101
|
Sivakumar R, Gunasekaran P, Rajendhran J. Inactivation of CbrAB two-component system hampers root colonization in rhizospheric strain of Pseudomonas aeruginosa PGPR2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194763. [PMID: 34530138 DOI: 10.1016/j.bbagrm.2021.194763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCS) are one of the signal transduction mechanisms, which sense physiological/biological restraints and respond to changing environmental conditions by regulating the gene expression. Previously, by employing a forward genetic screen (INSeq), we identified that cbrA gene is essential for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. Here, we report the functional characterization of cbrAB TCS in PGPR2 during root colonization. We constructed insertion mutants in cbrA and its cognate response regulator cbrB. Genetic characterization revealed drastic down-regultion of sRNA crcZ gene in both mutant strains which play a critical role in carbon catabolite repression (CCR). The mutant strains displayed 10-fold decreased root colonization efficiency when compared to the wild-type strain. On the other hand, mutant strains formed higher biofilm on the abiotic surface, and the expression of pelB and pslA genes involved in biofilm matrix formation was up-regulated. In contrast, the expression of algD, responsible for alginate production, and its associated sigma factor algU was significantly down-regulated in mutant strains. We further analyzed the transcript levels of rsmA, controlled by the algU sigma factor, and found that the expression of rsmA was hampered in both mutants. The ability of mutant strains to swim and swarm was significantly hindered. Also, the expression of genes associated with type III secretion system (T3SS) was dysregulated in mutant strains. Taken together, regulation of gene expression by CbrAB TCS is intricate, and we confirm its role beyond carbon and nitrogen assimilation.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
102
|
Liu Y, Wang X, Ma L, Lü M, Zhang W, Lü C, Gao C, Xu P, Ma C. Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2021; 9:728767. [PMID: 34513815 PMCID: PMC8427195 DOI: 10.3389/fbioe.2021.728767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida KT2440 is a promising chassis of industrial biotechnology due to its metabolic versatility. Butane-2,3-diol (2,3-BDO) is a precursor of numerous value-added chemicals. It is also a microbial metabolite which widely exists in various habiting environments of P. putida KT2440. It was reported that P. putida KT2440 is able to use 2,3-BDO as a sole carbon source for growth. There are three stereoisomeric forms of 2,3-BDO: (2R,3R)-2,3-BDO, meso-2,3-BDO and (2S,3S)-2,3-BDO. However, whether P. putida KT2440 can utilize three stereoisomeric forms of 2,3-BDO has not been elucidated. Here, we revealed the genomic and enzymic basis of P. putida KT2440 for dehydrogenation of different stereoisomers of 2,3-BDO into acetoin, which will be channeled to central mechanism via acetoin dehydrogenase enzyme system. (2R,3R)-2,3-BDO dehydrogenase (PP0552) was detailedly characterized and identified to participate in (2R,3R)-2,3-BDO and meso-2,3-BDO dehydrogenation. Two quinoprotein alcohol dehydrogenases, PedE (PP2674) and PedH (PP2679), were confirmed to be responsible for (2S,3S)-2,3-BDO dehydrogenation. The function redundancy and inverse regulation of PedH and PedE by lanthanide availability provides a mechanism for the adaption of P. putida KT2440 to variable environmental conditions. Elucidation of the mechanism of 2,3-BDO catabolism in P. putida KT2440 would provide new insights for bioproduction of 2,3-BDO-derived chemicals based on this robust chassis.
Collapse
Affiliation(s)
- Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Liting Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
103
|
Passarelli-Araujo H, Jacobs SH, Franco GR, Venancio TM. Phylogenetic analysis and population structure of Pseudomonas alloputida. Genomics 2021; 113:3762-3773. [PMID: 34530104 DOI: 10.1016/j.ygeno.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to understand P. alloputida genetic diversity and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Sarah H Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
104
|
Wang Y, Lu J, Zhang S, Li J, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. THE ISME JOURNAL 2021; 15:2493-2508. [PMID: 33692486 PMCID: PMC8397710 DOI: 10.1038/s41396-021-00945-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a global threat to public health. The use of antibiotics at sub-inhibitory concentrations has been recognized as an important factor in disseminating antibiotic resistance via horizontal gene transfer. Although non-antibiotic, human-targeted pharmaceuticals are widely used by society (95% of the pharmaceuticals market), the potential contribution to the spread of antibiotic resistance is not clear. Here, we report that commonly consumed, non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propranolol), at clinically and environmentally relevant concentrations, significantly accelerated the dissemination of antibiotic resistance via plasmid-borne bacterial conjugation. Various indicators were used to study the bacterial response to these drugs, including monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. Enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. Additionally, these non-antibiotic pharmaceuticals induced responses similar to those detected when bacteria are exposed to antibiotics, such as inducing the SOS response and enhancing efflux pumps. The findings advance understanding of the transfer of antibiotic resistance genes, emphasizing the concern that non-antibiotic, human-targeted pharmaceuticals enhance the spread of antibiotic resistance among bacterial populations.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jie Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
105
|
Godoy P, García-Franco A, Recio MI, Ramos JL, Duque E. Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microb Biotechnol 2021; 14:1931-1943. [PMID: 34403199 PMCID: PMC8449653 DOI: 10.1111/1751-7915.13844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida is a highly solvent‐resistant microorganism and useful chassis for the production of value‐added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two‐step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan‐genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6‐phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked‐out to avoid the production of the dead‐end product xylonate. We generated a set of DOT‐T1E‐derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT‐T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Collapse
Affiliation(s)
- Patricia Godoy
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Ana García-Franco
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - María-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain.,BioEnterprise Master Program, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan-Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
106
|
Gómez-García G, Ruiz-Enamorado A, Yuste L, Rojo F, Moreno R. Expression of the ISPpu9 transposase of Pseudomonas putida KT2440 is regulated by two small RNAs and the secondary structure of the mRNA 5'-untranslated region. Nucleic Acids Res 2021; 49:9211-9228. [PMID: 34379788 PMCID: PMC8450116 DOI: 10.1093/nar/gkab672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are mobile genetic elements that only carry the information required for their own transposition. Pseudomonas putida KT2440, a model bacterium, has seven copies of an IS called ISPpu9 inserted into repetitive extragenic palindromic sequences. This work shows that the gene for ISPpu9 transposase, tnp, is regulated by two small RNAs (sRNAs) named Asr9 and Ssr9, which are encoded upstream and downstream of tnp, respectively. The tnp mRNA has a long 5′-untranslated region (5′-UTR) that can fold into a secondary structure that likely includes the ribosome-binding site (RBS). Mutations weakening this structure increased tnp mRNA translation. Asr9, an antisense sRNA complementary to the 5′-UTR, was shown to be very stable. Eliminating Asr9 considerably reduced tnp mRNA translation, suggesting that it helps to unfold this secondary structure, exposing the RBS. Ectopic overproduction of Asr9 increased the transposition frequency of a new ISPpu9 entering the cell by conjugation, suggesting improved tnp expression. Ssr9 has significant complementarity to Asr9 and annealed to it in vitro forming an RNA duplex; this would sequester it and possibly facilitate its degradation. Thus, the antisense Asr9 sRNA likely facilitates tnp expression, improving transposition, while Ssr9 might counteract Asr9, keeping tnp expression low.
Collapse
Affiliation(s)
- Guillermo Gómez-García
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Angel Ruiz-Enamorado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Luis Yuste
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Fernando Rojo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Renata Moreno
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| |
Collapse
|
107
|
Selim MS, Fatthallah NA, Higazy SA, Hao Z, Jing Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 2021; 606:367-383. [PMID: 34392032 DOI: 10.1016/j.jcis.2021.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Two novel superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) enriched with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were synthesized as maritime fouling-release (FR) surfaces. Controlling the nanofillers' structures and distribution in the silicone matrix influenced the self-cleaning and antifouling properties. γ-AlOOH nanorods had a single crystallinity with an average diameter of 10-20 nm and < 200 nm length. A hydrothermal method was used to prepare RGO, while the chemical deposition method was used to synthesis GO-γ-AlOOH nanocomposites for use as fouling-release coating materials. For studying the synergetic effects of graphene-based materials on the surface, mechanical, and FR features, these nanofillers were dispersed in the silicone matrix using the solution casting method. The hydrophobicity and antifouling properties of the surface were studied using water contact angle (WCA), scanning electron, and atomic force microscopes (SEM and AFM). Coatings' roughness, superhydrophobicity, and surface mechanical properties all improved for the homogeneity of the dispersion of the nanocomposite. Laboratory assessments were carried out for 30 days using selected microorganisms to determine the antifouling effects of the coating systems. PDMS/GO-γ-AlOOH nanorod composite had better antibacterial activity than PDMS/RGO nanocomposite against different bacterial strains. This is caused by the high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers. The PDMS/GO-γ-AlOOH nanorod composite (3 wt%) had the lowest biodegradability percentage (1.6%) and the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. A field trial in natural seawater was conducted to confirm the coatings' FR performance based on the screening process and image analysis for 45 days in a tropical area. The most profound superhydrophobic antifouling nanostructured coating was the homogeneity of the GO-γ-AlOOH (3 wt%) dispersion, which had a WCA of 151° and a rough surface.
Collapse
Affiliation(s)
- Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | | | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ping Jing Mo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
108
|
Dong H, Ma J, Chen Q, Chen B, Liang L, Liao Y, Song Y, Wang H, Cronan JE. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway. J Biol Chem 2021; 297:100920. [PMID: 34181948 PMCID: PMC8319022 DOI: 10.1016/j.jbc.2021.100920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
The Pseudomonas putida F1 genome contains five genes annotated as encoding 3-ketoacyl-acyl carrier protein (ACP) synthases. Four are annotated as encoding FabF (3-ketoacyl-ACP synthase II) proteins, and the fifth is annotated as encoding a FabB (3-ketoacyl-ACP synthase I) protein. Expression of one of the FabF proteins, FabF2, is cryptic in the native host and becomes physiologically important only when the repressor controlling fabF2 transcription is inactivated. When derepressed, FabF2 can functionally replace FabB, and when expressed from a foreign promoter, had weak FabF activity. Complementation of Escherichia coli fabB and fabF mutant strains with high expression showed that P. putida fabF1 restored E. coli fabF function, whereas fabB restored E. coli fabB function and fabF2 restored the functions of both E. coli fabF and fabB. The P. putida ΔfabF1 deletion strain was almost entirely defective in synthesis of cis-vaccenic acid, whereas the ΔfabB strain is an unsaturated fatty acid (UFA) auxotroph that accumulated high levels of spontaneous suppressors in the absence of UFA supplementation. This was due to increased expression of fabF2 that bypasses loss of fabB because of the inactivation of the regulator, Pput_2425, encoded in the same operon as fabF2. Spontaneous suppressor accumulation was decreased by high levels of UFA supplementation, whereas competition by the P. putida β-oxidation pathway gave increased accumulation. The ΔfabB ΔfabF2 strain is a stable UFA auxotroph indicating that suppressor accumulation requires FabF2 function. However, at low concentrations of UFA supplementation, the ΔfabF2 ΔPput_2425 double-mutant strain still accumulated suppressors at low UFA concentrations.
Collapse
Affiliation(s)
- Huijuan Dong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qunyi Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lujie Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yulu Song
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
109
|
Wirtz L, Eder M, Brand AK, Jung H. HutT functions as the major L-histidine transporter in Pseudomonas putida KT2440. FEBS Lett 2021; 595:2113-2126. [PMID: 34245008 DOI: 10.1002/1873-3468.14159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
Histidine is an important carbon and nitrogen source of γ-proteobacteria and can affect bacteria-host interactions. The mechanisms of histidine uptake are only partly understood. Here, we analyze functional properties of the putative histidine transporter HutT of the soil bacterium Pseudomonas putida. The hutT gene is part of the histidine utilization operon, and the gene product belongs to the amino acid-polyamine-organocation (APC) family of secondary transporters. Deletion of hutT severely impairs growth of P. putida on histidine, suggesting that the encoded transporter is the major histidine uptake system of P. putida. Transport experiments with cells and purified and reconstituted protein indicate that HutT functions as a high-affinity histidine : proton symporter with high specificity for the amino acid. Substitution analyses identified amino acids crucial for HutT function.
Collapse
Affiliation(s)
- Larissa Wirtz
- Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Michelle Eder
- Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Anna-Katharina Brand
- Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Heinrich Jung
- Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, Martinsried, Germany
| |
Collapse
|
110
|
|
111
|
Tetard A, Foley S, Mislin GLA, Brunel JM, Oliva E, Torrealba Anzola F, Zedet A, Cardey B, Pellequer Y, Ramseyer C, Plésiat P, Llanes C. Negative Impact of Citral on Susceptibility of Pseudomonas aeruginosa to Antibiotics. Front Microbiol 2021; 12:709838. [PMID: 34290691 PMCID: PMC8287888 DOI: 10.3389/fmicb.2021.709838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Essential oils (EOs) or their components are widely used by inhalation or nebulization to fight mild respiratory bacterial infections. However, their interaction with antibiotics is poorly known. In this study we evaluated the effects of citral, the main component of lemongrass oil, on in vitro susceptibility of Pseudomonas aeruginosa to antibiotics. Exposure of strain PA14 to subinhibitory concentrations of citral increased expression of operons encoding the multidrug efflux systems MexEF-OprN and MexXY/OprM, and bacterial resistance to anti-pseudomonal antibiotics including imipenem (twofold), gentamicin (eightfold), tobramycin (eightfold), ciprofloxacin (twofold), and colistin (≥128-fold). Use of pump deletion mutants showed that in addition to efflux other mechanisms were involved in this citral-induced phenotype. Determination of Zeta potential suggested that citral impairs the cell surface binding of aminoglycosides and colistin used at low concentrations (≤10 μg/mL). Moreover, experiments based on Raman spectroscopy and high-resolution mass spectrometry demonstrated formation of a Schiff base between the aldehyde group of citral and amino-groups of tobramycin and colistin. Chemical synthesis of tobracitryl, the imine compound resulting from condensation of citral and tobramycin, confirmed the loss of antibiotic activity due to adduct formation. Altogether these data point to the potential risk concern of self-medication with EOs containing citral in patients suffering from P. aeruginosa chronic lung infections and being treated with aerosols of aminoglycoside or colistin.
Collapse
Affiliation(s)
- Alexandre Tetard
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Sarah Foley
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Gaëtan L A Mislin
- CNRS/Université de Strasbourg UMR 7242 Biotechnologie et Signalisation Cellulaire, Illkirch, France
| | - Jean-Michel Brunel
- UMR_MD1, U-1261, Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | - Estefania Oliva
- Plateforme d'Analyse Chimique de Strasbourg-Illkirch (PACSI), Faculté de Pharmacie de Strasbourg, Illkirch, France
| | | | - Andy Zedet
- PEPITE EA4267, Université de Bourgogne Franche-Comté, Besançon, France
| | - Bruno Cardey
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Yann Pellequer
- PEPITE EA4267, Université de Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ramseyer
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrick Plésiat
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Catherine Llanes
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
112
|
Nguyen AV, Lai B, Adrian L, Krömer JO. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440. Microb Biotechnol 2021; 14:1784-1796. [PMID: 34115443 PMCID: PMC8313287 DOI: 10.1111/1751-7915.13862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida (P. putida) is a microorganism of interest for various industrial processes, yet its strictly aerobic nature limits application. Despite previous attempts to adapt P. putida to anoxic conditions via genetic engineering or the use of a bioelectrochemical system (BES), the problem of energy shortage and internal redox imbalance persists. In this work, we aimed to provide the cytoplasmic metabolism with different monosaccharides, other than glucose, and explored the physiological response in P. putida KT2440 during bioelectrochemical cultivation. The periplasmic oxidation cascade was found to be able to oxidize a wide range of aldoses to their corresponding (keto-)aldonates. Unexpectedly, isomerization of the ketose fructose to mannose also enabled oxidation by glucose dehydrogenase, a new pathway uncovered for fructose metabolism in P. putida KT2440 in BES. Besides the isomerization, the remainder of fructose was imported into the cytoplasm and metabolized. This resulted in a higher NADPH/NADP+ ratio, compared to glucose. Comparative proteomics further revealed the upregulation of proteins in the lower central carbon metabolism during the experiment. These findings highlight that the choice of a substrate in BES can target cytosolic and periplasmic oxidation pathways, and that electrode-driven redox balancing can drive these pathways in P. putida under anaerobic conditions.
Collapse
Affiliation(s)
- Anh Vu Nguyen
- Department of Solar MaterialsHelmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Bin Lai
- Department of Solar MaterialsHelmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Lorenz Adrian
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
- Chair of GeobiotechnologyTechnische Universität BerlinBerlinGermany
| | - Jens O. Krömer
- Department of Solar MaterialsHelmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| |
Collapse
|
113
|
Ankenbauer A, Nitschel R, Teleki A, Müller T, Favilli L, Blombach B, Takors R. Micro-aerobic production of isobutanol with engineered Pseudomonas putida. Eng Life Sci 2021; 21:475-488. [PMID: 34257629 PMCID: PMC8258000 DOI: 10.1002/elsc.202000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida KT2440 is emerging as a promising microbial host for biotechnological industry due to its broad range of substrate affinity and resilience to physicochemical stresses. Its natural tolerance towards aromatics and solvents qualifies this versatile microbe as promising candidate to produce next generation biofuels such as isobutanol. In this study, we scaled-up the production of isobutanol with P. putida from shake flask to fed-batch cultivation in a 30 L bioreactor. The design of a two-stage bioprocess with separated growth and production resulted in 3.35 gisobutanol L-1. Flux analysis revealed that the NADPH expensive formation of isobutanol exceeded the cellular catabolic supply of NADPH finally causing growth retardation. Concomitantly, the cell counteracted to the redox imbalance by increased formation of 2-ketogluconic thereby providing electrons for the respiratory ATP generation. Thus, P. putida partially uncoupled ATP formation from the availability of NADH. The quantitative analysis of intracellular pyridine nucleotides NAD(P)+ and NAD(P)H revealed elevated catabolic and anabolic reducing power during aerobic production of isobutanol. Additionally, the installation of micro-aerobic conditions during production doubled the integral glucose-to-isobutanol conversion yield to 60 mgisobutanol gglucose -1 while preventing undesired carbon loss as 2-ketogluconic acid.
Collapse
Affiliation(s)
- Andreas Ankenbauer
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Robert Nitschel
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Tobias Müller
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Lorenzo Favilli
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Bastian Blombach
- Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
114
|
Assaf R, Xia F, Stevens R. Identifying genomic islands with deep neural networks. BMC Genomics 2021; 22:281. [PMID: 34078279 PMCID: PMC8170982 DOI: 10.1186/s12864-021-07575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/05/2022] Open
Abstract
Background Horizontal gene transfer is the main source of adaptability for bacteria, through which genes are obtained from different sources including bacteria, archaea, viruses, and eukaryotes. This process promotes the rapid spread of genetic information across lineages, typically in the form of clusters of genes referred to as genomic islands (GIs). Different types of GIs exist, and are often classified by the content of their cargo genes or their means of integration and mobility. While various computational methods have been devised to detect different types of GIs, no single method is capable of detecting all types. Results We propose a method, which we call Shutter Island, that uses a deep learning model (Inception V3, widely used in computer vision) to detect genomic islands. The intrinsic value of deep learning methods lies in their ability to generalize. Via a technique called transfer learning, the model is pre-trained on a large generic dataset and then re-trained on images that we generate to represent genomic fragments. We demonstrate that this image-based approach generalizes better than the existing tools. Conclusions We used a deep neural network and an image-based approach to detect the most out of the correct GI predictions made by other tools, in addition to making novel GI predictions. The fact that the deep neural network was re-trained on only a limited number of GI datasets and then successfully generalized indicates that this approach could be applied to other problems in the field where data is still lacking or hard to curate.
Collapse
Affiliation(s)
- Rida Assaf
- Department of Computer Science, University of Chicago, S. Ellis Ave., Chicago, 60637, USA.
| | - Fangfang Xia
- Computing Environment and Life Sciences Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA.,Data Science and Learning Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA
| | - Rick Stevens
- Computing Environment and Life Sciences Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA.,The University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, S. Ellis Ave., Chicago, 60637, USA
| |
Collapse
|
115
|
Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. THE ISME JOURNAL 2021; 15:1751-1766. [PMID: 33432138 PMCID: PMC8163872 DOI: 10.1038/s41396-020-00884-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.
Collapse
|
116
|
Bongartz P, Bator I, Baitalow K, Keller R, Tiso T, Blank LM, Wessling M. A scalable bubble-free membrane aerator for biosurfactant production. Biotechnol Bioeng 2021; 118:3545-3558. [PMID: 34002856 DOI: 10.1002/bit.27822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022]
Abstract
The bioeconomy is a paramount pillar in the mitigation of greenhouse gas emissions and climate change. Still, the industrialization of bioprocesses is limited by economical and technical obstacles. The synthesis of biosurfactants as advanced substitutes for crude-oil-based surfactants is often restrained by excessive foaming. We present the synergistic combination of simulations and experiments towards a reactor design of a submerged membrane module for the efficient bubble-free aeration of bioreactors. A digital twin of the combined bioreactor and membrane aeration module was created and the membrane arrangement was optimized in computational fluid dynamics studies with respect to fluid mixing. The optimized design was prototyped and tested in whole-cell biocatalysis to produce rhamnolipid biosurfactants from sugars. Without any foam formation, the new design enables a considerable higher space-time yield compared to previous studies with membrane modules. The design approach of this study is of generic nature beyond rhamnolipid production.
Collapse
Affiliation(s)
- Patrick Bongartz
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.,Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kristina Baitalow
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Robert Keller
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,DWI Leibniz - Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
117
|
Ackermann YS, Li WJ, Op de Hipt L, Niehoff PJ, Casey W, Polen T, Köbbing S, Ballerstedt H, Wynands B, O'Connor K, Blank LM, Wierckx N. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng 2021; 67:29-40. [PMID: 33965615 DOI: 10.1016/j.ymben.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h-1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate-1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.
Collapse
Affiliation(s)
- Yannic S Ackermann
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Wing-Jin Li
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Leonie Op de Hipt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - William Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Kevin O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
118
|
Xiao Y, Nie L, Chen H, He M, Liang Q, Nie H, Chen W, Huang Q. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ Microbiol 2021; 23:5239-5257. [PMID: 33938113 DOI: 10.1111/1462-2920.15555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhe Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
119
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
120
|
Upadhyay P, Lali A. Engineered Pseudomonas putida for biosynthesis of catechol from lignin-derived model compounds and biomass hydrolysate. Prep Biochem Biotechnol 2021; 52:80-88. [PMID: 33870868 DOI: 10.1080/10826068.2021.1910960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Catechol is an industrially relevant chemical with myriad applications. Its production via chemical route suffers from several drawbacks the major being a non-green and nonselective route. Currently, bio-based products using biocatalyst are gaining attention due to the growing environmental and health hazards concerns over the use of petroleum-derived feedstock. Lignocellulosic biomass serves as a promising feedstock. Lignin valorization is the demand of the current scenario which is complicated task by its complexity, heterogeneity and diversity of lignin structures posing limitations toward lignin valorization via chemical routes. There are several microorganisms that possess the ability to metabolize lignin monomers via their central metabolic pathways and this paves the way to the synthesis of a number of products. Pseudomonas putida KT2440 is one such organism and was chosen for genetic manipulations for catechol biosynthesis using lignin-derived model compounds and biomass hydrolysate stream comprising of various lignin monomers. Catechol production was engineered by diverting various lignin monomers and addressing the identified metabolic bottlenecks particularly vanillic acid accumulation toward catechol biosynthesis. The engineered strain could convert the model lignin monomers as well as monomers in the biomass hydrolysates to catechol and vanillic acid in more than 60% and 90% molar yields, respectively.
Collapse
Affiliation(s)
- Priya Upadhyay
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
121
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
122
|
Zhao Y, Che Y, Zhang F, Wang J, Gao W, Zhang T, Yang C. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143239. [PMID: 33158512 DOI: 10.1016/j.scitotenv.2020.143239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, we developed an efficient pathway construction strategy, consisting of DNA assembler-assisted pathway assembly and counterselection system-based chromosomal integration, for the rapid and efficient integration of synthetic biodegradation pathways into the chromosome of Pseudomonas putida KT2440. Using this strategy, we created a novel degrader capable of complete mineralization of γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) by integrating γ-HCH and TCP biodegradation pathways into the chromosome of P. putida KT2440. Furthermore, the chromosomal integration efficiencies of γ-HCH and TCP biodegradation pathways were improved to 50% and 41.6% in P. putida KT2440, respectively, by the inactivation of a type I DNA restriction-modification system. The currently developed pathway construction strategy coupled with the mutant KTUΔhsdRMS will facilitate implantation of heterologous catabolic pathways into the chromosome for rapid evolution of the biodegradation capacity of P. putida. More importantly, the successful removal of γ-HCH (10 mg/kg soil) and TCP (0.2 mM) from soil and wastewater within 14 days, respectively, highlighted the potential of the novel degrader for in situ bioremediation of γ-HCH- and TCP-contaminated sites. Moreover, chromosomal integration of gfp made the degrader to be monitored easily during bioremediation. In the future, this strategy can be expanded to a broad range of bacterial species for widespread applications in bioremediation.
Collapse
Affiliation(s)
- Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Life Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
123
|
Jani M, Azad RK. Discovery of mosaic genomic islands in Pseudomonas spp. Arch Microbiol 2021; 203:2735-2742. [PMID: 33646340 DOI: 10.1007/s00203-021-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/04/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Genomic islands, defined as large clusters of genes mobilized through horizontal gene transfer, have a profound impact on evolution of prokaryotes. Recently, we developed a new program, IslandCafe, for identifying such large localized structures in bacterial genomes. A unique attribute of IslandCafe is its ability to decipher mosaic structures within genomic islands. Mosaic genomic islands have generated immense interest due to novel traits that have been attributed to such islands. To provide the Pseudomonas research community a catalogue of mosaic islands in Pseudomonas spp., we applied IslandCafe to decipher genomic islands in 224 completely sequenced genomes of Pseudomonas spp. We also performed comparative genomic analysis using BLAST to infer potential sources of distinct segments within genomic islands. Of the total 4271 genomic islands identified in Pseudomonas spp., 1036 were found to be mosaic. We also identified drug-resistant and pathogenic genomic islands and their potential donors. Our analysis provides a useful resource for Pseudomonas research community to further examine and interrogate mosaic islands in the genomes of interest and understand their role in the emergence and evolution of novel traits.
Collapse
Affiliation(s)
- Mehul Jani
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA. .,Department of Mathematics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
124
|
Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9020426. [PMID: 33669534 PMCID: PMC7922931 DOI: 10.3390/microorganisms9020426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.
Collapse
|
125
|
Arce-Rodríguez A, Nikel PI, Calles B, Chavarría M, Platero R, Krell T, de Lorenzo V. Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environ Microbiol 2021; 23:1732-1749. [PMID: 33559269 DOI: 10.1111/1462-2920.15422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022]
Abstract
Although the soil bacterium Pseudomonas putida KT2440 bears a bona fide adenylate cyclase gene (cyaA), intracellular concentrations of 3',5'-cyclic adenosine monophosphate (cAMP) are barely detectable. By using reporter technology and direct quantification of cAMP under various conditions, we show that such low levels of the molecule stem from the stringent regulation of its synthesis, efflux and degradation. Poor production of cAMP was the result of inefficient translation of cyaA mRNA. Moreover, deletion of the cAMP-phosphodiesterase pde gene led to intracellular accumulation of the cyclic nucleotide, exposing an additional cause of cAMP drain in vivo. But even such low levels of the signal sustained activation of promoters dependent on the cAMP-receptor protein (CRP). Genetic and biochemical evidence indicated that the phenomenon ultimately rose from the unusual binding parameters of cAMP to CRP. This included an ultratight cAMP-CrpP. putida affinity (KD of 45.0 ± 3.4 nM) and an atypical 1:1 effector/dimer stoichiometry that obeyed an infrequent anti-cooperative binding mechanism. It thus seems that keeping the same regulatory parts and their relational logic but changing the interaction parameters enables genetic devices to take over entirely different domains of the functional landscape.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Max Chavarría
- Escuela de Química and CIPRONA, Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Raúl Platero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Granada, 18008, Spain
| | - Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
126
|
Liu H, Li S, Xie X, Shi Q. Pseudomonas putida actively forms biofilms to protect the population under antibiotic stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116261. [PMID: 33359874 DOI: 10.1016/j.envpol.2020.116261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are frequently used for clinical treatment and by the farming industry, and most of these are eventually released into the surrounding environment. The impact of these antibiotic pollutants on environmental microorganisms is a concern. The present study showed that after Pseudomonas putida entered the logarithmic growth phase, tetracycline strongly stimulated its biofilm formation in a dose-dependent manner. This was supported by the increased expression of the key adhesin gene lapA in response to tetracycline treatment. Tetracycline treatment also changed the expression levels of the exopolysaccharide gene clusters alg, bcs and pea and the adhesin gene lapF. However, these genes did not participate in the tetracycline-induced biofilm formation. When a biofilm had been established, the P. putida population became more tolerant to tetracycline. Confocal laser scanning microscopic images showed that the interior of the biofilm provided favorable conditions that protected bacterial cells from tetracycline. Besides, biofilm formation of P. putida was also promoted by several other antibiotics, including oxytetracycline, fluoroquinolones, rifampicin, and imipenem, but not aminoglycosides. Susceptibility tests suggested that biofilm conferred a higher tolerance on P. putida cells to specific antibiotics (e.g., tetracyclines and fluoroquinolones). These antibiotics exerted a stronger inducing effect on biofilm formation. Together, our results indicate that P. putida actively forms robust biofilms in response to antibiotic stress, and the biofilms improve the survival of bacterial population under such stress.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Sujuan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
127
|
Ruiz-Roldán L, de Toro M, Sáenz Y. Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes (Basel) 2021; 12:115. [PMID: 33477842 PMCID: PMC7832885 DOI: 10.3390/genes12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas mendocina is an environmental bacterium, rarely isolated in clinical specimens, although it has been described as producing endocarditis and sepsis. Little is known about its genome. Whole genome sequencing can be used to learn about the phylogeny, evolution, or pathogenicity of these isolates. Thus, the aim of this study was to analyze the resistome, virulome, and phylogenetic relationship of two P. mendocina strains, Ps542 and Ps799, isolated from a healthy Anas platyrhynchos fecal sample and a lettuce, respectively. Among all of the small number of P.mendocina genomes available in the National Center for Biotechnology Information (NCBI) repository, both strains were placed within one of two well-defined phylogenetic clusters. Both P. mendocina strains lacked antimicrobial resistance genes, but the Ps799 genome showed a MOBP3 family relaxase. Nevertheless, this study revealed that P. mendocina possesses an important number of virulence factors, including a leukotoxin, flagella, pili, and the Type 2 and Type 6 Secretion Systems, that could be responsible for their pathogenesis. More phenotypical and in vivo studies are needed to deepen the association with human infections and the potential P. mendocina pathogenicity.
Collapse
Affiliation(s)
- Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| |
Collapse
|
128
|
Brands S, Brass HUC, Klein AS, Sikkens JG, Davari MD, Pietruszka J, Ruff AJ, Schwaneberg U. KnowVolution of prodigiosin ligase PigC towards condensation of short-chain prodiginines. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One round of KnowVolution enhanced the catalytic activity of prodigiosin ligase PigC with short-chain monopyrroles, opening access to anticancer prodiginines.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Jarno G. Sikkens
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
129
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
130
|
Pobre V, Graça-Lopes G, Saramago M, Ankenbauer A, Takors R, Arraiano CM, Viegas SC. Prediction of novel non-coding RNAs relevant for the growth of Pseudomonas putida in a bioreactor. MICROBIOLOGY-SGM 2020; 166:149-156. [PMID: 31860438 DOI: 10.1099/mic.0.000875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida is a micro-organism with great potential for industry due to its stress-endurance traits and easy manipulation of the metabolism. However, optimization is still required to improve production yields. In the last years, manipulation of bacterial small non-coding RNAs (ncRNAs) has been recognized as an effective tool to improve the production of industrial compounds. So far, very few ncRNAs are annotated in P. putida beyond the generally conserved. In the present study, P. putida was cultivated in a two-compartment scale-down bioreactor that simulates large-scale industrial bioreactors. We performed RNA-Seq of samples collected at distinct locations and time-points to predict novel and potentially important ncRNAs for the adaptation of P. putida to bioreactor stress conditions. Instead of using a purely genomic approach, we have rather identified regions of putative ncRNAs with high expression levels using two different programs (Artemis and sRNA detect). Only the regions identified with both approaches were considered for further analysis and, in total, 725 novel ncRNAs were predicted. We also found that their expression was not constant throughout the bioreactor, showing different patterns of expression with time and position. This is the first work focusing on the ncRNAs whose expression is triggered in a bioreactor environment. This information is of great importance for industry, since it provides possible targets to engineer more effective P. putida strains for large-scale production.
Collapse
Affiliation(s)
- Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gil Graça-Lopes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Andreas Ankenbauer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
131
|
Whole Genome Sequencing and Tn 5-Insertion Mutagenesis of Pseudomonas taiwanensis CMS to Probe Its Antagonistic Activity Against Rice Bacterial Blight Disease. Int J Mol Sci 2020; 21:ijms21228639. [PMID: 33207795 PMCID: PMC7696974 DOI: 10.3390/ijms21228639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas taiwanensis is a novel bacterium that uses shrimp shell waste as its sole sources of carbon and nitrogen. It is a versatile bacterium with potential for use in biological control, with activities including toxicity toward insects, fungi, and the rice pathogen Xanthomonas oryzae pv.oryzae (Xoo). In this study, the complete 5.08-Mb genome sequence of P. taiwanensis CMS was determined by a combination of NGS/Sanger sequencing and optical mapping. Comparison of optical maps of seven Pseudomonas species showed that P. taiwanensis is most closely related to P. putida KT 2400. We screened a total of 11,646 individual Tn5-transponson tagged strains to identify genes that are involved in the production and regulation of the iron-chelator pyoverdine in P. taiwanensis, which is a key anti-Xoo factor. Our results indicated that the two-component system (TCS) EnvZ/OmpR plays a positive regulatory role in the production of pyoverdine, whereas the sigma factor RpoS functions as a repressor. The knowledge of the molecular basis of the regulation of pyoverdine by P. taiwanensis provided herein will be useful for its development for use in biological control, including as an anti-Xoo agent.
Collapse
|
132
|
Henriquez T, Baldow T, Lo YK, Weydert D, Brachmann A, Jung H. Involvement of MexS and MexEF-OprN in Resistance to Toxic Ion Chelators in Pseudomonas putida KT2440. Microorganisms 2020; 8:microorganisms8111782. [PMID: 33202537 PMCID: PMC7697342 DOI: 10.3390/microorganisms8111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023] Open
Abstract
Bacteria must be able to cope with harsh environments to survive. In Gram-negative bacteria like Pseudomonas species, resistance-nodulation-division (RND) transporters contribute to this task by pumping toxic compounds out of cells. Previously, we found that the RND system TtgABC of Pseudomonas putida KT2440 confers resistance to toxic metal chelators of the bipyridyl group. Here, we report that the incubation of a ttgB mutant in medium containing 2,2’-bipyridyl generated revertant strains able to grow in the presence of this compound. This trait was related to alterations in the pp_2827 locus (homolog of mexS in Pseudomonas aeruginosa). The deletion and complementation of pp_2827 confirmed the importance of the locus for the revertant phenotype. Furthermore, alteration in the pp_2827 locus stimulated expression of the mexEF-oprN operon encoding an RND efflux pump. Deletion and complementation of mexF confirmed that the latter system can compensate the growth defect of the ttgB mutant in the presence of 2,2’-bipyridyl. To our knowledge, this is the first report on a role of pp_2827 (mexS) in the regulation of mexEF-oprN in P. putida KT2440. The results expand the information about the significance of MexEF-OprN in the stress response of P. putida KT2440 and the mechanisms for coping with bipyridyl toxicity.
Collapse
Affiliation(s)
- Tania Henriquez
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Tom Baldow
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Yat Kei Lo
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Dina Weydert
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Andreas Brachmann
- Biozentrum, Genetik, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Heinrich Jung
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
- Correspondence:
| |
Collapse
|
133
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
134
|
Apura P, de Lorenzo V, Arraiano CM, Martínez-García E, Viegas SC. Ribonucleases control distinct traits of Pseudomonas putida lifestyle. Environ Microbiol 2020; 23:174-189. [PMID: 33089610 DOI: 10.1111/1462-2920.15291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
The role of archetypal ribonucleases (RNases) in the physiology and stress endurance of the soil bacterium and metabolic engineering platform Pseudomonas putida KT2440 has been inspected. To this end, variants of this strain lacking each of the most important RNases were constructed. Each mutant lacked either one exoribonuclease (PNPase, RNase R) or one endoribonuclease (RNase E, RNase III, RNase G). The global physiological and metabolic costs of the absence of each of these enzymes were then analysed in terms of growth, motility and morphology. The effects of different oxidative chemicals that mimic the stresses endured by this microorganism in its natural habitats were studied as well. The results highlighted that each ribonuclease is specifically related with different traits of the environmental lifestyle that distinctively characterizes this microorganism. Interestingly, the physiological responses of P. putida to the absence of each enzyme diverged significantly from those known previously in Escherichia coli. This exposed not only species-specific regulatory functions for otherwise known RNase activities but also expanded the panoply of post-transcriptional adaptation devices that P. putida can make use of for facing hostile environments.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| |
Collapse
|
135
|
Shan Y, Liu L, Liu Y, Harms H, Wick LY. Effects of Electrokinetic Phenomena on Bacterial Deposition Monitored by Quartz Crystal Microbalance with Dissipation Monitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14036-14045. [PMID: 32969650 DOI: 10.1021/acs.est.0c04347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial deposition is the first step in the formation of microbial biofilms in environmental technology, and there is high interest in controlling such deposition. Earlier work indicated that direct current (DC) electric fields could influence bacterial deposition in percolation columns. Here, a time-resolved quartz crystal microbalance with dissipation monitoring (QCM-D) and microscopy-based cell counting were used to quantify DC field effects on the deposition of bacterial strains Pseudomonas putida KT2440 and Pseudomonas fluorescens LP6a at varying electrolyte concentrations and weak electric field strengths (0-2 V cm-1). DC-induced frequency shifts (Δf), dissipation energy (ΔD), and ratios thereof (Δf/ΔD) proved as good indicators of the rigidity of cell attachment. We interpreted QCM-D signals using a theoretical approach by calculating the attractive DLVO-force and the shear and drag forces acting on a bacterium near collector surfaces in a DC electric field. We found that changes in DC-induced deposition of bacteria depended on the relative strengths of electrophoretic drag and electro-osmotic shear forces. This could enable the prediction and electrokinetic control of microbial deposition on surfaces in natural and manmade ecosystems.
Collapse
Affiliation(s)
- Yongping Shan
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Lu Liu
- Department of Civil and Environmental Engineering, University of Alberta, 3-133 Markin/CNRL Natural Resources Engineering Facility, Edmonton, Alberta T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 3-133 Markin/CNRL Natural Resources Engineering Facility, Edmonton, Alberta T6G 2W2, Canada
| | - Hauke Harms
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
136
|
Blesken CC, Bator I, Eberlein C, Heipieper HJ, Tiso T, Blank LM. Genetic Cell-Surface Modification for Optimized Foam Fractionation. Front Bioeng Biotechnol 2020; 8:572892. [PMID: 33195133 PMCID: PMC7658403 DOI: 10.3389/fbioe.2020.572892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Rhamnolipids are among the glycolipids that have been investigated intensively in the last decades, mostly produced by the facultative pathogen Pseudomonas aeruginosa using plant oils as carbon source and antifoam agent. Simplification of downstream processing is envisaged using hydrophilic carbon sources, such as glucose, employing recombinant non-pathogenic Pseudomonas putida KT2440 for rhamnolipid or 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA, i.e., rhamnolipid precursors) production. However, during scale-up of the cultivation from shake flask to bioreactor, excessive foam formation hinders the use of standard fermentation protocols. In this study, the foam was guided from the reactor to a foam fractionation column to separate biosurfactants from medium and bacterial cells. Applying this integrated unit operation, the space-time yield (STY) for rhamnolipid synthesis could be increased by a factor of 2.8 (STY = 0.17 gRL/L·h) compared to the production in shake flasks. The accumulation of bacteria at the gas-liquid interface of the foam resulted in removal of whole-cell biocatalyst from the reactor with the strong consequence of reduced rhamnolipid production. To diminish the accumulation of bacteria at the gas-liquid interface, we deleted genes encoding cell-surface structures, focusing on hydrophobic proteins present on P. putida KT2440. Strains lacking, e.g., the flagellum, fimbriae, exopolysaccharides, and specific surface proteins, were tested for cell surface hydrophobicity and foam adsorption. Without flagellum or the large adhesion protein F (LapF), foam enrichment of these modified P. putida KT2440 was reduced by 23 and 51%, respectively. In a bioreactor cultivation of the non-motile strain with integrated rhamnolipid production genes, biomass enrichment in the foam was reduced by 46% compared to the reference strain. The intensification of rhamnolipid production from hydrophilic carbon sources presented here is an example for integrated strain and process engineering. This approach will become routine in the development of whole-cell catalysts for the envisaged bioeconomy. The results are discussed in the context of the importance of interacting strain and process engineering early in the development of bioprocesses.
Collapse
Affiliation(s)
- Christian C. Blesken
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
| | - Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
137
|
Sivakumar R, Gunasekaran P, Rajendhran J. Functional characterization of asnC family transcriptional regulator in Pseudomonas aeruginosa PGPR2 during root colonization. Mol Biol Rep 2020; 47:7941-7957. [PMID: 33011891 DOI: 10.1007/s11033-020-05872-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Transcriptional regulators in bacteria are the crucial players in mediating communication between environmental cues and DNA transcription through a complex network process. Pseudomonas aeruginosa PGPR2 is an efficient root colonizer and a biocontrol strain. Previously, we identified that the transcriptional regulator, asnC, negatively regulates the corn root colonization of P. aeruginosa PGPR2. In a transposon insertion sequencing (INSeq) screen, the asnC insertion mutant was positively selected during root colonization, meaning the disruption of asnC improves the fitness of the P. aeruginosa PGPR2 strain for the root colonization. In this study, we constructed isogenic mutant of asnC family transcriptional regulator encoded by PGPR2_17510 by allele exchange mutagenesis. The ΔasnC mutant was able to efficiently colonize corn roots with a twofold increase in population when compared to the wild-type strain. Similarly, the mutant strain outcompeted the wild-type strain in a competition assay, where the mutant strain represented 90% of the total population recovered from the root. We compared the whole transcriptome of the wild-type and the ΔasnC mutant of P. aeruginosa PGPR2 when exposed to the corn root exudates. The RNA-Seq revealed that a total of 360 genes were differentially expressed in the ΔasnC strain of P. aeruginosa PGPR2. Inactivation of asnC transcriptional regulator resulted in the up-regulation of several genetic factors implicated in metabolism, uptake of nutrients, motility, stress response, and signal transduction, which could play crucial roles in root colonization. This notion was further validated by phenotypic characterization and quantification of transcription pattern of selected genes associated with metabolism, motility, and carbon catabolite repression between wild type and mutant strain, which was in agreement with transcriptome data. Similarly, ΔasnC strain formed increased biofilm on abiotic surface validating our RNA-seq analysis, where transcript levels of several genes associated with biofilm formation were up-regulated in the mutant strain. We report that the inactivation of an asnC family transcriptional regulator encoded by PGPR2_17510 enhances the root colonization and biofilm-forming ability of P. aeruginosa PGPR2. Together, our results provide evidence for the molecular adaptations that enable ΔasnC mutant strain to colonize on the corn roots and to form a biofilm.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
138
|
Light Response of Pseudomonas putida KT2440 Mediated by Class II LitR, a Photosensor Homolog. J Bacteriol 2020; 202:JB.00146-20. [PMID: 32967908 DOI: 10.1128/jb.00146-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 retains three homologs (PplR1 to PplR3) of the LitR/CarH family, an adenosyl B12-dependent light-sensitive MerR family transcriptional regulator. Transcriptome analysis revealed the existence of a number of photoinducible genes, including pplR1, phrB (encoding DNA photolyase), ufaM (furan-containing fatty acid synthase), folE (GTP cyclohydrolase I), cryB (cryptochrome-like protein), and multiple genes without annotated/known function. Transcriptional analysis by quantitative reverse transcription-PCR with knockout mutants of pplR1 to pplR3 showed that a triple knockout completely abolished the light-inducible transcription in P. putida, which indicates the occurrence of ternary regulation of PplR proteins. A DNase I footprint assay showed that PplR1 protein specifically binds to the promoter regions of light-inducible genes, suggesting a consensus PplR1-binding direct repeat, 5'-T(G/A)TACAN12TGTA(C/T)A-3'. The disruption of B12 biosynthesis cluster did not affect the light-inducible transcription; however, disruption of ppSB1-LOV (where LOV indicates "light, oxygen, or voltage") and ppSB2-LOV, encoding blue light photoreceptors adjacently located to pplR3 and pplR2, respectively, led to the complete loss of light-inducible transcription. Overall, the results suggest that the three PplRs and two PpSB-LOVs cooperatively regulate the light-inducible gene expression. The wide distribution of the pplR/ppSB-LOV cognate pair homologs in Pseudomonas spp. and related bacteria suggests that the response and adaptation to light are similarly regulated in the group of nonphototrophic bacteria.IMPORTANCE The LitR/CarH family is a new group of photosensor homologous to MerR-type transcriptional regulators. Proteins of this family are distributed to various nonphototrophic bacteria and grouped into at least five classes (I to V). Pseudomonas putida retaining three class II LitR proteins exhibited a genome-wide response to light. All three paralogs were functional and mediated photodependent activation of promoters directing the transcription of light-induced genes or operons. Two LOV (light, oxygen, or voltage) domain proteins, adjacently encoded by two litR genes, were also essential for the photodependent transcriptional control. Despite the difference in light-sensing mechanisms, the DNA binding consensus of class II LitR [T(G/A)TA(C/T)A] was the same as that of class I. This is the first study showing the actual involvement of class II LitR in light-induced transcription.
Collapse
|
139
|
Martínez-García E, Fraile S, Rodríguez Espeso D, Vecchietti D, Bertoni G, de Lorenzo V. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synth Biol 2020; 9:2477-2492. [PMID: 32786355 DOI: 10.1021/acssynbio.0c00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Rodríguez Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Davide Vecchietti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
140
|
López-Lara LI, Pazos-Rojas LA, López-Cruz LE, Morales-García YE, Quintero-Hernández V, de la Torre J, van Dillewijn P, Muñoz-Rojas J, Baez A. Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Purpose
Pseudomonas putida KT2440 is a desiccation-sensitive bacterium that loses culturability after 15 days of air desiccation. We have previously shown that P. putida KT2440 can develop a viable but nonculturable (VBNC) state after being exposed to desiccation stress and eventually recover when desiccated cells are rehydrated for at least 24 h.
Methods
To determine which genes of transport, oxidation-reduction, and transcription processes could be involved in the return of P. putida KT2440 to the culturable state, a transcriptome analysis was carried out comparing the gene expression of non-desiccated samples with samples subjected to desiccation followed by 20 min of rehydration or desiccation followed by 24 h of rehydration.
Results
Desiccation stress triggered a VBNC state of P. putida. The major response was detected after 24 h of rehydration with 148 upregulated and 42 downregulated genes. During the VBNC state, P. putida activated transmembrane transport processes like that of siderophores through a TonB-dependent transporter and putative polyhydric alcohol transport systems. Prolonged rehydration with distilled water resuscitated P. putida KT2440 cells activating the catabolism of phenylalanine/tyrosine to provide energy and carbon for ubiquinone biosynthesis while maintaining a reduced protein synthesis. On the other hand, the interruption of the TonB-dependent receptor gene (PP_1446) increased desiccation survival of the mutant strain.
Conclusion
The activation of the iron transport system (TonB-dependent siderophore receptor) and alcohol transport can be helping the VBNC state of P. putida. Activation of catabolism of phenylalanine/tyrosine and reduced protein synthesis was needed for resuscitation from the VBNC state.
Collapse
|
141
|
Akkaya Ö. Nicotiana tabacum-associated bioengineered Pseudomonas putida can enhance rhizoremediation of soil containing 2,4-dinitrotoluene. 3 Biotech 2020; 10:398. [PMID: 32864284 PMCID: PMC7438454 DOI: 10.1007/s13205-020-02395-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rhizoremediation processes are based on plant-bacteria interactions and can be effectively used for cleaning many pollutants from the environment to overcome the constraints of individual phytoremediation. Here, 1 mM and 1.5 mM concentrations of 2,4-dinitrotoluene (2,4-DNT) degrading Pseudomonas putida (P. putida) strain KT.DNT and various growth stages of Nicotiana tabacum (N. tabacum) were initially assayed in in vitro tissue culture system and the best conditions for the association of plant-rhizobacterium were ascertained to remediation of the soil contaminated with 2,4-DNT. 5-days old N. tabacum plants inoculated with 2 × 106 cfu/mL bacterial inoculum for 3 weeks were preferred for rhizoremediation experiments as they showed a nearly threefold increase in the fresh and dry biomass in comparison to noninoculated ones. When these seedlings were planted either alone or together with P. putida KT2440 or P. putida KT.DNT in soils contaminated with 1 mM and 1.5 mM of 2,4-DNT, the maximum degradation rate of 98% and ~ 93% were determined at the end of 14 days by KT.DNT inoculated tobacco plants. Our results indicate that it would be advantageous to use the 2,4-DNT-degrading bacterium inoculated with N. tabacum plants to accelerate and enhance the cleanup of soil contaminated with 2,4-DNT.
Collapse
Affiliation(s)
- Özlem Akkaya
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
142
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
143
|
Choi S, Lee HN, Park E, Lee SJ, Kim ES. Recent Advances in Microbial Production of cis,cis-Muconic Acid. Biomolecules 2020; 10:biom10091238. [PMID: 32854378 PMCID: PMC7564838 DOI: 10.3390/biom10091238] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.
Collapse
Affiliation(s)
- Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
| | - Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
- STR Biotech Co., Ltd., Chuncheon-si, Gangwon-do 24232, Korea;
| | - Eunhwi Park
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
| | - Sang-Jong Lee
- STR Biotech Co., Ltd., Chuncheon-si, Gangwon-do 24232, Korea;
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
- Correspondence: ; Tel.: +82-32-860-8318; Fax: +82-32-872-4046
| |
Collapse
|
144
|
Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida. Sci Rep 2020; 10:13623. [PMID: 32788689 PMCID: PMC7423604 DOI: 10.1038/s41598-020-70675-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved intracellular second messenger that influences different bacterial processes, including virulence, stress tolerance or social behaviours and biofilm development. Although in most cases the environmental cue that initiates the signal transduction cascade leading to changes in cellular c-di-GMP levels remains unknown, certain l- and d-amino acids have been described to modulate c-di-GMP turnover in some bacteria. In this work, we have analysed the influence of l-amino acids on c-di-GMP levels in the plant-beneficial bacterium Pseudomonas putida KT2440, identifying l-arginine as the main one causing a significant increase in c-di-GMP. Both exogenous (environmental) and endogenous (biosynthetic) l-arginine influence biofilm formation by P. putida through changes in c-di-GMP content and altered expression of structural elements of the biofilm extracellular matrix. The contribution of periplasmic binding proteins forming part of amino acid transport systems to the response to environmental l-arginine was also studied. Contrary to what has been described in other bacteria, in P. putida these proteins seem not to be directly responsible for signal transduction. Rather, their contribution to global l-arginine pools appears to determine changes in c-di-GMP turnover. We propose that arginine plays a connecting role between cellular metabolism and c-di-GMP signalling in P. putida.
Collapse
|
145
|
Bator I, Karmainski T, Tiso T, Blank LM. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Front Bioeng Biotechnol 2020; 8:899. [PMID: 32850747 PMCID: PMC7427536 DOI: 10.3389/fbioe.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
High-titer biosurfactant production in aerated fermenters using hydrophilic substrates is often hampered by excessive foaming. Ethanol has been shown to efficiently destabilize foam of rhamnolipids, a popular group of biosurfactants. To exploit this feature, we used ethanol as carbon source and defoamer, without introducing novel challenges for rhamnolipid purification. In detail, we engineered the non-pathogenic Pseudomonas putida KT2440 for heterologous rhamnolipid production from ethanol. To obtain a strain with high growth rate on ethanol as sole carbon source at elevated ethanol concentrations, adaptive laboratory evolution (ALE) was performed. Genome re-sequencing allowed to allocate the phenotypic changes to emerged mutations. Several genes were affected and differentially expressed including alcohol and aldehyde dehydrogenases, potentially contributing to the increased growth rate on ethanol of 0.51 h-1 after ALE. Further, mutations in genes were found, which possibly led to increased ethanol tolerance. The engineered rhamnolipid producer was used in a fed-batch fermentation with automated ethanol addition over 23 h, which resulted in a 3-(3-hydroxyalkanoyloxy)alkanoates and mono-rhamnolipids concentration of about 5 g L-1. The ethanol concomitantly served as carbon source and defoamer with the advantage of increased rhamnolipid and biomass production. In summary, we present a unique combination of strain and process engineering that facilitated the development of a stable fed-batch fermentation for rhamnolipid production, circumventing mechanical or chemical foam disruption.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Karmainski
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
146
|
Zhou YY, Kang XL, Meng C, Xiong D, Xu Y, Geng SZ, Pan ZM, Jiao XA. Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella Pullorum/Gallinarum identification. Poult Sci 2020; 99:5991-5998. [PMID: 33142517 PMCID: PMC7647733 DOI: 10.1016/j.psj.2020.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Salmonella spp. are important zoonotic pathogens that are responsible for severe diseases in both animals and humans. Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum) and biovar Pullorum (S. Pullorum) are typical infectious pathogens detected in the chicken industry that have caused great economic losses. To facilitate their detection and prevent contamination, we developed a rapid multiple PCR method, which can simultaneously detect Salmonella spp. and further identify the biovars S. Pullorum/Gallinarum. This PCR detection method is based on the cigR gene, which is conserved among Salmonella spp. but has a 42-bp deletion in S. Pullorum/Gallinarum. The specificity and sensitivity of the PCR assay was evaluated with 41 different strains: 34 Salmonella strains, including 5 S. Pullorum/Gallinarum strains, and 7 non-Salmonella strains. The lower limit of detection was 8.15 pg of S. Pullorum (S06004) genomic DNA and 20 cfu in PCR, which shows a great sensitivity. In addition, this method was applied to detect or identify Salmonella from processing chicken liver and egg samples, and the results corresponded to those obtained from serotype analysis using the conventional slide agglutination test. Overall, the new cigR-based PCR assay is efficient and practical for Salmonella detection and S. Pullorum/Gallinarum identification and will greatly reduce the workload of epidemiologic investigation.
Collapse
Affiliation(s)
- Ying-Ying Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xi-Long Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ying Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shi-Zhong Geng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhi-Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
147
|
A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts 2020. [DOI: 10.3390/catal10080874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here we report a chemoenzymatic approach to synthesize 1-octene from carbohydrates via ethenolysis of rhamnolipids. Rhamnolipids synthesized by P. putida contain a double bond between carbon five and six, which is experimentally confirmed via olefin cross metathesis. Utilizing these lipids in the ethenolysis catalyzed by a Grubbs−Hoveyda-type catalyst selectively generates 1-octene and with good conversions. This study shows the potential of chemoenzymatic approaches to produce compounds for the chemical industry from renewable resources.
Collapse
|
148
|
Ritcharoon B, Sallabhan R, Toewiwat N, Mongkolsuk S, Loprasert S. Detection of 2,4-dichlorophenoxyacetic acid herbicide using a FGE-sulfatase based whole-cell Agrobacterium biosensor. J Microbiol Methods 2020; 175:105997. [PMID: 32645339 DOI: 10.1016/j.mimet.2020.105997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) has been widely used as a herbicide for agricultural purposes. Currently, the available methods for detecting 2,4-D require multi-step sample preparations and expensive instruments. The use of a whole cell biosensor is an interesting approach that is straightforward and simple to use. In this study, we constructed a genetic-based Agrobacterium tumefaciens biosensor based on a cadA promoter and cadR regulator from Bradyrhizobium sp. strain HW13 (2,4-D degrader) with a formylglycine generating enzyme (FGE)-sulfatase as the reporter gene. The performance of the biosensor was further improved through direct evolution of the cadR activator. The detection limit of cadR mutants for phenoxyacetic acid herbicides including 2,4-D and 4-Chlorophenoxyacetic acid (4-CPAA) were 1.56 μM (an eight-fold improvement compared to wild-type CadR). The biosensor could detect 2,4-D contamination in environmental samples without encountering interference from other complex compounds. The Agrobacterium biosensor was also stable after storing in a simple Luria-Bertani (LB) medium at 4 °C for 30 days where the activity remained at 82% when exposed to 100 μM of 2,4-D. This novel biosensor, with its high stability under simple storage conditions, exhibits promising potential to be used as an inexpensive and easy-to-use tool to screen for 2,4-D contamination in environmental sources.
Collapse
Affiliation(s)
- Benjarat Ritcharoon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Ratiboot Sallabhan
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Neal Toewiwat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
149
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
150
|
Bridier A, Piard JC, Briandet R, Bouchez T. Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms. MICROBIAL ECOLOGY 2020; 80:47-59. [PMID: 31844910 DOI: 10.1007/s00248-019-01470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic diversification through the emergence of variants is one of the known mechanisms enabling the adaptation of bacterial communities. We focused in this work on the adaptation of the model strain Pseudomonas putida KT2440 in association with another P. putida strain (PCL1480) recently isolated from soil to investigate the potential role of bacterial interactions in the diversification process. On the basis of colony morphology, three variants of P. putida KT2440 were obtained from co-culture after 168 h of growth whereas no variant was identified from the axenic KT2440 biofilm. The variants exhibited distinct phenotypes and produced biofilms with specific architecture in comparison with the ancestor. The variants better competed with the P. putida PCL1480 strain in the dual-strain biofilms after 24 h of co-culture in comparison with the ancestor. Moreover, the synergistic interaction of KT2440 ancestor and the variants led to an improved biofilm production and to higher competitive ability versus the PCL1480 strain, highlighting the key role of diversification in the adaptation of P. putida KT2440 in the mixed community. Whole genome sequencing revealed mutations in polysaccharides biosynthesis protein, membrane transporter, or lipoprotein signal peptidase genes in variants.
Collapse
Affiliation(s)
- Arnaud Bridier
- ANSES, Fougères Laboratory, AB2R, 10B rue Claude Bourgelat, 35300, Fougères, France.
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France.
| | - J C Piard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - R Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - T Bouchez
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France
| |
Collapse
|