LCV formation, which localizes to LCVs and selectively binds PtdIns(3)P. Our results indicate that OCRL1 restricts intracellular growth of L. pneumophila and binds to LCVs in association with LpnE.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
103
|
Heidtman M, Chen EJ, Moy MY, Isberg RR. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 2008; 11:230-48. [PMID: 19016775 DOI: 10.1111/j.1462-5822.2008.01249.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial pathogen Legionella pneumophila replicates in a specialized vacuole within host cells. Establishment of the replication vacuole depends on the Dot/Icm translocation system that delivers a large number of protein substrates into the host cell. The functions of most substrates are unknown. Here, we analysed a defined set of 127 confirmed or candidate Dot/Icm substrates for their effect on host cell processes using yeast as a model system. Expression of 79 candidates caused significant yeast growth defects, indicating that these proteins impact essential host cell pathways. Notably, a group of 21 candidates interfered with the trafficking of secretory proteins to the yeast vacuole. Three candidates that caused yeast secretory defects (SetA, Ceg19 and Ceg9) were investigated further. These proteins impinged upon vesicle trafficking at distinct stages and had signals that allowed translocation into host cells by the Dot/Icm system. Ectopically produced SetA, Ceg19 and Ceg9 localized to secretory organelles in mammalian cells, consistent with a role for these proteins in modulating host cell vesicle trafficking. Interestingly, the ability of SetA to cause yeast phenotypes was dependent upon a functional glycosyltransferase domain. We hypothesize that SetA may glycosylate a component of the host cell vesicle trafficking machinery during L. pneumophila infection.
Collapse
Affiliation(s)
- Matthew Heidtman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
104
|
de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 2008; 70:1378-96. [PMID: 19019140 DOI: 10.1111/j.1365-2958.2008.06487.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Survival and replication inside host cells by Brucella spp. requires a type IV secretion system (T4SS), encoded by the virB locus. However, the identity of the molecules secreted by the T4SS has remained elusive. We hypothesized that proteins translocated by the T4SS would be co-regulated with the virB operon. The LuxR family regulator VjbR, known to regulate virB, bound a fragment of the virB promoter containing an 18 bp palindromic motif (virB promoter box), showing that VjbR regulated the virB operon directly. To identify virB co-regulated genes, we searched the Brucella suis 1330 and B. abortus 2308 genomes for genes with an upstream virB promoter box. One hundred and forty-four promoters in the two genomes contained the virB promoter box, including those of fliC encoding flagellin and cgs encoding cyclic beta-glucan synthetase. Thirteen of these proteins were tested for VirB-dependent translocation into macrophages using a beta-lactamase reporter assay. This analysis resulted in the identification of the proteins encoded by BAB1_1652 (VceA) and BR1038/BAB1_1058 (VceC) as novel protein substrates of the Brucella T4SS. VceC could also be translocated by the Legionella pneumophila Dot/Icm T4SS into host cells. Our results suggest that VjbR co-ordinates expression of the T4SS and at least two of its secreted substrates.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | | | | | | | |
Collapse
|
105
|
Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 2008; 70:908-23. [PMID: 18811729 DOI: 10.1111/j.1365-2958.2008.06453.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila translocates numerous bacterial effectors into the host cell and is essential for bacterial proliferation within macrophages and protozoa. We have recently shown that L. pneumophila strain AA100/130b harbours 11 genes encoding eukaryotic-like ankyrin (Ank) proteins, a family of proteins involved in various essential eukaryotic cellular processes. In contrast to most Dot/Icm-exported substrates, which have little or no detectable role in intracellular proliferation, a mutation in ankB results in a severe growth defect in intracellular replication within human monocyte-derived macrophages (hMDMs), U937 macrophages and Acanthamoeba polyphaga. Single cell analyses of coinfections of hMDMs have shown that the intracellular growth defect of the ankB mutant is totally rescued in cis within communal phagosomes harbouring the wild type strain. Interestingly, distinct from dot/icm structural mutants, the ankB mutant is also rescued in trans within cells harbouring the wild type strain in a different phagosome, indicating that AnkB is a trans-acting secreted effector. Using adenylate cyclase fusions to AnkB, we show that AnkB is translocated into the host cell via the Dot/Icm secretion system in an IcmSW-dependent manner and that the last three C-terminal amino acid residues are essential for translocation. Distinct from the dot/icm structural mutants, the ankB mutant-containing phagosomes exclude late endosomal and lysosomal markers and their phagosomes are remodelled by the rough endoplasmic reticulum. We show that at the postexponential phase of growth, the LetA/S and PmrA/B Two Component Systems confer a positive regulation on expression of the ankB gene, whereas RpoS, LetE and RelA suppress its expression. Our data show that the eukaryotic-like AnkB protein is a Dot/Icm-exported effector that plays a major role in intracellular replication of L. pneumophila within macrophages and protozoa, and its expression is temporally controlled by regulators of the postexponential phase of growth.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room 413, College of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
106
|
Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 2008; 190:7532-47. [PMID: 18805977 DOI: 10.1128/jb.01002-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is a natural parasite of environmental protozoa and employs a biphasic life style to switch between a replicative and a transmissive (virulent) phase. L. pneumophila harbors the lqs (Legionella quorum sensing) cluster, which includes genes encoding the autoinducer synthase LqsA, the sensor kinase LqsS, the response regulator LqsR, and a homologue of HdeD, which is involved in acid resistance in Escherichia coli. LqsR promotes host-cell interactions as an element of the stationary-phase virulence regulatory network. Here, we characterize L. pneumophila mutant strains lacking all four genes of the lqs cluster or only the hdeD gene. While an hdeD mutant strain did not have overt physiological or virulence phenotypes, an lqs mutant showed an aberrant morphology in stationary growth phase and was defective for intracellular growth, efficient phagocytosis, and cytotoxicity against host cells. Cytotoxicity was restored upon reintroduction of the lqs genes into the chromosome of an lqs mutant strain. The deletion of the lqs cluster caused more-severe phenotypes than deletion of only lqsR, suggesting a synergistic effect of the other lqs genes. A transcriptome analysis indicated that in the stationary phase more than 380 genes were differentially regulated in the lqs mutant and wild-type L. pneumophila. Genes involved in protein production, metabolism, and bioenergetics were upregulated in the lqs mutant, whereas genes encoding virulence factors, such as effectors secreted by the Icm/Dot type IV secretion system, were downregulated. A proteome analysis revealed that a set of Icm/Dot substrates is not produced in the absence of the lqs gene cluster, which confirms the findings from DNA microarray assays and mirrors the virulence phenotype of the lqs mutant strain.
Collapse
|
107
|
de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 2008; 4:e1000117. [PMID: 18670632 PMCID: PMC2475511 DOI: 10.1371/journal.ppat.1000117] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/07/2008] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.
Collapse
Affiliation(s)
- Karim Suwwan de Felipe
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Robert T. Glover
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Xavier Charpentier
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - O. Roger Anderson
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, United States of America
| | - Moraima Reyes
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Christopher D. Pericone
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Howard A. Shuman
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
108
|
An in vivo gene deletion system for determining temporal requirement of bacterial virulence factors. Proc Natl Acad Sci U S A 2008; 105:9385-90. [PMID: 18599442 DOI: 10.1073/pnas.0801055105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Analysis of phenotypes associated with specific mutants has been instrumental in determining the roles of a bacterial gene in a biological process. However, this technique does not allow one to address whether a specific gene or gene set is necessary to maintain such a process once it has been established. In the study of microbial pathogenesis, it is important but difficult to determine the temporal requirement of essential pathogenic determinants in the entire infection cycle. Here we report a Cre/loxP-based genetic system that allowed inducible deletion of specific bacterial genes after the pathogen had been phagocytosed by host cells. Using this system, we have examined the temporal requirement of the Dot/Icm type IV protein transporter of Legionella pneumophila during infection. We found that deletion of single essential dot/icm genes did not prevent the internalized bacteria from completing one cycle of intracellular replication. Further analyses indicate that the observed phenotypes were due to the high stability of the examined Dot/Icm protein. However, postinfection deletion within 8 h of the gene coding for the Dot/Icm substrate, SdhA, abolishes intracellular bacterial growth. This result indicates that the Dot/Icm transporter is important for intracellular bacterial growth after the initial biogenesis of the vacuole. Our study has provided a technical concept for analyzing the temporal requirement of specific bacterial proteins or protein complexes in infection or development.
Collapse
|
109
|
Liu M, Conover GM, Isberg RR. Legionella pneumophila EnhC is required for efficient replication in tumour necrosis factor alpha-stimulated macrophages. Cell Microbiol 2008; 10:1906-23. [PMID: 18549456 DOI: 10.1111/j.1462-5822.2008.01180.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Legionella pneumophila enhC(-) mutants were originally identified as being defective for uptake into host cells. In this work, we found that the absence of EnhC resulted in defective intracellular growth when dissemination of intracellular bacteria to neighbouring cells was expected to occur. No such defect was observed during growth within the amoeba Dictyostelium discoideum. Culture supernatants containing the secreted products of infected macrophages added to host cells restricted the growth of the DeltaenhC strain, while tumour necrosis factor alpha (TNF-alpha), at concentrations similar to those found in macrophage culture supernatants, could reproduce the growth restriction exerted by culture supernatants on L. pneumophilaDeltaenhC. The absence of EnhC also caused defective trafficking of the Legionella-containing vacuole in TNF-alpha-treated macrophages. EnhC was shown to be an envelope-associated protein largely localized to the periplasm, with its expression induced in post-exponential phase, as is true for many virulence-associated proteins. Furthermore, the absence of EnhC appeared to affect survival under stress conditions, as the DeltaenhC mutant was more susceptible to H(2)O(2) treatment than the wild-type strain. EnhC therefore is a unique virulence factor that is required for growth specifically when macrophages have heightened potential to restrict microbial replication.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
110
|
Juhas M, Crook DW, Hood DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 2008; 10:2377-86. [PMID: 18549454 PMCID: PMC2688673 DOI: 10.1111/j.1462-5822.2008.01187.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type IV secretion systems (T4SSs) are multisubunit cell-envelope-spanning structures, ancestrally related to bacterial conjugation machines, which transfer proteins and nucleoprotein complexes across membranes. T4SSs mediate horizontal gene transfer, thus contributing to genome plasticity and the evolution of pathogens through dissemination of antibiotic resistance and virulence genes. Moreover, T4SSs are also used for the delivery of bacterial effector proteins across the bacterial membrane and the plasmatic membrane of eukaryotic host cell, thus contributing directly to pathogenicity. T4SSs are usually encoded by multiple genes organized into a single functional unit. Based on a number of features, the organization of genetic determinants, shared homologies and evolutionary relationships, T4SSs have been divided into several groups. Type F and P (type IVA) T4SSs resembling the archetypal VirB/VirD4 system of Agrobacterium tumefaciens are considered to be the paradigm of type IV secretion, while type I (type IVB) T4SSs are found in intracellular bacterial pathogens, Legionella pneumophila and Coxiella burnetii. Several novel T4SSs have been identified recently and their functions await investigation. The most recently described GI type T4SSs play a key role in the horizontal transfer of a wide variety of genomic islands derived from a broad spectrum of bacterial strains.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
111
|
VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol 2008; 190:4427-36. [PMID: 18469100 DOI: 10.1128/jb.00406-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Brucella abortus virB locus contains 12 open reading frames, termed virB1 through virB12, which encode a type IV secretion system. Polar mutations in the virB locus markedly reduce the ability of B. abortus to survive in cultured macrophages or to persist in organs of mice. While a nonpolar deletion of the virB2 gene reduces survival in cultured macrophages and in organs of mice, a nonpolar deletion of virB1 only reduces survival in macrophages, whereas virB12 is dispensable for either virulence trait. Here we investigated the role of the remaining genes in the virB locus during survival in macrophages and virulence in mice. Mutants carrying nonpolar deletions of the virB3, virB4, virB5, virB6, virB7, virB8, virB9, virB10, or virB11 gene were constructed and characterized. All mutations reduced the ability of B. abortus to survive in J774A.1 mouse macrophage-like cells to a degree similar to that caused by a deletion of the entire virB locus. Deletion of virB3, virB4, virB5, virB6, virB8, virB9, virB10, or virB11 markedly reduced the ability of B. abortus to persist in the spleens of mice at 8 weeks after infection. Interestingly, deletion of virB7 did not reduce the ability of B. abortus to persist in spleens of mice. We conclude that virB2, virB3, virB4, virB5, virB6, virB8, virB9, virB10, and virB11 are essential for virulence of B. abortus in mice, while functions encoded by the virB1, virB7, and virB12 genes are not required for persistence in organs with this animal model.
Collapse
|
112
|
Cambronne ED, Roy CR. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog 2008; 3:e188. [PMID: 18069892 PMCID: PMC2134951 DOI: 10.1371/journal.ppat.0030188] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/26/2007] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogens use a type IV secretion system (T4SS) to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein. Intracellular pathogens often manipulate the activities of the eukaryotic host cell in which they reside by using a specialized transport apparatus known as a type IV secretion system to deliver proteins that directly manipulate host cell processes. How proteins to be delivered into eukaryotic cells are recognized by a type IV section system is not well understood. For Legionella pneumophila, the bacterium that causes a severe pneumonia known as Legionnaires disease, a type IV system called Dot/Icm is used to deliver an estimated 150 different proteins into host cells during infection. In this study, we demonstrate that a complex consisting of the proteins IcmS and IcmW bind many of the substrate proteins transported into eukaryotic host cells by the Dot/Icm system. Binding of the IcmSW complex to Dot/Icm substrate proteins enhanced the efficiency by which the substrate proteins were transported into cells by a process that involved altering the conformation of the substrate protein. Thus, this work defines a step that is important for the type IV secretion process and provides new molecular details on substrate protein recognition by type IV secretion systems.
Collapse
Affiliation(s)
- Eric D Cambronne
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
113
|
Nijskens C, Copin R, De Bolle X, Letesson JJ. Intracellular rescuing of a B. melitensis 16M virB mutant by co-infection with a wild type strain. Microb Pathog 2008; 45:134-41. [PMID: 18547782 DOI: 10.1016/j.micpath.2008.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Brucella is a broad-range, facultative intracellular pathogen that can survive and replicate in an endoplasmic reticulum (ER)-derived replication niche by preventing fusion of its membrane-bound compartment with late endosomes and lysosomes. This vacuolar hijacking was demonstrated to be dependent on the type IV secretion system VirB but no secreted effectors have been identified yet. A virB mutant is unable to reach its ER-derived replicative niche and does not multiply intracellularly. In this paper, we showed that, by co-infecting bovine macrophages or HeLa cells with the wild type (WT) strain of Brucella melitensis 16M and a deletion mutant of the complete virB operon, the replication of DeltavirB is rescued in almost 20% of the co-infected cells. Furthermore, we demonstrated that co-infections with the WT strains of Brucella abortus or Brucella suis were equally able to rescue the replication of the B. melitensis DeltavirB mutant. By contrast, no rescue was observed when the WT strain was given 1h before or after the infection with the DeltavirB mutant. Finally, vacuoles containing the rescued DeltavirB mutant were shown to exclude the LAMP-1 marker in a way similar to the WT containing vacuoles.
Collapse
Affiliation(s)
- C Nijskens
- Unité de Recherche en Biologie Moléculaire (URBM), University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
114
|
Abstract
Previously, we identified ladC in a cohort of genes that were present in Legionella pneumophila but absent in other Legionella species. Here we constructed a ladC mutant of L. pneumophila and assessed its ability to replicate in mammalian cell lines and Acanthamoeba castellanii. The ladC mutant was recovered in significantly lower numbers than wild-type L. pneumophila at early time points, which was reversed upon transcomplementation with ladC but not ladC(N430A/R434A), encoding a putative catalytically inactive derivative of the protein. In fact, complementation of ladC::Km with ladC(N430A/R434A) resulted in a severe replication defect within human and amoeba cell models of infection, which did not follow a typical dominant negative phenotype. Using differential immunofluorescence staining to distinguish adherent from intracellular bacteria, we found that the ladC mutant exhibited a 10-fold reduction in adherence to THP-1 macrophages but no difference in uptake by THP-1 cells. When tested in vivo in A/J mice, the competitive index of the ladC mutant dropped fivefold over 72 h, indicating a significant attenuation compared to wild-type L. pneumophila. Although localization of LadC to the bacterial inner membrane suggested that the protein may be involved in signaling pathways that regulate virulence gene expression, microarray analysis indicated that ladC does not influence the transcriptional profile of L. pneumophila in vitro or during A. castellanii infection. Although the mechanism by which LadC modulates the initial interaction between the bacterium and host cell remains unclear, we have established that LadC plays an important role in L. pneumophila infection.
Collapse
|
115
|
Shin S, Roy CR. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 2008; 10:1209-20. [PMID: 18363881 DOI: 10.1111/j.1462-5822.2008.01145.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
116
|
Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 2008; 67:1307-19. [DOI: 10.1111/j.1365-2958.2008.06124.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
117
|
Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 2008; 76:1825-36. [PMID: 18250176 DOI: 10.1128/iai.01396-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of effector molecules is one of the major mechanisms by which the intracellular human pathogen Legionella pneumophila interacts with host cells during infection. Specific secretion machineries which are responsible for the subfraction of secreted proteins (soluble supernatant proteins [SSPs]) and the production of bacterial outer membrane vesicles (OMVs) both contribute to the protein composition of the extracellular milieu of this lung pathogen. Here we present comprehensive proteome reference maps for both SSPs and OMVs. Protein identification and assignment analyses revealed a total of 181 supernatant proteins, 107 of which were specific to the SSP fraction and 33 of which were specific to OMVs. A functional classification showed that a large proportion of the identified OMV proteins are involved in the pathogenesis of Legionnaires' disease. Zymography and enzyme assays demonstrated that the SSP and OMV fractions possess proteolytic and lipolytic enzyme activities which may contribute to the destruction of the alveolar lining during infection. Furthermore, it was shown that OMVs do not kill host cells but specifically modulate their cytokine response. Binding of immunofluorescently stained OMVs to alveolar epithelial cells, as visualized by confocal laser scanning microscopy, suggested that there is delivery of a large and complex group of proteins and lipids in the infected tissue in association with OMVs. On the basis of these new findings, we discuss the relevance of protein sorting and compartmentalization of virulence factors, as well as environmental aspects of the vesicle-mediated secretion.
Collapse
|
118
|
Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 2007; 75:5575-85. [PMID: 17893138 PMCID: PMC2168337 DOI: 10.1128/iai.00443-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/10/2007] [Accepted: 09/05/2007] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogen Legionella pneumophila possesses five proteins with Sel1 repeats (SLRs) from the tetratricopeptide repeat protein family. Three of these proteins, LpnE, EnhC, and LidL, have been implicated in the ability of L. pneumophila to efficiently establish infection and/or manipulate host cell trafficking events. Previously, we showed that LpnE is important for L. pneumophila entry into macrophages and epithelial cells. In further virulence studies here, we show that LpnE is also required for efficient infection of Acanthamoeba castellanii by L. pneumophila and for replication of L. pneumophila in the lungs of A/J mice. In addition, we found that the role of LpnE in host cell invasion is dependent on the eight SLR regions of the protein. A truncated form of LpnE lacking the two C-terminal SLR domains was unable to complement the invasion defect of an lpnE mutant of L. pneumophila 130b in both the A549 and THP-1 cell lines. The lpnE mutant displayed impaired avoidance of LAMP-1 association, suggesting that LpnE influenced trafficking of the L. pneumophila vacuole, similar to the case for EnhC and LidL. We also found that LpnE was present in L. pneumophila culture supernatants and that its export was independent of both the Lsp type II secretion system and the Dot/Icm type IV secretion system. The fact that LpnE was exported suggested that the protein may interact with a eukaryotic protein. Using LpnE as bait, we screened a HeLa cell cDNA library for interacting partners, using the yeast two-hybrid system. Examination of the protein-protein interaction between LpnE and a eukaryotic protein, obscurin-like protein 1, suggested that LpnE can interact with eukaryotic proteins containing immunoglobulin-like folds via the SLR regions. This investigation has further characterized the contribution of LpnE to L. pneumophila virulence and, more specifically, the importance of the SLR regions to LpnE function.
Collapse
Affiliation(s)
- Hayley J Newton
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
119
|
Conover GM, Martinez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 2007; 10:514-28. [PMID: 17979985 DOI: 10.1111/j.1462-5822.2007.01066.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The function of phosphatidylcholine (PC) in the bacterial cell envelope remains cryptic. We show here that productive interaction of the respiratory pathogen Legionella pneumophila with host cells requires bacterial PC. Synthesis of the lipid in L. pneumophila was shown to occur via either phospholipid N-methyltransferase (PmtA) or phosphatidylcholine synthase (PcsA), but the latter pathway was demonstrated to be of predominant importance. Loss of PC from the cell envelope caused lowered yields of L. pneumophila within macrophages as well as loss of high multiplicity cytotoxicity, while mutants defective in PC synthesis could be complemented either by reintroduction of PcsA or by overproduction of PmtA. The lowered yields and reduced cytotoxicity in mutants with defective PC biosynthesis were due to three related defects. First, there was a poorly functioning Dot/Icm apparatus, which delivers substrates required for intracellular growth into the cytosol of infected cells. Second, there was reduced bacterial binding to macrophages, possibly due to loss of PC or a PC derivative on the bacterium that is recognized by the host cell. Finally, strains lacking PC had low steady-state levels of flagellin protein, a deficit that had been previously associated with the phenotypes of lowered cytotoxicity and poor cellular adhesion.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E, Feldman M, Segal G. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 2007; 63:1508-23. [PMID: 17302824 DOI: 10.1111/j.1365-2958.2007.05604.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Legionella pneumophila and Coxiella burnetii have been shown to utilize the icm/dot type IV secretion system for pathogenesis and recently a large number of icm/dot-translocated substrates were identified in L. pneumophila. Bioinformatic analysis has revealed that 13 of the genes encoding for L. pneumophila-translocated substrates and five of the C. burnetii icm/dot genes, contain a conserved regulatory element that resembles the target sequence of the PmrA response regulator. Experimental analysis which included the construction of a L. pneumophila pmrA deletion mutant, intracellular growth analysis, comparison of gene expression between L. pneumophila wild type and the pmrA mutant, construction of mutations in the PmrA conserved regulatory element, controlled expression studies as well as mobility shift assays, demonstrated the direct relation between the PmrA regulator and the expression of L. pneumophila icm/dot-translocated substrates and several C. burnetii icm/dot genes. Furthermore, genomic analysis identified 35 L. pneumophila and 68 C. burnetii unique genes that contain the PmrA regulatory element and few of these genes from L. pneumophila were found to be new icm/dot-translocated substrates. Our results establish the PmrA regulator as a fundamental regulator of the icm/dot type IV secretion system in these two bacteria.
Collapse
Affiliation(s)
- Tal Zusman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
121
|
Machner MP, Isberg RR. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 2007; 318:974-7. [PMID: 17947549 DOI: 10.1126/science.1149121] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rab guanosine triphosphatases (GTPases) regulate vesicle trafficking in eukaryotic cells by reversibly associating with lipid membranes. Inactive Rab GTPases are maintained in the cytosol by binding to GDP-dissociation inhibitor (GDI). It is believed that specialized proteins are required to displace GDI from Rab GTPases before Rab activation by guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factors (GEFs). Here, we found that SidM from Legionella pneumophila could act as both GEF and GDI-displacement factor (GDF) for Rab1. Rab1 released from GDI was inserted into liposomal membranes and was used as a substrate for SidM-mediated nucleotide exchange. During host cell infection, recruitment of Rab1 to Legionella-containing vacuoles depended on the GDF activity of SidM. Thus, GDF and GEF activity can be promoted by a single protein, and GDF activity can coordinate Rab1 recruitment from the GDI-bound pool.
Collapse
Affiliation(s)
- Matthias P Machner
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
122
|
Ninio S, Roy CR. Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 2007; 15:372-80. [PMID: 17632005 DOI: 10.1016/j.tim.2007.06.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/22/2007] [Accepted: 06/26/2007] [Indexed: 01/05/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila is a parasite of eukaryotic cells. It has evolved to survive and replicate in a wide range of protozoan hosts and can also infect human alveolar macrophages as an opportunistic pathogen. Crucially for the infection process, L. pneumophila uses a type IV secretion system called Dot/Icm to translocate bacterial proteins into host cells. In recent years a large number of Dot/Icm-translocated proteins have been identified. The study of these proteins, referred to as effectors, is providing valuable insight into the mechanism by which an intracellular pathogen can manipulate eukaryotic cellular processes to traffic and replicate in host cells.
Collapse
Affiliation(s)
- Shira Ninio
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | |
Collapse
|
123
|
Asare R, Abu Kwaik Y. Early trafficking and intracellular replication of Legionella longbeachaea within an ER-derived late endosome-like phagosome. Cell Microbiol 2007; 9:1571-87. [PMID: 17309675 DOI: 10.1111/j.1462-5822.2007.00894.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Legionella pneumophila is the predominant cause of Legionnaires' disease in the USA and Europe in contrast to Legionella longbeachaea, which is the leading cause of the disease in Western Australia. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase along with expression of other virulence traits, such as motility. We show that while motility of L. longbeachaea is triggered upon growth transition into post-exponential phase, its ability to proliferate intracellularly is totally independent of the bacterial growth phase. Within macrophages, L. pneumophila replicates in a phagosome that excludes early and late endocytic markers and is surrounded by the rough endoplasmic reticulum (RER). In contrast, the L. longbeachaea phagosome colocalizes with the early endosomal marker early endosomal antigen 1 (EEA1) and the late endosomal markers lysosomal associated membrane glycoprotein 2 (LAMP-2) and mannose 6-phosphate receptor (M6PR), and is surrounded by the RER. The L. longbeachaea phagosome does not colocalize with the vacuolar ATPase (vATPase) proton pump, and the lysosomal luminal protease Cathepsin D, or the lysosomal tracer Texas red Ovalbumin (TROV). Intracellular proliferation of L. longbeachaea occurs in LAMP-2-positive phagosomes that are remodelled by the RER. Despite their distinct trafficking, both L. longbeachaea and L. pneumophila can replicate in communal phagosomes whose biogenesis is predominantly modulated by L. longbeachaea into LAMP-2-positive phagosomes. In addition, the L. pneumophila dotA mutant is rescued for intracellular replication if it co-inhabits the phagosome with L. longbeachaea. During late stages of infection, L. longbeachaea escape into the cytoplasm, prior to lysis of the macrophage, similar to L. pneumophila. We conclude that the L. longbeachaea phagosome matures to a non-acidified late endosome-like stage that is remodelled by the RER, indicating an idiosyncratic trafficking of L. longbeachaea compared with other intracellular pathogens, and a divergence in its intracellular lifestyle from L. pneumophila. In addition, re-routing biogenesis of the L. pneumophila phagosome into a late endosome controlled by L. longbeachaea has no effect on intracellular replication.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology, Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
124
|
Santic M, Asare R, Doric M, Abu Kwaik Y. Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. Infect Immun 2007; 75:2903-13. [PMID: 17420236 PMCID: PMC1932860 DOI: 10.1128/iai.00147-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 12/24/2022] Open
Abstract
The Dot/Icm system of Legionella pneumophila triggers activation of caspase-3 during early stages of infection of human macrophages, but apoptosis is delayed until late stages of infection. During early stages of infection of mouse macrophages, the organism triggers rapid caspase-1-mediated cytotoxicity, which is mediated by bacterial flagellin. However, it is not known whether caspase-1 is triggered by L. pneumophila in human macrophages or whether caspase-3 is activated in permissive or nonpermissive mouse macrophages. Using single-cell analyses, we show that the wild-type strain of L. pneumophila does not trigger caspase-1 activation throughout the intracellular infection of human monocyte-derived macrophages (hMDMs), even when the flagellated bacteria escape into the cytoplasm during late stages. Using single-cell analyses, we show that the Dot/Icm system of L. pneumophila triggers caspase-3 but not caspase-1 within permissive A/J mouse bone marrow-derived primary macrophages by 2 to 8 h, but apoptosis is delayed until late stages of infection. While L. pneumophila triggers a Dot/Icm-dependent activation of caspase-1 in nonpermissive BALB/c mouse-derived macrophages, caspase-3 is not activated at any stage of infection. We show that robust intrapulmonary replication of the wild-type strain of L. pneumophila in susceptible A/J mice is associated with late-stage Dot/Icm-dependent pulmonary apoptosis and alveolar inflammation. In the lungs of nonpermissive BALB/c mice, L. pneumophila does not replicate and does not trigger pulmonary apoptosis or alveolar inflammation. Thus, similar to hMDMs, L. pneumophila does not trigger caspase-1 but triggers caspase-3 activation during early and exponential replication in permissive A/J mouse-derived macrophages, and apoptosis is delayed until late stages of infection. The Dot/Icm type IV secretion system is essential for pulmonary apoptosis in the genetically susceptible A/J mice.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
125
|
Jules M, Buchrieser C. Legionella pneumophilaadaptation to intracellular life and the host response: Clues from genomics and transcriptomics. FEBS Lett 2007; 581:2829-38. [PMID: 17531986 DOI: 10.1016/j.febslet.2007.05.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 05/08/2007] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila is the causative agent of the pneumonia-like Legionnaires' disease. The bacterium's survival and spread depend on the ability to replicate inside eukaryotic phagocytic cells. A particular feature of Legionella is its dual host system allowing the intracellular growth in protozoa like Acanthamoeba castellanii, and during infection in human alveolar macrophages. Genome analysis and comparisons as well as expression profiling of the pathogen and the host helped to identify regulatory circuits mediating adaptation of the L. pneumophila transcriptome to the intracellular environment and gave clues for the metabolic needs of intracellular Legionella. This review will summarize what is currently known about intracellular gene expression of L. pneumophila, the transcriptional host response of the model host Dictyostelium discoideum and will present hypotheses drawn from these data with respect to subversion of host cell functions and virulence of L. pneumophila.
Collapse
Affiliation(s)
- Matthieu Jules
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
126
|
Molmeret M, Santic' M, Asare R, Carabeo RA, Abu Kwaik Y. Rapid escape of the dot/icm mutants of Legionella pneumophila into the cytosol of mammalian and protozoan cells. Infect Immun 2007; 75:3290-304. [PMID: 17438033 PMCID: PMC1932949 DOI: 10.1128/iai.00292-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Legionella pneumophila-containing phagosome evades endocytic fusion and intercepts endoplasmic reticulum (ER)-to-Golgi vesicle traffic, which is believed to be mediated by the Dot/Icm type IV secretion system. Although phagosomes harboring dot/icm mutants are thought to mature through the endosomal-lysosomal pathway, colocalization studies with lysosomal markers have reported contradictory results. In addition, phagosomes harboring the dot/icm mutants do not interact with endocytosed materials, which is inconsistent with maturation of the phagosomes in the endosomal-lysosomal pathway. Using multiple strategies, we show that the dot/icm mutants defective in the Dot/Icm structural apparatus are unable to maintain the integrity of their phagosomes and escape into the cytoplasm within minutes of entry into various mammalian and protozoan cells in a process independent of the type II secretion system. In contrast, mutants defective in cytoplasmic chaperones of Dot/Icm effectors and rpoS, letA/S, and letE regulatory mutants are all localized within intact phagosomes. Importantly, non-dot/icm L. pneumophila mutants whose phagosomes acquire late endosomal-lysosomal markers are all located within intact phagosomes. Using high-resolution electron microscopy, we show that phagosomes harboring the dot/icm transporter mutants do not fuse to lysosomes but are free in the cytoplasm. Inhibition of ER-to-Golgi vesicle traffic by brefeldin A does not affect the integrity of the phagosomes harboring the parental strain of L. pneumophila. We conclude that the Dot/Icm transporter is involved in maintaining the integrity of the L. pneumophila phagosome, independent of interception of ER-to-Golgi vesicle traffic, which is a novel function of type IV secretion systems.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
127
|
Banga S, Gao P, Shen X, Fiscus V, Zong WX, Chen L, Luo ZQ. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 2007; 104:5121-6. [PMID: 17360363 PMCID: PMC1829273 DOI: 10.1073/pnas.0611030104] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To establish a vacuole that supports bacterial replication, Legionella pneumophila translocates a large number of bacterial proteins into host cells via the Dot/Icm type IV secretion system. Functions of most of these translocated proteins are unknown, but recent investigations suggest their roles in modulating diverse host processes such as vesicle trafficking, autophagy, ubiquitination, and apoptosis. Cells infected by L. pneumophila exhibited resistance to apoptotic stimuli, but the bacterial protein directly involved in this process remained elusive. We show here that SidF, one substrate of the Dot/Icm transporter, is involved in the inhibition of infected cells from undergoing apoptosis to allow maximal bacterial multiplication. Permissive macrophages harboring a replicating sidF mutant are more apoptotic and more sensitive to staurosporine-induced cell death. Furthermore, cells expressing SidF are resistant to apoptosis stimuli. SidF contributes to apoptosis resistance in L. pneumophila-infected cells by specifically interacting with and neutralizing the effects of BNIP3 and Bcl-rambo, two proapoptotic members of Bcl2 protein family. Thus, inhibiting the functions of host pro-death proteins by translocated effectors constitutes a mechanism for L. pneumophila to protect host cells from apoptosis.
Collapse
Affiliation(s)
- Simran Banga
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Ping Gao
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Xihui Shen
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Valena Fiscus
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405; and
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Lingling Chen
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405; and
| | - Zhao-Qing Luo
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Feldman M, Segal G. A pair of highly conserved two-component systems participates in the regulation of the hypervariable FIR proteins in different Legionella species. J Bacteriol 2007; 189:3382-91. [PMID: 17337587 PMCID: PMC1855887 DOI: 10.1128/jb.01742-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila and other pathogenic Legionella species multiply inside protozoa and human macrophages by using the Icm/Dot type IV secretion system. The IcmQ protein, which possesses pore-forming activity, and IcmR, which functions as its chaperone, are two essential components of this system. It was previously shown that in 29 Legionella species, a large hypervariable-gene family (fir genes) is located upstream from a conserved icmQ gene, but although nonhomologous, the FIR proteins were found to function similarly together with their corresponding IcmQ proteins. Alignment of the regulatory regions of 29 fir genes revealed that they can be divided into three regulatory groups; the first group contains a binding site for the CpxR response regulator, which was previously shown to regulate the L. pneumophila fir gene (icmR); the second group, which includes most of the fir genes, contains the CpxR binding site and an additional regulatory element that was identified here as a PmrA binding site; and the third group contains only the PmrA binding site. Analysis of the regulatory region of two fir genes, which included substitutions in the CpxR and PmrA consensus sequences, a controlled expression system, as well as examination of direct binding with mobility shift assays, revealed that both CpxR and PmrA positively regulate the expression of the fir genes that contain both regulatory elements. The change in the regulation of the fir genes that occurred during the course of evolution might be required for the adaptation of the different Legionella species to their specific environmental hosts.
Collapse
Affiliation(s)
- Michal Feldman
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|
129
|
Chen J, Reyes M, Clarke M, Shuman HA. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol 2007; 9:1660-71. [PMID: 17371403 DOI: 10.1111/j.1462-5822.2007.00899.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Legionella pneumophila is the Gram-negative bacterial agent of Legionnaires' disease, an acute, often fatal pneumonia. L. pneumophila infects alveolar macrophages, evading the antimicrobial defences of the phagocyte by preventing fusion of the phagosome with lysosomes and avoiding phagosome acidification. The bacteria then modulate the composition of the vacuole so that it takes on the characteristics of the endoplasmic reticulum. Similar events occur when the bacteria infect unicellular protozoa. It is thought that replication in fresh water protozoa provides an environmental reservoir for the organism. Several effector proteins are delivered to the host by the Icm/Dot type IV secretion system (TFSS). Some of these have been shown to participate in the trafficking of the Legionella phagosome. Here we describe the ability of the Icm/Dot TFSS to translocate two effectors, LepA and LepB, that play a role in the non-lytic release of Legionella from protozoa. We report that translocation of the Lep proteins is inhibited by agents that depolymerize actin filaments and that effectors may be secreted into the extracellular medium upon cell contact. Depletion of the Lep proteins by deletion of their genes results in increased ability to lyse red blood cells. In contrast, overexpression of Lep-containing hybrid proteins appears to specifically inhibit the activity of the Icm/Dot TFSS and may prevent the delivery of other effectors that are critical for intracellular multiplication.
Collapse
Affiliation(s)
- John Chen
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
130
|
Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 2006; 103:18745-50. [PMID: 17124169 PMCID: PMC1656969 DOI: 10.1073/pnas.0609012103] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila requires the Dot/Icm protein translocation system to replicate within host cells as a critical component of Legionnaire's pneumonia. None of the known individual substrates of the translocator have been shown to be essential for intracellular replication. We demonstrate here that mutants lacking the Dot/Icm substrate SdhA were severely impaired for intracellular growth within mouse bone marrow macrophages, with the defect absolute in triple mutants lacking sdhA and its two paralogs. The defect caused by the absence of the sdhA family was less severe during growth within Dictyostelium discoideum amoebae, indicating that the requirement for SdhA shows cell-type specificity. Macrophages harboring the L. pneumophila sdhA mutant showed increased nuclear degradation, mitochondrial disruption, membrane permeability, and caspase activation, indicating a role for SdhA in preventing host cell death. Defective intracellular growth of the sdhA(-) mutant could be partially suppressed by the action of caspase inhibitors, but caspase-independent cell death pathways eventually aborted replication of the mutant.
Collapse
Affiliation(s)
- Rita K. Laguna
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Elizabeth A. Creasey
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Zhiru Li
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Nicole Valtz
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Ralph R. Isberg
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| |
Collapse
|
131
|
Liu Y, Luo ZQ. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 2006; 75:592-603. [PMID: 17101649 PMCID: PMC1828518 DOI: 10.1128/iai.01278-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The virulence of Legionella pneumophila is dependent on the Dot/Icm type IV protein secretion system, which translocates effectors into infected cells. A large number of such translocated proteins have been identified, but few of these proteins are necessary for intracellular replication of the pathogen, making it difficult to correlate these genes with specific cell-biological events associated with L. pneumophila infection. We report here the identification and characterization of a family of two substrates, SidJ and SdjA, with distinctive phenotypes. In contrast to many Dot/Icm substrates, whose expression levels are elevated when bacteria are grown to postexponential phase, SidJ is produced at a constant rate during the entire bacterial growth cycle. Mutation in sidJ causes a significant growth defect in both macrophage and amoeba hosts, but an sdjA mutant is detectably defective only in protozoan hosts. However, in the amoeba host a mutant lacking both sidJ and sdjA does not display a more severe growth defect than the sidJ mutant. Despite its significant intracellular growth defect, the sidJ mutant is still able to effectively evade fusion with lysosomes. Importantly, recruitment of endoplasmic reticulum (ER) proteins by vacuoles containing the sidJ mutant was considerably delayed in both mammalian and amoeba cells. Our results suggest that SidJ modulates host cellular pathways, contributing to the trafficking or retention of ER-derived vesicles to L. pneumophila vacuoles.
Collapse
Affiliation(s)
- Yancheng Liu
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
132
|
Bandyopadhyay P, Liu S, Gabbai CB, Venitelli Z, Steinman HM. Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun 2006; 75:723-35. [PMID: 17101653 PMCID: PMC1828514 DOI: 10.1128/iai.00956-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens.
Collapse
Affiliation(s)
- Purnima Bandyopadhyay
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
133
|
LeBlanc JJ, Davidson RJ, Hoffman PS. Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 2006; 188:6235-44. [PMID: 16923890 PMCID: PMC1595364 DOI: 10.1128/jb.00635-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila expresses two catalase-peroxidase enzymes that exhibit strong peroxidatic but weak catalatic activities, suggesting that other enzymes participate in decomposition of hydrogen peroxide (H2O2). Comparative genomics revealed that L. pneumophila and its close relative Coxiella burnetii each contain two peroxide-scavenging alkyl hydroperoxide reductase (AhpC) systems: AhpC1, which is similar to the Helicobacter pylori AhpC system, and AhpC2 AhpD (AhpC2D), which is similar to the AhpC AhpD system of Mycobacterium tuberculosis. To establish a catalatic function for these two systems, we expressed L. pneumophila ahpC1 or ahpC2 in a catalase/peroxidase mutant of Escherichia coli and demonstrated restoration of H2O2 resistance by a disk diffusion assay. ahpC1::Km and ahpC2D::Km chromosomal deletion mutants were two- to eightfold more sensitive to H2O2, tert-butyl hydroperoxide, cumene hydroperoxide, and paraquat than the wild-type L. pneumophila, a phenotype that could be restored by trans-complementation. Reciprocal strategies to construct double mutants were unsuccessful. Mutant strains were not enfeebled for growth in vitro or in a U937 cell infection model. Green fluorescence protein reporter assays revealed expression to be dependent on the stage of growth, with ahpC1 appearing after the exponential phase and ahpC2 appearing during early exponential phase. Quantitative real-time PCR showed that ahpC1 mRNA levels were approximately 7- to 10-fold higher than ahpC2D mRNA levels. However, expression of ahpC2D was significantly increased in the ahpC1 mutant, whereas ahpC1 expression was unchanged in the ahpC2D mutant. These results indicate that AhpC1 or AhpC2D (or both) provide an essential hydrogen peroxide-scavenging function to L. pneumophila and that the compensatory activity of the ahpC2D system is most likely induced in response to oxidative stress.
Collapse
Affiliation(s)
- Jason J LeBlanc
- Departments of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
134
|
Vincent CD, Buscher BA, Friedman JR, Williams LA, Bardill P, Vogel JP. Identification of non-dot/icm suppressors of the Legionella pneumophila DeltadotL lethality phenotype. J Bacteriol 2006; 188:8231-43. [PMID: 16997951 PMCID: PMC1698199 DOI: 10.1128/jb.00937-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Legionella pneumophila, a causative agent of bacterial pneumonia, survives inside phagocytic cells by avoiding rapid targeting to the lysosome. This bacterium utilizes a type IVB secretion system, encoded by the dot/icm genes, to replicate inside host cells. DotL, a critical component of the Dot/Icm secretion apparatus, functions as the type IV coupling protein. In contrast to most dot/icm genes, which are dispensable for growth on bacteriological media, dotL is required for the viability of wild-type L. pneumophila. Previously we reported that DeltadotL lethality could be suppressed by inactivation of the Dot/Icm complex via mutations in other dot/icm genes. Here we report the isolation of non-dot/icm suppressors of this phenotype. These DeltadotL suppressors include insertions that disrupt the function of the L. pneumophila homologs of cpxR, djlA, lysS, and two novel open reading frames, lpg0742 and lpg1594, that we have named ldsA and ldsB for lethality of DeltadotL suppressor. In addition to suppressing DeltadotL lethality, inactivation of these genes in a wild-type strain background causes a range of defects in L. pneumophila virulence traits, including intracellular growth, implicating these factors in the proper function of the Dot/Icm complex. Consistent with previous data showing a role for the cpx system in regulating expression of several dot/icm genes, the cpxR insertion mutant produced decreased levels of three Dot/Icm proteins, DotA, IcmV, and IcmW. The remaining four suppressors did not affect the steady-state levels of any Dot/Icm protein and are likely to represent the first identified factors necessary for assembly and/or activation of the Dot/Icm secretion complex.
Collapse
Affiliation(s)
- Carr D Vincent
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
135
|
Huang B, Yuan Z, Heron BA, Gray BR, Eglezos S, Bates JR, Savill J. Distribution of 19 major virulence genes in Legionella pneumophila serogroup 1 isolates from patients and water in Queensland, Australia. J Med Microbiol 2006; 55:993-997. [PMID: 16849718 DOI: 10.1099/jmm.0.46310-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of 19 major virulence genes and the presence of plasmids were surveyed in 141 Legionella pneumophila serogroup (SG) 1 isolates from patients and water in Queensland, Australia. The results showed that 16 of the virulence genes examined were present in all isolates, suggesting that they are life-essential genes for isolates in the environment and host cells. The 65 kb pathogenicity island identified originally in strain Philadelphia-1(T) was detected more frequently in isolates from water (44.2%) than in those from patients (2.7%), indicating that the 65 kb DNA fragment may aid the survival of L. pneumophila in the sampled environment. However, the low frequency of the 65 kb fragment in isolates from patients suggests that the pathogenicity island may not be necessary for L. pneumophila to cause disease. Plasmids were not detected in the L. pneumophila SG1 isolates from patients or water studied. There was an association of both lvh and rtxA with the virulent and predominant genotype detected by amplified fragment length polymorphism, termed AF1, whereas the avirulent common isolate from water termed AF16 did not have lvh or rtxA genes, with the exception of one isolate with rtxA. It was found that a PCR detection test strategy with lvh and rtxA as pathogenesis markers would be useful for determining the infection potential of an isolate.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Microbiology Laboratory, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Zheng Yuan
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Brett A Heron
- Public Health Microbiology Laboratory, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Bruce R Gray
- Public Health Microbiology Laboratory, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Sofroni Eglezos
- EML Consulting Services Queensland Pty Ltd, 1/148 Tennyson Memorial Avenue, Tennyson, QLD 4105, Australia
| | - John R Bates
- Public Health Microbiology Laboratory, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - John Savill
- Public Health Microbiology Laboratory, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
136
|
Losick VP, Isberg RR. NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. ACTA ACUST UNITED AC 2006; 203:2177-89. [PMID: 16940169 PMCID: PMC2118400 DOI: 10.1084/jem.20060766] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, grows within macrophages and manipulates target cell signaling. Formation of a Legionella-containing replication vacuole requires the function of the bacterial type IV secretion system (Dot/Icm), which transfers protein substrates into the host cell cytoplasm. A global microarray analysis was used to examine the response of human macrophage-like U937 cells to low-dose infections with L. pneumophila. The most striking change in expression was the Dot/Icm-dependent up-regulation of antiapoptotic genes positively controlled by the transcriptional regulator nuclear factor κB (NF-κB). Consistent with this finding, L. pneumophila triggered nuclear localization of NF-κB in human and mouse macrophages in a Dot/Icm-dependent manner. The mechanism of activation at low-dose infections involved a signaling pathway that occurred independently of the Toll-like receptor adaptor MyD88 and the cytoplasmic sensor Nod1. In contrast, high multiplicity of infection conditions caused a host cell response that masked the unique Dot/Icm-dependent activation of NF-κB. Inhibition of NF-κB translocation into the nucleus resulted in premature host cell death and termination of bacterial replication. In the absence of one antiapoptotic protein, plasminogen activator inhibitor–2, host cell death increased in response to L. pneumophila infection, indicating that induction of antiapoptotic genes is critical for host cell survival.
Collapse
Affiliation(s)
- Vicki P Losick
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
137
|
Machner MP, Isberg RR. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 2006; 11:47-56. [PMID: 16824952 DOI: 10.1016/j.devcel.2006.05.013] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 04/11/2006] [Accepted: 05/23/2006] [Indexed: 12/31/2022]
Abstract
The intracellular pathogen Legionella pneumophila replicates in a vacuole that recruits material from the host cell endoplasmic reticulum (ER). Biogenesis of this unique vacuole depends on the bacterial Dot/Icm type IV secretion system that translocates proteins across host cell membranes. Here, we show that two translocated substrates, SidM and LidA, target host cell Rab1, a small GTPase regulating ER-to-Golgi traffic. SidM is a guanosine nucleotide exchange factor for Rab1 that recruits Rab1 to Legionella-containing vacuoles, a process that is enhanced by LidA. Expression of sidM in mammalian cells interferes with the secretory pathway and causes Golgi fragmentation. Consistent with a collaborative relationship between the two proteins, immobilized SidM and LidA synergize to promote Rab1-dependent binding of early secretory vesicles. These results indicate that proteins translocated into the host cell by the intravacuolar pathogen L. pneumophila are able to recapitulate events involved in host secretory trafficking.
Collapse
Affiliation(s)
- Matthias P Machner
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
138
|
Abu-Zant A, Jones S, Asare R, Suttles J, Price C, Graham J, Kwaik YA. Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. Cell Microbiol 2006; 9:246-64. [PMID: 16911566 DOI: 10.1111/j.1462-5822.2006.00785.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila triggers robust activation of caspase-3 during early and exponential stages of proliferation within human macrophages, but apoptosis is delayed till late stages of infection, which is novel. As caspase-3 is the executioner of the cell, we tested the hypothesis that L. pneumophila triggers anti-apoptotic signalling within the infected human macrophages to halt caspase-3 from dismantling the cells. Here we show that during early and exponential replication, L. pneumophila-infected human monocyte-derived macrophages (hMDMs) exhibit a remarkable resistance to induction of apoptosis, in a Dot/Icm-dependent manner. Microarray analyses and real-time PCR reveal that during exponential intracellular replication, L. pneumophila triggers upregulation of 12 anti-apoptotic genes that are linked to activation of the nuclear transcription factor kappa-B (NF-kappaB). Our data show that L. pneumophila induces a Dot/Icm-dependent sustained nuclear translocation of the p50 and p65 subunits of NF-kappaB during exponential intracellular replication. Bacterial entry is essential both for the anti-apoptotic phenotype of infected hMDMs and for nuclear translocation of the p65. Using p65-/- and IKKalpha-/- beta-/- double knockout mouse embryonic fibroblast cell lines, we show that nuclear translocation of NF-kappaB is required for the resistance of L. pneumophila-infected cells to apoptosis-inducing agents. In addition, the L. pneumophila-induced nuclear translocation of NF-kappaB requires the activity of IKKalpha and/or IKKbeta. We conclude that although the Dot/Icm secretion system of L. pneumophila elicits an early robust activation of caspase-3 in human macrophages, it triggers a strong anti-apoptotic signalling cascade mediated, at least in part by NF-kappaB, which renders the cells refractory to external potent apoptotic stimuli.
Collapse
Affiliation(s)
- Alaeddin Abu-Zant
- Department of Microbiology, University of Louisville Collage of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 2006; 8:971-7. [PMID: 16906144 DOI: 10.1038/ncb1463] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 07/10/2006] [Indexed: 01/13/2023]
Abstract
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.
Collapse
Affiliation(s)
- Takahiro Murata
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
140
|
Jain S, van Ulsen P, Benz I, Schmidt MA, Fernandez R, Tommassen J, Goldberg MB. Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 2006; 188:4841-50. [PMID: 16788193 PMCID: PMC1483012 DOI: 10.1128/jb.00326-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are an extensive family of large secreted virulence-associated proteins of gram-negative bacteria. Secretion of such large proteins poses unique challenges to bacteria. We demonstrate that autotransporters from a wide variety of rod-shaped pathogens, including IcsA and SepA of Shigella flexneri, AIDA-I of diffusely adherent Escherichia coli, and BrkA of Bordetella pertussis, are localized to the bacterial pole. The restriction of autotransporters to the pole is dependent on the presence of a complete lipopolysaccharide (LPS), consistent with known effects of LPS composition on membrane fluidity. Newly synthesized and secreted BrkA is polar even in the presence of truncated LPS, and all autotransporters examined are polar in the cytoplasm prior to secretion. Together, these findings are consistent with autotransporter secretion occurring at the poles of rod-shaped gram-negative organisms. Moreover, NalP, an autotransporter of spherically shaped Neisseria meningitidis contains the molecular information to localize to the pole of Escherichia coli. In N. meningitidis, NalP is secreted at distinct sites around the cell. These data are consistent with a model in which the secretion of large autotransporters occurs via specific conserved pathways located at the poles of rod-shaped bacteria, with profound implications for the underlying physiology of the bacterial cell and the nature of bacterial pathogen-host interactions.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Vincent CD, Vogel JP. The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol 2006; 61:596-613. [PMID: 16803597 DOI: 10.1111/j.1365-2958.2006.05243.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.
Collapse
Affiliation(s)
- Carr D Vincent
- Department of Molecular Microbiology, Washington University, St Louis, MO 63110, USA
| | | |
Collapse
|
142
|
Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppée JY, Buchrieser C. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 2006; 8:1228-40. [PMID: 16882028 DOI: 10.1111/j.1462-5822.2006.00703.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptation to the host environment and exploitation of host cell functions are critical to the success of intracellular pathogens. Here, insight to these virulence mechanisms was obtained for the first time from the transcriptional program of the human pathogen Legionella pneumophila during infection of its natural host, Acanthamoeba castellanii. The biphasic life cycle of L. pneumophila was reflected by a major shift in gene expression from replicative to transmissive phase, concerning nearly half of the genes predicted in the genome. However, three different L. pneumophila strains showed similar in vivo gene expression patterns, indicating that common regulatory mechanisms govern the Legionella life cycle, despite the plasticity of its genome. During the replicative phase, in addition to components of aerobic metabolism and amino acid catabolism, the Entner-Doudoroff pathway, a NADPH producing mechanism used for sugar and/or gluconate assimilation, was expressed, suggesting for the first time that intracellular L. pneumophila may also scavenge host carbohydrates as nutrients and not only proteins. Identification of genes only upregulated in vivo but not in vitro, may explain higher virulence of in vivo grown L. pneumophila. Late in the life cycle, L. pneumophila upregulates genes predicted to promote transmission and manipulation of a new host cell, therewith priming it for the next attack. These including substrates of the Dot/Icm secretion system, other factors associated previously with invasion and virulence, the motility and the type IV pilus machineries, and > 90 proteins not characterized so far. Analysis of a fliA (sigma28) deletion mutant identified genes coregulated with the flagellar regulon, including GGDEF/EAL regulators and factors that promote host cell entry and survival.
Collapse
Affiliation(s)
- Holger Brüggemann
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
VanRheenen SM, Luo ZQ, O'Connor T, Isberg RR. Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 2006; 74:3597-606. [PMID: 16714592 PMCID: PMC1479236 DOI: 10.1128/iai.02060-05] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Legionella pneumophila replicates within alveolar macrophages, causing a severe pneumonia termed Legionnaires' disease. The bacterium resides within a vacuole that escapes immediate transport to the host lysosome. Instead, the vacuole interacts with the early secretory pathway to establish an environment suitable for rapid multiplication. A type IV secretion system is central to the pathogenicity of the bacterium, and many protein substrates that are translocated by this system to the host cell have been identified. One of these, VipD, was found to interrupt the late secretory pathway when overproduced in Saccharomyces cerevisiae. We independently identified VipD in a previous study and have further characterized this protein as well as its three paralogs. The vipD gene belongs to a family of L. pneumophila open reading frames that are predicted to contain a phospholipase A domain with sequence similarity to the type III-secreted toxin ExoU from Pseudomonas aeruginosa. Similarly to other known translocated proteins of L. pneumophila, VipD is strongly induced in early stationary phase, a time when the bacterium is most virulent. Detergent extraction studies of infected macrophages confirm that VipD is translocated into host cells via the type IV secretion system. A second assay for translocation revealed that two paralogs of VipD, VpdA and VpdB, also have translocation signals recognized by the type IV system. A strain lacking VipD and its three paralogs grew at wild-type rates in murine macrophages, although secondary mutations that cause growth defects in strains lacking VipD accumulate. The quadruple mutant displayed a growth advantage in the amoebal host Dictyostelium discoideum, indicating that the protein family may modulate intracellular growth in a complex fashion. VipD is mildly toxic when overproduced in eukaryotic cells, and the toxicity is partially dependent on the putative phospholipase active site. VipD and its paralogs therefore define a family of translocated proteins that may assist in the establishment of a vacuole suitable for bacterial replication through functioning as a phospholipase.
Collapse
Affiliation(s)
- Susan M VanRheenen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
144
|
Fernandez-Moreira E, Helbig JH, Swanson MS. Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 2006; 74:3285-95. [PMID: 16714556 PMCID: PMC1479291 DOI: 10.1128/iai.01382-05] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in broth to the transmissive phase, Legionella pneumophila infects macrophages by inhibiting phagosome maturation, whereas replicative-phase cells are transported to the lysosomes. Here we report that the ability of L. pneumophila to inhibit phagosome-lysosome fusion correlated with developmentally regulated modifications of the pathogen's surface, as judged by its lipopolysaccharide profile and by its binding to a sialic acid-specific lectin and to the hydrocarbon hexadecane. Likewise, the composition of membrane vesicles shed by L. pneumophila was developmentally regulated, based on binding to the lectin and to the lipopolysaccharide-specific monoclonal antibody 3/1. Membrane vesicles were sufficient to inhibit phagosome-lysosome fusion by a mechanism independent of type IV secretion, since only approximately 25% of beads suspended with or coated by vesicles from transmissive phase wild type or dotA secretion mutants colocalized with lysosomal probes, whereas approximately 75% of beads were lysosomal when untreated or presented with vesicles from the L. pneumophila letA regulatory mutant or E. coli. As observed previously for L. pneumophila infection of mouse macrophages, vesicles inhibited phagosome-lysosome fusion only temporarily; by 10 h after treatment with vesicles, macrophages delivered approximately 72% of ingested beads to lysosomes. Accordingly, in the context of the epidemiology of the pneumonia Legionnaires' disease and virulence mechanisms of Leishmania and Mycobacteria, we discuss a model here in which L. pneumophila developmentally regulates its surface composition and releases vesicles into phagosomes that inhibit their fusion with lysosomes.
Collapse
Affiliation(s)
- Esteban Fernandez-Moreira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
| | - Juergen H. Helbig
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
- Corresponding author. Mailing address: University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620. Phone: (734) 647-7295. Fax: (734) 764-3562. E-mail:
| |
Collapse
|
145
|
Newton HJ, Sansom FM, Bennett-Wood V, Hartland EL. Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 2006; 74:1683-91. [PMID: 16495539 PMCID: PMC1418643 DOI: 10.1128/iai.74.3.1683-1691.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a ubiquitous environmental organism and a facultative intracellular pathogen of humans. To identify genes that may contribute to the virulence of L. pneumophila, we performed genomic subtractive hybridization between L. pneumophila serogroup 1 strain 02/41 and L. micdadei strain 02/42. A total of 144 L. pneumophila-specific clones were sequenced, revealing 151 genes that were absent in L. micdadei strain 02/42. Low-stringency Southern hybridization was used to determine the distribution of 41 sequences, representing 40 open reading frames (ORFs) with a range of putative functions among L. pneumophila isolates of various serogroups as well as strains of Legionella longbeachae, L. micdadei, Legionella gormanii, and Legionella jordanis. Twelve predicted ORFs were L. pneumophila specific, including the gene encoding the dot/icm effector, lepB, as well as several genes predicted to play a role in lipopolysaccharide biosynthesis and cell wall synthesis and several sequences with similarity to virulence-associated determinants. A further nine predicted ORFs were in all L. pneumophila serotypes tested and an isolate of L. gormanii. These included icmD, the 5' end of a pilMNOPQ locus, and two genes known to be upregulated during growth within macrophages, cadA2 and ceaA. Disruption of an L. pneumophila-specific gene (lpg2222 locus tag) encoding a putative protein with eight tetratricopeptide repeats resulted in reduced entry into the macrophage-like cell line, THP-1, and the type II alveolar epithelial cell line, A549. The gene was subsequently renamed lpnE, for "L. pneumophila entry." In summary, this investigation has revealed important genetic differences between L. pneumophila and other Legionella species that may contribute to the phenotypic and clinical differences observed within this genus.
Collapse
Affiliation(s)
- Hayley J Newton
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
146
|
Cambronne ED, Roy CR. Recognition and Delivery of Effector Proteins into Eukaryotic Cells by Bacterial Secretion Systems. Traffic 2006; 7:929-39. [PMID: 16734660 DOI: 10.1111/j.1600-0854.2006.00446.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport.
Collapse
Affiliation(s)
- Eric D Cambronne
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | |
Collapse
|
147
|
Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2006; 2:e46. [PMID: 16710455 PMCID: PMC1463015 DOI: 10.1371/journal.ppat.0020046] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/10/2006] [Indexed: 01/14/2023] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of L. pneumophila. Genetic and pharmacological evidence suggests that class I phosphatidylinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type L. pneumophila but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot-secreted proteins which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that L. pneumophila modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Curdin Ragaz
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Katrin Reus
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Yves Nyfeler
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
148
|
Robinson CG, Roy CR. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol 2006; 8:793-805. [PMID: 16611228 DOI: 10.1111/j.1462-5822.2005.00666.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Legionella pneumophila is an intracellular pathogen that replicates in a unique vacuole that avoids endocytic maturation. Previous studies have shown host vesicles attached to the L. pneumophila-containing vacuole (LCV) minutes after uptake. Here we examine the origin and content of these vesicles by electron microscopy (EM). Our data demonstrate that the attached vesicles are derived from endoplasmic reticulum (ER) based the presence of the resident ER proteins glucose-6-phosphatase, protein disulphide isomerase (PDI) and proteins having the ER-retention signal lysine-aspartic acid-glutamic acid-leucine (KDEL). After tethering occurred, ER markers inside of attached vesicles were delivered into the lumen of the LCV, indicating ER fusion. Treatment of cells with brefeldin A did not interfere with the attachment of ER vesicles with the LCV, suggesting that tethering of these vesicles does not require activities mediated by ADP-ribosylation factor (ARF). ER vesicles were not tethered to the LCV in cells producing the Sar1H79G protein, indicating that vesicles produced by the Sar1/CopII system are necessary for vesicle attachment. From these data we conclude that formation of the organelle that supports L. pneumophila replication is a two-stage process that involves remodelling of the LCV by early secretory vesicles produced by the Sar1/CopII system, followed by attachment and fusion of ER.
Collapse
Affiliation(s)
- Camenzind G Robinson
- Department of Cell Biology, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
149
|
Dorer MS, Kirton D, Bader JS, Isberg RR. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2006; 2:e34. [PMID: 16652170 PMCID: PMC1447669 DOI: 10.1371/journal.ppat.0020034] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/16/2006] [Indexed: 11/29/2022] Open
Abstract
Legionella pneumophila translocates multiple bacterial effector proteins into host cells to direct formation of a replication vacuole for the bacterium. The emerging consensus is that formation of this compartment involves recruitment of membrane material that traffics between the endoplasmic reticulum (ER) and Golgi. To investigate this model, a targeted approach was used to knock down expression of proteins involved in membrane trafficking, using RNA interference in Drosophila cells. Surprisingly, few single knockdowns of ER–Golgi transport proteins decreased L. pneumophila replication. By analyzing double-stranded RNAs in pairs, combinations were identified that together caused defects in intracellular replication, consistent with the model that membrane traffic funnels into the replication vacuole from multiple sources. In particular, simultaneous depletion of the intermediate compartment and Golgi-tethering factor transport protein particle together with the ER SNARE protein Sec22 reduced replication efficiency, indicating that introduction of lesions at distinct sites in the secretory system reduces replication efficiency. In contrast to knockdowns in secretory traffic, which required multiple simultaneous hits, knockdown of single cytosolic components of ER-associated degradation, including Cdc48/p97 and associated cofactors, was sufficient to inhibit intracellular replication. The requirement for the Cdc48/p97 complex was conserved in mammalian cells, in which replication vacuoles showed intense recruitment of ubiquitinated proteins, the preferred substrates of Cdc48/p97. This complex promoted dislocation of both ubiquitinated proteins and bacterial effectors from the replication vacuole, consistent with the model that maintenance of high-level replication requires surveillance of the vacuole surface. This work demonstrates that L. pneumophila has the ability to gain access to multiple sites in the secretory system and provides the first evidence for a role of the Cdc48/p97 complex in promoting intracellular replication of pathogens and maintenance of replication vacuoles. Legionella pneumophila is a pathogenic bacterium that causes Legionnaires pneumonia. Immune cells, called macrophages, engulf the bacterium and attempt to kill it. Legionella avoids this killing and instead grows inside the macrophage, creating a growth niche using host cell components. The bacterium directs the formation of its replication niche by injecting bacterial proteins, called effectors, into the host cell. These effectors hijack host functions. In this study, the authors identify some of the host pathways that the bacterium hijacks. The authors used macrophage-like cells derived from fruit flies because protein function can be disrupted in these cells using a technique called RNA interference, which destroys the RNA messages that encode for proteins, resulting in directed loss of these proteins. Candidate proteins were chosen to disrupt based upon previous knowledge about the biology of Legionella. This report highlights two observations that contribute to our understanding of the biology of Legionella. Surprisingly, the absence of some host components could be tolerated because other host components could take their place. One exception to this rule was a protein complex on the outside of the Legionella replication vacuole that may help the bacterium deliver its proteins to appropriate sites in the host cell.
Collapse
Affiliation(s)
- Marion S Dorer
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Donald Kirton
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- School of Medicine, Tufts University, Boston, Massachusetts, United States of America
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Tufts University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
150
|
Miyake M, Fukui T, Imai Y. Differences in protein synthesis between wild type and intracellular growth-deficient strains of Legionella pneumophila in U937 and Acanthamoeba polyphaga. Microb Pathog 2006; 40:161-70. [PMID: 16488572 DOI: 10.1016/j.micpath.2005.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/13/2005] [Indexed: 12/28/2022]
Abstract
An important aspect of Legionnaires' disease is the growth of the causative agent, Legionella pneumophila, within infected host cells. Many proteins including stress proteins of L. pneumophila were strongly induced in a wild type strain that had been used to infect U937 human macrophage-like cells. In contrast, the expression of the proteins was much weaker within a protozoan host, Acanthamoeba polyphaga. The results suggested that active bacterial protein synthesis is required more within macrophages than within protozoa for adaptation of L. pneumophila to intracellular environments. The synthesis of these proteins was not observed in intracellular growth-deficient strains after infection in either type of host cells. The inability of protein synthesis in these strains is correlated with their inability of intracellular growth. Furthermore, on U937 infection, the synthesis of beta-galactosidase encoded in an inducible reporter construct immediately ceased in the in intracellular growth-deficient strains after infection, while the wild type strain was able to synthesize it during the course of infection. These results suggested that the intracellular growth of Legionella pneumophila within macrophages requires active protein synthesis from an earlier stage of bacterial infection.
Collapse
Affiliation(s)
- Masaki Miyake
- Department of Microbiology and COE Program in the 21st Century, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan.
| | | | | |
Collapse
|