101
|
|
102
|
O'Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, Fowler PA. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocrinol Metab 2007; 92:4792-801. [PMID: 17848411 DOI: 10.1210/jc.2007-1690] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Normal fetal testis development is essential for masculinization and subsequent adult fertility. The second trimester is a critical period of human testicular development and masculinization, but there is a paucity of reliable developmental data. OBJECTIVE The objective of the study was to analyze second-trimester human testicular morphology and function. DESIGN This was an observational study of second-trimester testis development. SETTING The study was conducted at the Universities of Glasgow and Aberdeen. PATIENTS/PARTICIPANTS Testes were collected from 57 morphologically normal fetuses of women undergoing elective termination of normally progressing pregnancies (11-19 wk gestation). MAIN OUTCOME MEASURE(S) Testicular morphology, cell numbers, and quantitative expression of 22 key testicular genes were determined. RESULTS Sertoli cell and germ cell number increased exponentially throughout the second trimester. Leydig cell number initially increased exponentially but slowed toward 19 wk. Transcripts encoding Sertoli (KITL, FGF9, SOX9, FSHR, WT1) and germ (CKIT, TFAP2C) cell-specific products increased per testis through the second trimester, but expression per cell was static apart from TFAP2C, which declined. Leydig cell transcripts (HSD17B3, CYP11A1, PTC1, CYP17, LHR, INSL3) also remained static per cell. Testicular expression of adrenal transcripts MC2R, CYP11B1, and CYP21 was detectable but unchanged. Expression of other transcripts known or postulated to be involved in testicular development (GATA4, GATA6, CXORF6, WNT2B, WNT4, WNT5A) increased significantly per testis during the second trimester. CONCLUSIONS The second trimester is essential for the establishment of Sertoli and germ cell numbers. Sertoli and Leydig cells are active throughout the period, but there is no evidence of changing transcript levels.
Collapse
Affiliation(s)
- P J O'Shaughnessy
- Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, United Kingdom. p.j.o'
| | | | | | | | | | | |
Collapse
|
103
|
Suzuki K, Haraguchi R, Ogata T, Barbieri O, Alegria O, Vieux-Rochas M, Nakagata N, Ito M, Mills AA, Kurita T, Levi G, Yamada G. Abnormal urethra formation in mouse models of split-hand/split-foot malformation type 1 and type 4. Eur J Hum Genet 2007; 16:36-44. [PMID: 17878916 DOI: 10.1038/sj.ejhg.5201925] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Urogenital birth defects are one of the common phenotypes observed in hereditary human disorders. In particular, limb malformations are often associated with urogenital developmental abnormalities, as the case for Hand-foot-genital syndrome displaying similar hypoplasia/agenesis of limbs and external genitalia. Split-hand/split-foot malformation (SHFM) is a syndromic limb disorder affecting the central rays of the autopod with median clefts of the hands and feet, missing central fingers and often fusion of the remaining ones. SHFM type 1 (SHFM1) is linked to genomic deletions or rearrangements, which includes the distal-less-related homeogenes DLX5 and DLX6 as well as DSS1. SHFM type 4 (SHFM4) is associated with mutations in p63, which encodes a p53-related transcription factor. To understand that SHFM is associated with urogenital birth defects, we performed gene expression analysis and gene knockout mouse model analyses. We show here that Dlx5, Dlx6, p63 and Bmp7, one of the p63 downstream candidate genes, are all expressed in the developing urethral plate (UP) and that targeted inactivation of these genes in the mouse results in UP defects leading to abnormal urethra formation. These results suggested that different set of transcription factors and growth factor genes play similar developmental functions during embryonic urethra formation. Human SHFM syndromes display multiple phenotypes with variations in addition to split hand foot limb phenotype. These results suggest that different genes associated with human SHFM could also be involved in the aetiogenesis of hypospadias pointing toward a common molecular origin of these congenital malformations.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Proteins/deficiency
- Bone Morphogenetic Proteins/genetics
- Disease Models, Animal
- Foot Deformities, Congenital/embryology
- Foot Deformities, Congenital/genetics
- Gene Expression Regulation, Developmental
- Genitalia/embryology
- Hand Deformities, Congenital/embryology
- Hand Deformities, Congenital/genetics
- Homeodomain Proteins/genetics
- Humans
- Limb Deformities, Congenital/classification
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Mice
- Mice, Knockout
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Syndrome
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Transforming Growth Factor beta/deficiency
- Transforming Growth Factor beta/genetics
- Urethra/abnormalities
- Urethra/embryology
Collapse
Affiliation(s)
- Kentaro Suzuki
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Agras K, Shiroyanagi Y, Baskin LS. Progesterone Receptors in the Developing Genital Tubercle: Implications for the Endocrine Disruptor Hypothesis as the Etiology of Hypospadias. J Urol 2007; 178:722-7. [PMID: 17574608 DOI: 10.1016/j.juro.2007.03.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE In fetal mice genital tubercles the ontogenetic expression of progesterone receptors and the effect of in utero estrogen and testosterone exposure were investigated. MATERIALS AND METHODS To evaluate ontogenetic progesterone receptor expression genital tubercles from untreated fetuses at gestational days 12, 14, 16 and 18, and newborn pups were prepared for real-time reverse transcriptase-polymerase chain reaction or immunohistochemistry. To evaluate estrogen and testosterone effects pregnant dams were gavaged once daily with corn oil (vehicle), ethinyl estradiol or testosterone propionate from gestational days 12 through 17. At gestational day 19 the genital tubercles of delivered fetuses were harvested for morphological examination and then pooled for real-time reverse transcriptase-polymerase chain reaction. RESULTS Progesterone receptor protein was first detected at gestational day 12 in the urethral plate and mesenchyma. At later stages staining intensity increased with a greater progesterone receptor signal, especially in the urethra. Progesterone receptor mRNA expression showed different increasing patterns in each sex until birth. However, no difference was noted between male and female genital tubercles in terms of the distribution and quantity of progesterone receptor expression. In utero ethinyl estradiol led to 8.2, 9.7 and 5.2-fold increases in progesterone receptor mRNA in females and in males with and without hypospadias, respectively. Testosterone propionate significantly decreased progesterone receptor mRNA levels in females and males. CONCLUSIONS Progesterone receptors are expressed in developing genital tubercles, suggesting a direct role of progesterone in normal genital tubercle patterning. Their increasing expression until birth also implies increasing sensitivity of the genital tubercles to the effects of estrogenic and progestogenic endocrine disruptors during fetal life. Ethinyl estradiol and testosterone propionate lead to opposing effects on progesterone receptor expression, in addition to their opposing morphological effects on the genital tubercles. These findings expand our knowledge of genital tubercle morphogenesis and provide important information for understanding the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Koray Agras
- Department of Urology, University of California San Francisco Children's Medical Center, University of California-San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
105
|
Agras K, Willingham E, Shiroyanagi Y, Minasi P, Baskin LS. Estrogen receptor-alpha and beta are differentially distributed, expressed and activated in the fetal genital tubercle. J Urol 2007; 177:2386-92. [PMID: 17509364 DOI: 10.1016/j.juro.2007.01.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Indexed: 11/20/2022]
Abstract
PURPOSE We examined the ontogenic and sex specific expression of estrogen receptor-alpha and beta in mouse genital tubercles and assessed the effects of in utero estrogen exposure on these parameters. MATERIALS AND METHODS Expression of the 2 genes was detected in mouse genital tubercles from fetuses collected on gestational days 12, 14, 16 and 18, and from newborns using immunohistochemistry and quantitative polymerase chain reaction. Pregnant dams were exposed to ethinyl estradiol or corn oil as the control. RESULTS Estrogen receptor-alpha and beta proteins first appeared on gestational days 12 and 14, respectively. The 2 proteins were expressed in the urethral plate and mesenchyma. Staining intensity was more prominent in the mesenchyma for estrogen receptor-alpha and in the urethral plate for estrogen receptor-beta. Female genital tubercles expressed more estrogen receptor-alpha than male genital tubercles (p <0.01), while estrogen receptor-alpha expression increased gradually in the 2 sexes until birth. Estrogen receptor-beta expression did not differ between males and females, and it showed no notable variation during fetal life. Ethinyl estradiol led to a 2.1 and 3.8-fold increase in estrogen receptor-alpha expression in females and in males with hypospadias (p = 0.002 and 0.04, respectively). Estrogen receptor-beta expression did not change in response to ethinyl estradiol. CONCLUSIONS This study provides in vivo evidence that estrogen receptor-alpha expression in the genital tubercles of each sex increases until parturition but estrogen receptor-beta expression does not, implying genital tubercle sensitivity to estrogen increases during fetal life. Exogenous administration of estrogens results in a response of increased expression of estrogen receptor-alpha but not of estrogen receptor-beta. These differential findings for estrogen receptor-alpha and beta imply that the 2 receptors may have different roles in normal or anomalous genital tubercle development.
Collapse
Affiliation(s)
- Koray Agras
- Institute for the Study and Treatment of Hypospadias, Department of Urology, UCSF Children's Medical Center, University of California-San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
106
|
Willingham E, Baskin LS. Candidate genes and their response to environmental agents in the etiology of hypospadias. ACTA ACUST UNITED AC 2007; 4:270-9. [PMID: 17483812 DOI: 10.1038/ncpuro0783] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/20/2007] [Indexed: 11/09/2022]
Abstract
The molecular events that lead to isolated hypospadias remain largely unknown, and the etiology of this common congenital anomaly seems to be multifactorial. We have explored the response of several candidate genes to environmental agents that cause hypospadias in a mouse model. Here, we provide an overview of current findings in relation to candidate genes and their response to environmental agents, including the results of genomic analyses of both mouse and human tissues. In addition to steroid-hormone receptors, one gene of specific interest is activating transcription factor 3 (ATF3). We hypothesize a potential mechanism of action for ATF3 and other identified genes, including TGF-B.
Collapse
|
107
|
Jiang J, Ma L, Yuan L, Wang X, Zhang W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 2007; 232:286-93. [PMID: 17343970 DOI: 10.1016/j.tox.2007.01.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish a hypospadiac rat model by maternal exposure to di-n-butyl phthalate (DBP) and to evaluate the developmental abnormalities of hypospadiac male rats. Timed-pregnant rats were given DBP by gastric intubation at doses of 0, 250, 500, 750 or 1000 mg/kg body weight (bw)/day from gestation day (GD) 14 to 18 to establish a hypospadiac rat model. The hypospadias was observed in the 500 and 750 mg/kg bw/day groups, the incidence of which was 6.8 and 41.3%, respectively. Transverse serial histological analysis of genitalia of hypospadiac male rats confirmed the malformation. With exposed dose increasing, the serum testosterone (T) levels of male rats inversely decreased, and in the same dosage group the serum T levels of hypospadiac rats were significantly lower than the levels of nonhypospadiac counterparts. The other reproductive lesions such as cryptorchidism and decreased ratio of anogenital distance/body weight (AGD/bw) were also observed. Autopsy analysis revealed the development of reproductive organs (prostate, testes, epididymis, pituitary gland) and nonreproductive organs (adrenal gland, liver, kidney, heart, spleen) of hypospadiac rats and nonhypospadiac counterparts. The results indicated that the reproductive system and developmental condition of hypospadiac male offspring were damaged severely by DBP.
Collapse
Affiliation(s)
- JunTao Jiang
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiaotong University, 85 Wujin road, Shanghai 200080, Shanghai, PR China
| | | | | | | | | |
Collapse
|
108
|
Little MH, Brennan J, Georgas K, Davies JA, Davidson DR, Baldock RA, Beverdam A, Bertram JF, Capel B, Chiu HS, Clements D, Cullen-McEwen L, Fleming J, Gilbert T, Herzlinger D, Houghton D, Kaufman MH, Kleymenova E, Koopman PA, Lewis AG, McMahon AP, Mendelsohn CL, Mitchell EK, Rumballe BA, Sweeney DE, Valerius MT, Yamada G, Yang Y, Yu J. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 2007; 7:680-99. [PMID: 17452023 PMCID: PMC2117077 DOI: 10.1016/j.modgep.2007.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17-27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Beleza-Meireles A, Lundberg F, Lagerstedt K, Zhou X, Omrani D, Frisén L, Nordenskjöld A. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet 2007; 15:405-10. [PMID: 17264867 DOI: 10.1038/sj.ejhg.5201777] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hypospadias is a common malformation, which results from failure of urethral tube closure, and whose molecular mechanisms are still largely unknown. The normal genital development is orchestrated by the urethral plate epithelium (UPE), at the genital tubercle (GT), which has polarizing activity, controlling a network of epithelial-mesenchymal interactions, which, when disturbed, may lead to hypospadias. Homeobox proteins (HOXs), fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) are essential in this process. Hypospadias in the Hoxa13 -/- mice occurs as a result of the combined loss of Fgf8 and Bmp7 expression in the UPE. In both Fgf10 and Fgfr2 deficient mutant hypospadic male mice, cell proliferation is arrested prematurely and the maturation of the urethral epithelium is disrupted. Fgf8, Fgf10, and their receptor Fgfr2 are downstream targets of androgens (AR) during external genital development, an important fact given the pivotal role of AR in male sex differentiation. Therefore, we examined FGFR2, FGF10, FGF8, and BMP7 as candidate genes for hypospadias. DNA from 60 boys with familial, isolated, hypospadias was screened for mutations in FGFR2, FGF10, FGF8, and BMP7 genes, using DHPLC and DNA sequence analysis. The sequence variations c.590C>G and c.582-62G>A in FGF8, and, c.550+27C>T, c.727+180T>G, c.830T>C (p.Me186Thr), and c.2454C>T in FGFR2 were found uniquely in patients with hypospadias, as compared with 96 controls. No genetic variant in the other genes was detected. These results indicate that mutations are rare in FGF8 and FGFR2 in hypospadias, but gene variants may influence the risk.
Collapse
Affiliation(s)
- Ana Beleza-Meireles
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
110
|
Haraguchi R, Motoyama J, Sasaki H, Satoh Y, Miyagawa S, Nakagata N, Moon A, Yamada G. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 2007; 134:525-33. [PMID: 17202190 DOI: 10.1242/dev.02736] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The urogenital and reproductive organs, including the external genitalia, bladder and urethra, develop as anatomically aligned organs. Descriptive and experimental embryology suggest that the cloaca, and its derivative, the urogenital sinus, contribute to the formation of these organs. However, it is unknown how the primary tissue lineages in, and adjacent to, the cloaca give rise to the above organs, nor is bladder formation understood. While it is known that sonic hedgehog (Shh) is expressed by the cloacal epithelia, the developmental programs that regulate and coordinate the formation of the urogenital and reproductive organs have not been elucidated. Here we report that Shh mutant embryos display hypoplasia of external genitalia, internal urethra (pelvic urethra) and bladder. The importance of Shh signaling in the development of bladder and external genitalia was confirmed by analyzing a variety of mutant mouse lines with defective hedgehog signaling. By genetically labeling hedgehog-responding tissue lineages adjacent to the cloaca and urogenital sinus, we defined the contribution of these tissues to the bladder and external genitalia. We discovered that development of smooth muscle myosin-positive embryonic bladder mesenchyme requires Shh signaling, and that the bladder mesenchyme and dorsal (upper) external genitalia derive from Shh-responsive peri-cloacal mesenchyme. Thus, the mesenchymal precursors for multiple urogenital structures derive from peri-cloacal mesenchyme and the coordination of urogenital organ formation from these precursors is orchestrated by Shh signals.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Center for Animal Resources and Development, CARD and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Donner AL, Williams T. Frontal nasal prominence expression driven by Tcfap2a relies on a conserved binding site for STAT proteins. Dev Dyn 2006; 235:1358-70. [PMID: 16502414 PMCID: PMC2738421 DOI: 10.1002/dvdy.20722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The AP-2 transcription factor family is linked with development of the head and limbs in both vertebrate and invertebrate species. Recent evidence has also implicated this gene family in the evolution of the neural crest in chordates, a critical step that allowed the development and elaboration of the vertebrate craniofacial skeleton. In mice, the inappropriate embryonic expression of one particular AP-2 gene, Tcfap2a, encoding AP-2alpha, results in multiple developmental abnormalities, including craniofacial and limb defects. Thus, Tcfap2a provides a valuable genetic resource to analyze the regulatory hierarchy responsible for the evolution and development of the face and limbs. Previous studies have identified a 2-kilobase intronic region of both the mouse and human AP-2alpha locus that directs expression of a linked LacZ transgene to the facial processes and the distal mesenchyme of the limb bud in transgenic mice. Further analysis identified two highly conserved regions of approximately 200-400 bp within this tissue-specific enhancer. We have now initiated a transgenic and biochemical analysis of the most important of these highly conserved regions. Our analysis indicates that although the sequences regulating face and limb expression have been integrated into a single enhancer, different cis-acting sequences ultimately control these two expression domains. Moreover, these studies demonstrate that a conserved STAT binding site provides a major contribution to the expression of Tcfap2a in the facial prominences.
Collapse
Affiliation(s)
- Amy L. Donner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT 06511
| | - Trevor Williams
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT 06511
- Department of Craniofacial Biology and Dept. of Cell and Developmental Biology UCHSC at Fitzsimons, Mailstop 8120, P.O. Box 6511, Aurora, CO, 80045
- Corresponding author: , phone: (303) 724 4571, FAX: (303) 724 4580 N.B. Alternate corresponding author: , phone: (617) 525-4710 FAX: (617) 525-4751
| |
Collapse
|
112
|
Yamada G, Suzuki K, Haraguchi R, Miyagawa S, Satoh Y, Kamimura M, Nakagata N, Kataoka H, Kuroiwa A, Chen Y. Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev Dyn 2006; 235:1738-52. [PMID: 16598715 DOI: 10.1002/dvdy.20807] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
External genitalia are anatomical structures located at the posterior embryonic region as part of several urogenital/reproductive organs. The embryonic anlage of the external genitalia, the genital tubercle (GT) develops as a bud-shaped structure with an initial urethral plate and later urethra. Embryonic external genitalia are considered to be one of the appendages. Recent experiments suggest that essential regulatory genes possess similar functions for the outgrowth regulation of the GT and limb appendages. The transient embryonic epithelia located in the distal GT are called the distal urethral epithelium (DUE) regulating, at least in part, the (distal) GT development. This review covers the available data about early patterning of GT and discusses the molecular developmental similarities and points of divergence between the different appendages. Development of the male and female external genitalia is also reviewed.
Collapse
Affiliation(s)
- G Yamada
- Center for Animal Resources and Development (CARD), Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
OBJECTIVE To analyse the gene expression profiles of the mouse genital tubercle (GT) during urethral tube development at embryonic (E) days E14, E15, E16 and E17, as the aetiology of hypospadias, one of the most common congenital anomalies, remains unknown. MATERIALS AND METHODS During GT development the urethral folds fuse to form an epithelial seam; subsequently, the epithelial seam disappears, resulting in the normal tubular urethra. Abnormalities in urethral seam formation and remodelling might explain hypospadias, and elucidating the molecular developmental mechanisms underlying normal penile development might provide the basis for understanding hypospadias. Total RNA was isolated from the genital tubercle at embryonic days E14, E15, E16, and E17. Together with reference RNA, sample RNA was labelled with Cy-3 and Cy-5 respectively and hybridized to a 16 000-mouse gene array that included the Incyte GEM2.1 and NIA 7k sets. Candidate genes were analysed by immunohistochemistry and real-time polymerase chain reaction. RESULTS Using cDNA microarrays, we identified the up-regulation of genes involved in the transforming growth factor (TGF)-beta and Wnt-Frizzled pathways, and of thrombospondin (TSP) 4, a member of a cell-migration molecule family, all candidates for involvement in urethral tube formation. Immunohistochemistry showed TGFbeta1, TGFbeta receptor III, and Frizzled1 were expressed exclusively in E14-E17 urethral epithelium. TSP4 was expressed in the mesenchymal basal layer underlying E17 GT skin epidermis. CONCLUSIONS Many signalling pathways are involved in late GT development, and cell migration molecules might have an important role in urethral tube formation.
Collapse
Affiliation(s)
- Jiang Li
- Department of Urology, University of California, San Francisco, CA 94143-0738, USA
| | | | | |
Collapse
|
114
|
Meyer KJ, Reif JS, Veeramachaneni DR, Luben TJ, Mosley BS, Nuckols JR. Agricultural pesticide use and hypospadias in eastern Arkansas. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1589-95. [PMID: 17035148 PMCID: PMC1626392 DOI: 10.1289/ehp.9146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/05/2006] [Indexed: 05/05/2023]
Abstract
INTRODUCTION We assessed the relationship between hypospadias and proximity to agricultural pesticide applications using a GIS-based exposure method. METHODS We obtained information for 354 cases of hypospadias born between 1998 and 2002 in eastern Arkansas; 727 controls were selected from birth certificates. We classified exposure on pounds of pesticides (estimated by crop type) applied or persisting within 500 m of each subject's home during gestational weeks 6 to 16. We restricted our analyses to 38 pesticides with some evidence of reproductive, developmental, estrogenic, and/or antiandrogenic effects. We estimated timing of pesticide applications using crop phenology and published records. RESULTS Gestational age at birth [odds ratio (OR) = 0.91; 95% confidence interval (CI), 0.83-0.99], parity (OR = 0.79; 95% CI, 0.65-0.95), and delaying prenatal care until the third trimester (OR = 4.04; 95% CI, 1.46-11.23) were significantly associated with hypospadias. Risk of hypospadias increased by 8% for every 0.05-pound increase in estimated exposure to diclofop-methyl use (OR = 1.08; 95% CI, 1.01-1.15). Pesticide applications in aggregate (OR = 0.82; 95% CI, 0.70-0.96) and applications of alachlor (OR = 0.56; 95% CI, 0.35-0.89) and permethrin (OR = 0.37; 95% CI, 0.16-0.86) were negatively associated with hypospadias. CONCLUSIONS Except for diclofop-methyl, we did not find evidence that estimated exposure to pesticides known to have reproductive, developmental, or endocrine-disrupting effects increases risk of hypospadias. Further research on the potential effects of exposure to diclofop-methyl is recommended.
Collapse
Affiliation(s)
- Kristy J. Meyer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John S. Reif
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Thomas J. Luben
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bridget S. Mosley
- Arkansas Center for Birth Defects Research and Prevention, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, USA
| | - John R. Nuckols
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
115
|
Katoh H, Ogino Y, Yamada G. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis. FEBS Lett 2006; 580:1607-15. [PMID: 16480982 DOI: 10.1016/j.febslet.2006.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/27/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
We cloned a full-length androgen receptor (AR) cDNA from chicken (Gallus gallus) gonads. The cDNA sequence has an open reading frame of 2109 bp encoding 703 amino acids. The chicken AR (cAR) shares high homology with ARs from other species in its amino acid sequences, in particular DNA binding domain (DBD) and ligand binding domain (LBD). RT-PCR analysis revealed that cAR mRNA is expressed in several embryonic tissues of both sexes, and relatively higher expression was observed in left ovary compared with testis. The immunoreactive signal of AR was co-localized within the ovarian cell nucleus, while such nuclear localization was not detected in those of testis. To get insight on the possible role of androgen-AR signaling during gonadal development, non-steroidal AR antagonist, flutamide, was administrated in ovo. The treatment induced the disorganization of sex cords in ovarian cortex at day 12 of incubation. The effect was restored by testosterone co-treatment, implying the possibility that AR mediated signaling may be involved in ovarian morphogenesis. Furthermore, co-treatment of flutamide with estradiol-17beta (E2) also restored the phenotype, suggesting androgen-AR signaling might activate aromatase expression that is necessary for estrogen synthesis. These findings suggest androgen-AR signaling might contribute to chicken embryonic ovarian development.
Collapse
Affiliation(s)
- Hironori Katoh
- Center for Animal Resources and Development (CARD), Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
116
|
Cunha GR, Place NJ, Baskin L, Conley A, Weldele M, Cunha TJ, Wang YZ, Cao M, Glickman SE. The Ontogeny of the Urogenital System of the Spotted Hyena (Crocuta crocuta Erxleben)1. Biol Reprod 2005; 73:554-64. [PMID: 15917348 DOI: 10.1095/biolreprod.105.041129] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Studies were conducted to elucidate the importance of androgen-mediated induction of the extreme masculinization of the external genitalia in female spotted hyenas. Phallic size and shape; androgen receptor (AR) and alpha-actin expression; and sex-specific differences in phallic retractor musculature, erectile tissue, tunica albuginea, and urethra/urogenital sinus were examined in male and female fetuses from Day 30 of gestation to term. Similar outcomes were assessed in fetuses from dams treated with an AR blocker and a 5alpha-reductase inhibitor (antiandrogen treatment). Clitoral and penile development were already advanced at Day 30 of gestation and grossly indistinguishable between male and female fetuses throughout pregnancy. Sex-specific differences in internal phallic organization were evident at Gestational Day 45, coincident with AR expression and testicular differentiation. Antiandrogen treatment inhibited prostatic development in males and effectively feminized internal penile anatomy. We conclude that gross masculinization of phallic size and shape of male and female fetuses is androgen-independent, but that sexual dimorphism of internal phallic structure is dependent on fetal testicular androgens acting via AR in the relevant cells/tissues. Androgens secreted by the maternal ovaries and metabolized by the placenta do not appear to be involved in gross masculinization or in most of the sex differences in internal phallic structure.
Collapse
Affiliation(s)
- Gerald R Cunha
- Departments of Anatomy, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ma X, Reyna A, Mani SK, Matzuk MM, Kumar TR. Impaired male sexual behavior in activin receptor type II knockout mice. Biol Reprod 2005; 73:1182-90. [PMID: 16093358 DOI: 10.1095/biolreprod.105.043794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Integration of multiple hormonal and neuronal signaling pathways in the medial preoptic area (mPOA) is required for elicitation of male sexual behavior in most vertebrates. Perturbation of nitric oxide synthase (NOS) activity in the mPOA causes significant defects in male sexual behavior. Although activins and their signaling components are highly expressed throughout the brain, including the mPOA, their functional significance in the central nervous system (CNS) is unknown. Here, we demonstrate a neurophysiologic role for activin signaling in male reproductive behavior. Adult activin receptor type II null (Acvr2-/-) male mice display multiple reproductive behavioral deficits, including delayed initiation of copulation, reduced mount, and intromission frequencies, and increased mount, intromission, and ejaculation latencies. These behavioral defects in the adult mice are independent of gonadotropin-releasing hormone (GnRH) homeostasis or mating-induced changes in luteinizing hormone (LH) and testosterone levels. The impairment in behavior can be correlated to the nitric oxide content in the CNS because Acvr2-/- males have decreased NOS activity in the mPOA but not the rest of the hypothalamus or cortex. Olfactory acuity tests confirmed that Acvr2-/- mice have no defects in general odor or pheromone recognition. In addition, motor functions are not impaired and the mutants demonstrate normal neuromuscular coordination and balance. Furthermore, the penile histology in mutant mice appears normal, with no significant differences in the expression of penile differentiation marker genes compared with controls, suggesting the observed behavioral phenotypes are not due to structural defects in the penis. Our studies identify a previously unrecognized role of activin signaling in male sexual behavior and suggest that activins and/or related family members are upstream regulators of NOS activity within the mPOA of the forebrain.
Collapse
Affiliation(s)
- Xiaoping Ma
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
118
|
Vignozzi L, Vannelli GB, Morelli A, Mancina R, Marini M, Ferruzzi P, Crescioli C, Luconi M, Donati S, Fisher AD, Baldi E, Filippi S, Forti G, Maggi M. Identification, characterization and biological activity of oxytocin receptor in the developing human penis. ACTA ACUST UNITED AC 2005; 11:99-106. [PMID: 15591449 DOI: 10.1093/molehr/gah138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although abnormalities of the male external genitalia (MEG) are a relatively common problem, little is known concerning the molecular mechanisms that finely regulate penile development. We report here the expression of the oxytocin receptor (OTR) gene by real-time RT-PCR in human fetal tissues (11th-12th week of gestation), including the MEG. The developing penis expressed a very high level of OTR mRNA, only a half log(10) unit lower than fetal central nervous system, used as a positive control. The OTR protein is also highly expressed (western, immunohistochemistry and binding studies) and immunolocalized both in the mesenchymal body and in the surrounding blood capillaries, which will later constitute penile trabeculae and sinusoids. Binding studies using [125I]oxytocin antagonist ([125I]OTA) in cultured human fetal penile smooth muscle cells (hfPSMC) revealed the presence of specific OTR with a high capacity and affinity for oxytocin (OT) and for OTA. Increasing concentrations of OT dose-dependently induced intracellular Ca2+ mobilization. Furthermore, OTR mediated an increase in the proliferation and the migration of hfPSMC. In conclusion, we demonstrate that in the developing human MEG, OTR is highly expressed and might be involved in coordinating timely and appropriate proliferation and migration of the penile cells. Thus, OTR might represent an additional target for investigating human fetal MEG organogenesis.
Collapse
MESH Headings
- Calcium/metabolism
- Cell Proliferation
- Cells, Cultured
- Chemotaxis
- Gene Expression
- Gene Expression Regulation, Developmental
- Humans
- Male
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Organogenesis/genetics
- Organogenesis/physiology
- Oxytocin/pharmacology
- Penis/cytology
- Penis/embryology
- Penis/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, Oxytocin/analysis
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Linda Vignozzi
- Department of Clinical Physiopathology, Andrology and Endocrinology Unit, University of Florence, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sasaki C, Yamaguchi K, Akita K. Spatiotemporal distribution of apoptosis during normal cloacal development in mice. ACTA ACUST UNITED AC 2004; 279:761-7. [PMID: 15278947 DOI: 10.1002/ar.a.20062] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand normal cloacal developmental processes, serial sagittal sections of mouse embryos were made every 6 hrs from embryonic day 11.5 (E11.5) to E13.5. During cloacal development to form the urogenital sinus and anorectal canal, fusion of the urorectal septum with the cloacal membrane was not observed, and the ventral and dorsal parts of the cloaca were continuously connected by the canal until disappearance of the cloacal membrane to open the vestibule formed by the urogenital sinus and anorectal canal to the outside at E13.5. Ventral shifting of the dorsal part of the cloaca was observed until E12.5. The dorsal part was transformed in accordance with ventral shifting. In addition, apoptosis was seen to occur around the dorsal part. However, from E12.25, apoptotic cells are observed in a linear arrangement in the urorectal septum just ventral to the peritoneal cavity. Interestingly, extension of this line reaches the area of the cloacal membrane disintegrated by apoptosis. The present findings suggest that in the early stages (until E12.0), distribution of apoptosis in mesenchyme around the dorsal part of the cloaca might be strongly related to the transformation and ventral shifting of this part. Conversely, the apoptosis pattern in urorectal septum mesenchyme in later stages (from E12.0) might be involved in transformation of the urorectal septum and disintegration of the cloacal membrane.
Collapse
Affiliation(s)
- Chiharu Sasaki
- Unit of Clinical Anatomy, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
120
|
Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz RB, Jiang TX, Chuong CM. Evo-Devo of amniote integuments and appendages. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2004; 48:249-70. [PMID: 15272390 PMCID: PMC4386668 DOI: 10.1387/ijdb.041825pw] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian / reptile ancestors to go onto the land. Overlapping scales and production of beta-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode which maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis and the production of "chicken teeth". In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, University of Southern California, Los Angeles
| | - Lianhai Hou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing
| | - Maksim Plikus
- Department of Pathology, University of Southern California, Los Angeles
| | - Michael Hughes
- Department of Pathology, University of Southern California, Los Angeles
| | - Jeffrey Scehnet
- Department of Pathology, University of Southern California, Los Angeles
| | - Sanong Suksaweang
- Department of Pathology, University of Southern California, Los Angeles
| | | | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles
- Corresponding author: Cheng-Ming Chuong, HMR 315B, Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA USA 90033, Tel: 323 442-1296, Fax: 323 442-3049,
| |
Collapse
|
121
|
Shapiro E, Huang H, McFadden DE, Masch RJ, Ng E, Lepor H, Wu XR. THE PROSTATIC UTRICLE IS NOT A MÜLLERIAN DUCT REMNANT: IMMUNOHISTOCHEMICAL EVIDENCE FOR A DISTINCT UROGENITAL SINUS ORIGIN. J Urol 2004; 172:1753-6; discussion 1756. [PMID: 15371806 DOI: 10.1097/01.ju.0000140267.46772.7d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The embryological origin of the utricle is thought to be a remnant of the fused caudal ends of the müllerian ducts (MDs). Others propose that the urogenital sinus (UGS) contributes either partially or totally to the development of this structure. Using immunohistochemical probes, we provide strong evidence that the utricle is of UGS origin only. MATERIALS AND METHODS Human fetal prostates, gestational ages 9 to 24 weeks, were serially cross-sectioned. Representative sections were stained with antibodies to p63 (basal cell marker), vimentin (mesoderm marker), uroplakins (marker for urothelium) Pax-2 (expressed in ductal and mesenchyme of urogenital system including the MDs and wolffian ducts) and Ki67 (proliferation). Apoptosis was detected with the TUNEL assay. RESULTS By 9 weeks there was weak expression of p63 in the basal layer of the UGS. At 11 weeks there was increased staining of p63 in the UGS and some p63 staining of the fused MDs, which expressed Pax-2 at this time. At 14 to 15 weeks as the MDs were undergoing apoptosis, there was an ingrowth of uroplakin-expressing UGS epithelium into the periurethral stroma, which formed a plate of p63 positive cells just beneath the UGS that was Ki67 positive. The remaining caudal MD epithelium was p63 negative and expressed vimentin and Pax-2. By 17 weeks the plate of p63 positive cells elongated forming the utricle that remained p63 positive but Pax-2 and vimentin negative. CONCLUSIONS We show that the utricle forms as an ingrowth of specialized cells from the dorsal wall of the UGS as the caudal MDs regress.
Collapse
Affiliation(s)
- Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Hypospadias is a common developmental disorder of the urogenital tract, occurring in approximately 1 in 125 live male births. Defined as an atypical urethral opening anywhere along the shaft of the penis, scrotum, or perineum, hypospadias is often associated with a deficient prepuce and chordee. Hypospadias usually occurs as an isolated defect, but can be part of a recognized syndrome or associated with other genital anomalies. The etiology of nonsyndromic hypospadias is unknown, and is believed to be multifactorial. Recent studies have implicated factors such as familial inheritance, low birth weight, assisted reproductive technology, advanced maternal age, paternal subfertility, and endocrine-disrupting chemicals in the pathogenesis of hypospadias. Infants with hypospadias should not undergo circumcision. Currently, most infants with hypospadias undergo surgical reconstruction between 4 and 8 months of age. Parents of a newborn with hypospadias may be anxious and have many questions about their infant's condition. They should be given the opportunity to speak to a pediatric urologist as early as possible. This article provides a guide to the embryologic origins of hypospadias and a photographic atlas to aid bedside clinicians in identifying the spectrum of hypospadias in the newborn.
Collapse
Affiliation(s)
- Laura A Stokowski
- Inova Fairfax Hospital for Children, Neonatal Intensive Care Unit, Falls Church, VA 22042-3300, USA.
| |
Collapse
|
123
|
Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, Baker LA, Henkemeyer M. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 2004; 271:272-90. [PMID: 15223334 DOI: 10.1016/j.ydbio.2004.03.027] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Incomplete urethral tubularization (hypospadias) and anorectal abnormalities are two common and poorly understood birth defects that affect the extreme caudal midline of the human embryo. We now show that cell surface molecules essential for proper axon pathfinding in the developing nervous system, namely ephrin-B2 and the ephrin receptors EphB2 and EphB3, also play major roles in cell adhesion events that tubularize the urethra and partition the urinary and alimentary tracts. Mice carrying mutations which disrupt the bidirectional signals that these molecules transduce develop with variably penetrant severe hypospadias and incomplete midline fusion of the primitive cloaca. We further show that animals completely lacking ephrin-B2 reverse signaling present a fully penetrant failure in cloacal septation. This results in severe anorectal malformations characterized by an absence of the terminal-most hindgut (rectum) and formation of a fistula that aberrantly connects the intestines to the urethra at the base of the bladder. Consistent with an apparent requisite for both forward and reverse signaling in these caudal remodeling events, EphB2 and ephrin-B2 are coexpressed at the midline in the fusing urethral/cloacal endoderm and underlying lateral mesoderm of the urorectal septum that migrates toward the caudal midline as the cloaca septates. Our data thus indicate that B-subclass Eph and ephrin molecules play an important role in these clinically significant midline cell-cell adhesion and fusion events.
Collapse
Affiliation(s)
- Christopher Dravis
- Center for Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Suzuki K, Bachiller D, Chen YP, Kamikawa M, Ogi H, Haraguchi R, Ogino Y, Minami Y, Mishina Y, Ahn K, Crenshaw EB, Yamada G. Regulation of outgrowth and apoptosis for the terminal appendage:external genitalia: development by concerted actions of BMP signaling. Development 2003; 130:6209-20. [PMID: 14602679 DOI: 10.1242/dev.00846] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extra-corporal fertilization depends on the formation of copulatory organs:the external genitalia. Coordinated growth and differentiation of the genital tubercle (GT), an embryonic anlage of external genitalia, generates a proximodistally elongated structure suitable for copulation, erection, uresis and ejaculation. Despite recent progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes of external genitalia formation.Bone morphogenetic protein genes (Bmp genes) and their antagonists were spatiotemporally expressed during GT development. Exogenously applied BMP increased apoptosis of GT and inhibited its outgrowth. It has been shown that the distal urethral epithelium (DUE), distal epithelia marked by the Fgf8 expression, may control the initial GT outgrowth. Exogenously applied BMP4 downregulated the expression of Fgf8 and Wnt5a,concomitant with increased apoptosis and decreased cell proliferation of the GT mesenchyme. Furthermore, noggin mutants and Bmpr1a conditional mutant mice displayed hypoplasia and hyperplasia of the external genitalia respectively. noggin mutant mice exhibited downregulation of Wnt5aand Fgf8 expression with decreased cell proliferation. Consistent with such findings, Wnt5a mutant mice displayed GT agenesis with decreased cell proliferation. By contrast, Bmpr1a mutant mice displayed decreased apoptosis and augmented Fgf8 expression in the DUE associated with GT hyperplasia. These results suggest that some of the Bmp genes could negatively affect proximodistally oriented outgrowth of GT with regulatory functions on cell proliferation and apoptosis.The DUE region can be marked only until 14.0 dpc (days post coitum) in mouse development, while GT outgrowth continues thereafter. Possible signaling crosstalk among the whole distal GT regions were also investigated.
Collapse
Affiliation(s)
- Kentaro Suzuki
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|