101
|
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet 2021; 38:379-394. [PMID: 34728089 DOI: 10.1016/j.tig.2021.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
102
|
Zhang H, Weyand CM, Goronzy JJ, Gustafson CE. Understanding T cell aging to improve anti-viral immunity. Curr Opin Virol 2021; 51:127-133. [PMID: 34688983 DOI: 10.1016/j.coviro.2021.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
T cells are a critical component of the immune system and required for protection against viral and bacterial infections. However, the capacity of these cells to provide sufficient protection declines with age, leading to an increased susceptibility to and mortality from infection in older individuals. In many cases, it also contributes to poor vaccine-induced immunity. Understanding the basic biology behind T cell aging is key to unraveling these defects and, in turn, designing more effective vaccines and therapeutics for the older population. Here, we will discuss recent studies that have provided significant insight into the features of T cell aging, how these features may contribute to poor immune responses with advancing age and newer avenues of research that may further enhance anti-viral immunity in older individuals.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
103
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
104
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Sollini G, Bajraktari A, Gioacchini FM, Santarelli L, Pasquini E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2021; 44:18-33. [PMID: 34647653 PMCID: PMC9292973 DOI: 10.1002/hed.26894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with intestinal-type sinonasal adenocarcinoma (ITAC) have an unfavorable prognosis, and new diagnostic and therapeutic approaches are needed to improve clinical management. METHODS Next-generation sequencing-based miRNome analysis was performed on 43 ITAC patients who underwent surgical resection, and microRNA (miRNA) data were obtained from 35 cases. Four miRNAs were identified, and their expression levels were detected by reverse-transcription quantitative polymerase chain reaction and related to the relevant patient outcome. Overall survival and disease-free survival rates were evaluated through the Kaplan-Meier method and log-rank test, and multivariate analysis was performed by means of Cox proportional hazard analysis. RESULTS High levels of miR-205 and miR-34c/miR-449 cluster expression were associated with an increased recurrence risk and, therefore, a worse prognosis. Multivariate analysis confirmed that miR-205 and miR-449 were significant prognostic predictors. CONCLUSIONS A high expression of miR-205 and miR-449 is independent predictors of poor survival for ITAC patients.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Anatomy Pathology and Histopathology Section, Polytechnic University of Marche, Ancona, Italy
| | | | - Arisa Bajraktari
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
105
|
Hall IF, Climent M, Viviani Anselmi C, Papa L, Tragante V, Lambroia L, Farina FM, Kleber ME, März W, Biguori C, Condorelli G, Elia L. rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med 2021; 13:e14060. [PMID: 34551209 PMCID: PMC8495461 DOI: 10.15252/emmm.202114060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
The role of single nucleotide polymorphisms (SNPs) in the etiopathogenesis of cardiovascular diseases is well known. The effect of SNPs on disease predisposition has been established not only for protein coding genes but also for genes encoding microRNAs (miRNAs). The miR-143/145 cluster is smooth muscle cell-specific and implicated in the pathogenesis of atherosclerosis. Whether SNPs within the genomic sequence of the miR-143/145 cluster are involved in cardiovascular disease development is not known. We thus searched annotated sequence databases for possible SNPs associated with miR-143/145. We identified one SNP, rs41291957 (G > A), located -91 bp from the mature miR-143 sequence, as the nearest genetic variation to this miRNA cluster, with a minor allele frequency > 10%. In silico and in vitro approaches determined that rs41291957 (A) upregulates miR-143 and miR-145, modulating phenotypic switching of vascular smooth cells towards a differentiated/contractile phenotype. Finally, we analysed association between rs41291957 and CAD in two cohorts of patients, finding that the SNP was a protective factor. In conclusion, our study links a genetic variation to a pathological outcome through involvement of miRNAs.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Humanitas Research Hospital‐IRCCSRozzanoItaly
- Institute of Genetics and Biomedical ResearchNational Research CouncilRozzanoItaly
| | | | | | - Laura Papa
- Humanitas Research Hospital‐IRCCSRozzanoItaly
| | - Vinicius Tragante
- Department of CardiologyDivision Heart and LungsUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Luca Lambroia
- Humanitas Research Hospital‐IRCCSRozzanoItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Floriana Maria Farina
- Humanitas Research Hospital‐IRCCSRozzanoItaly
- Institute for Cardiovascular Prevention (IPEK)Ludwig‐Maximillians‐Universität (LMU) MünchenMunichGermany
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Marcus E Kleber
- V Department of MedicineMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Winfried März
- V Department of MedicineMedical Faculty MannheimHeidelberg UniversityMannheimGermany
- SYNLAB AcademySYNLAB Holding Deutschland GmbHAugsburg and MannheimGermany
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University GrazGrazAustria
| | - Carlo Biguori
- Interventional Cardiology UnitMediterranea CardiocentroNaplesItaly
| | - Gianluigi Condorelli
- Humanitas Research Hospital‐IRCCSRozzanoItaly
- Institute of Genetics and Biomedical ResearchNational Research CouncilRozzanoItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
| | - Leonardo Elia
- Humanitas Research Hospital‐IRCCSRozzanoItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
106
|
Szarka G, Balogh M, Tengölics ÁJ, Ganczer A, Völgyi B, Kovács-Öller T. The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res 2021; 16:1911-1920. [PMID: 33642359 PMCID: PMC8343308 DOI: 10.4103/1673-5374.308069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.
Collapse
Affiliation(s)
- Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
107
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
108
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
109
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
110
|
Tito C, De Falco E, Rosa P, Iaiza A, Fazi F, Petrozza V, Calogero A. Circulating microRNAs from the Molecular Mechanisms to Clinical Biomarkers: A Focus on the Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:1154. [PMID: 34440329 PMCID: PMC8391131 DOI: 10.3390/genes12081154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| |
Collapse
|
111
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
112
|
Role of SNPs in the Biogenesis of Mature miRNAs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2403418. [PMID: 34239922 PMCID: PMC8233088 DOI: 10.1155/2021/2403418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Single nucleotide polymorphisms (SNPs) play a significant role in microRNA (miRNA) generation, processing, and function and contribute to multiple phenotypes and diseases. Therefore, whole-genome analysis of how SNPs affect miRNA maturation mechanisms is important for precision medicine. The present study established an SNP-associated pre-miRNA (SNP-pre-miRNA) database, named miRSNPBase, and constructed SNP-pre-miRNA sequences. We also identified phenotypes and disease biomarker-associated isoform miRNA (isomiR) based on miRFind, which was developed in our previous study. We identified functional SNPs and isomiRs. We analyzed the biological characteristics of functional SNPs and isomiRs and studied their distribution in different ethnic groups using whole-genome analysis. Notably, we used individuals from Great Britain (GBR) as examples and identified isomiRs and isomiR-associated SNPs (iso-SNPs). We performed sequence alignments of isomiRs and miRNA sequencing data to verify the identified isomiRs and further revealed GBR ethnographic epigenetic dominant biomarkers. The SNP-pre-miRNA database consisted of 886 pre-miRNAs and 2640 SNPs. We analyzed the effects of SNP type, SNP location, and SNP-mediated free energy change during mature miRNA biogenesis and found that these factors were closely associated to mature miRNA biogenesis. Remarkably, 158 isomiRs were verified in the miRNA sequencing data for the 18 GBR samples. Our results indicated that SNPs affected the mature miRNA processing mechanism and contributed to the production of isomiRs. This mechanism may have important significance for epigenetic changes and diseases.
Collapse
|
113
|
Tomasello L, Distefano R, Nigita G, Croce CM. The MicroRNA Family Gets Wider: The IsomiRs Classification and Role. Front Cell Dev Biol 2021; 9:668648. [PMID: 34178993 PMCID: PMC8220208 DOI: 10.3389/fcell.2021.668648] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are the most characterized class of non-coding RNAs and are engaged in many cellular processes, including cell differentiation, development, and homeostasis. MicroRNA dysregulation was observed in several diseases, cancer included. Epitranscriptomics is a branch of epigenomics that embraces all RNA modifications occurring after DNA transcription and RNA synthesis and involving coding and non-coding RNAs. The development of new high-throughput technologies, especially deep RNA sequencing, has facilitated the discovery of miRNA isoforms (named isomiRs) resulting from RNA modifications mediated by enzymes, such as deaminases and exonucleases, and differing from the canonical ones in length, sequence, or both. In this review, we summarize the distinct classes of isomiRs, their regulation and biogenesis, and the active role of these newly discovered molecules in cancer and other diseases.
Collapse
Affiliation(s)
- Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | | | | | | |
Collapse
|
114
|
Deciphering miRNA-Target Relationships to Understand miRNA-Mediated Carcinogenesis. Cancers (Basel) 2021; 13:cancers13102415. [PMID: 34067691 PMCID: PMC8156494 DOI: 10.3390/cancers13102415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
|
115
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
116
|
Physiological Fitness and the Pathophysiology of Chronic Lymphocytic Leukemia (CLL). Cells 2021; 10:cells10051165. [PMID: 34064804 PMCID: PMC8151485 DOI: 10.3390/cells10051165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is associated with physical dysfunction and low overall fitness that predicts poor survival following the commencement of treatment. However, it remains unknown whether higher fitness provides antioncogenic effects. We identified ten fit (CLL-FIT) and ten less fit (CLL-UNFIT) treatment-naïve CLL patients from 144 patients who completed a set of physical fitness and performance tests. Patient plasma was used to determine its effects on an in vitro 5-day growth/viability of three B-cell cell lines (OSU-CLL, Daudi, and Farage). Plasma exosomal miRNA profiles, circulating lipids, lipoproteins, inflammation levels, and immune cell phenotypes were also assessed. CLL-FIT was associated with fewer viable OSU-CLL cells at Day 1 (p = 0.003), Day 4 (p = 0.001), and Day 5 (p = 0.009). No differences between the groups were observed for Daudi and Farage cells. Of 455 distinct exosomal miRNAs identified, 32 miRNAs were significantly different between the groups. Of these, 14 miRNAs had ≤-1 or ≥1 log2 fold differences. CLL-FIT patients had five exosomal miRNAs with lower expression and nine miRNAs with higher expression. CLL-FIT patients had higher HDL cholesterol, lower inflammation, and lower levels of triglyceride components (all p < 0.05). CLL-FIT patients had lower frequencies of low-differentiated NKG2+/CD158a/bneg (p = 0.015 and p = 0.014) and higher frequencies of NKG2Aneg/CD158b+ mature NK cells (p = 0.047). The absolute number of lymphocytes, including CD19+/CD5+ CLL-cells, was similar between the groups (p = 0.359). Higher physical fitness in CLL patients is associated with altered CLL-like cell line growth in vitro and with altered circulating and cellular factors indicative of better immune functions and tumor control.
Collapse
|
117
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
118
|
Sharma S, Pavlasova GM, Seda V, Cerna KA, Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF, Borsky M, Oppelt J, Liskova K, Kren L, Janikova A, Pospisilova S, Fernandes SM, Shehata M, Rassenti LZ, Jaeger U, Doubek M, Davids MS, Brown JR, Mayer J, Kipps TJ, Mraz M. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors. Blood 2021; 137:2481-2494. [PMID: 33171493 PMCID: PMC7610744 DOI: 10.1182/blood.2020005627] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
B-cell receptor (BCR) signaling and T-cell interactions play a pivotal role in chronic lymphocytic leukemia (CLL) pathogenesis and disease aggressiveness. CLL cells can use microRNAs (miRNAs) and their targets to modulate microenvironmental interactions in the lymph node niches. To identify miRNA expression changes in the CLL microenvironment, we performed complex profiling of short noncoding RNAs in this context by comparing CXCR4/CD5 intraclonal cell subpopulations (CXCR4dimCD5bright vs CXCR4brightCD5dim cells). This identified dozens of differentially expressed miRNAs, including several that have previously been shown to modulate BCR signaling (miR-155, miR-150, and miR-22) but also other candidates for a role in microenvironmental interactions. Notably, all 3 miR-29 family members (miR-29a, miR-29b, miR-29c) were consistently down-modulated in the immune niches, and lower miR-29(a/b/c) levels associated with an increased relative responsiveness of CLL cells to BCR ligation and significantly shorter overall survival of CLL patients. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a novel direct target of miR-29s and revealed that higher TRAF4 levels increase CLL responsiveness to CD40 activation and downstream nuclear factor-κB (NF-κB) signaling. In CLL, BCR represses miR-29 expression via MYC, allowing for concurrent TRAF4 upregulation and stronger CD40-NF-κB signaling. This regulatory loop is disrupted by BCR inhibitors (bruton tyrosine kinase [BTK] inhibitor ibrutinib or phosphatidylinositol 3-kinase [PI3K] inhibitor idelalisib). In summary, we showed for the first time that a miRNA-dependent mechanism acts to activate CD40 signaling/T-cell interactions in a CLL microenvironment and described a novel miR-29-TRAF4-CD40 signaling axis modulated by BCR activity.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Piperidines/pharmacology
- Prognosis
- Proto-Oncogene Proteins c-bcr/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Survival Rate
- TNF Receptor-Associated Factor 4/genetics
- TNF Receptor-Associated Factor 4/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonali Sharma
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriela Mladonicka Pavlasova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Vojackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sandova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Kostalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pedro F Zeni
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kvetoslava Liskova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Medhat Shehata
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Laura Z Rassenti
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ulrich Jaeger
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Thomas J Kipps
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
119
|
Solovjev AM, Galkin II, Pletjushkina OY, Medvedko AV, Zhao S, Sakharov IY. Isothermal chemiluminescent assay based on circular stand-displacement polymerization reaction amplification for cel-miRNA-39-3p determination in cell extracts. Int J Biol Macromol 2021; 182:987-992. [PMID: 33887290 DOI: 10.1016/j.ijbiomac.2021.04.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
A sensitive and specific heterogeneous assay for quantitation of cel-miRNA-39-3p (miRNA-39) was constructed. To improve the assay sensitivity an amplification strategy based on the use of isothermal circular strand-displacement polymerization reaction (ICSDPR), polyperoxidase conjugated with streptavidin and enhanced chemiluminescence was used. The detection limit of the proposed assay was 4 × 10-13 M. The coefficient of variation (CV) for quantitation of miRNA-39 within the working range was below 8%. The study of cross-reactivity of different miRNAs including miRNA-39 demonstrated high specificity of the proposed assay. Comparison of the calibration curves of miRNA-39 dissolved in the buffer and the lysate of MCF-7 cells (prepared by lysis of the cells with phenol/guanidine thiocyanate mixture and purified using silica membrane spin column) has demonstrated a negligible matrix effect. The proposed assay makes it possible to estimate the yield of purification of miRNAs from cells, which is necessary for the quantitative calculation of the intracellular content of miRNAs measured with the isothermal assay coupled with ICSDPR.
Collapse
Affiliation(s)
- Anton M Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119991, Russia
| | - Ivan I Galkin
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119992, Russia
| | - Olga Yu Pletjushkina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119992, Russia
| | - Alexey V Medvedko
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prospect, 47, Moscow 119991, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119991, Russia.
| |
Collapse
|
120
|
Sewastianik T, Straubhaar JR, Zhao JJ, Samur MK, Adler K, Tanton HE, Shanmugam V, Nadeem O, Dennis PS, Pillai V, Wang J, Jiang M, Lin J, Huang Y, Brooks D, Bouxsein M, Dorfman DM, Pinkus GS, Robbiani DF, Ghobrial IM, Budnik B, Jarolim P, Munshi NC, Anderson KC, Carrasco RD. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood 2021; 137:1905-1919. [PMID: 33751108 PMCID: PMC8033455 DOI: 10.1182/blood.2020009088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the most common genetic alterations in mature B-cell malignancies, which originate from germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting important tumor-suppressor activity. However, the role of miR-15a/16-1 in B-cell activation and initiation of mature B-cell neoplasms remains to be determined. We show that conditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but widespread molecular and functional changes including an increased number of GC B cells, percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to development of mature B-cell neoplasms resembling human extramedullary plasmacytoma (EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of bone marrow involvement of EP in our murine model resembles human primary EP rather than MM that has progressed to extramedullary disease. We corroborate human primary EP having low levels of miR-15a/16 expression, with del(13q) being the most common genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation. Taken together, our studies highlight the significant role of the miR-15a/16-1 cluster in the regulation of the GC reaction and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Disorders/pathology
- Chromosomes, Human, Pair 13/genetics
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Multigene Family
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Neoplasms, Plasma Cell/genetics
- Neoplasms, Plasma Cell/pathology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Plasmacytoma/genetics
- Plasmacytoma/pathology
- Mice
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Mehmet K Samur
- Department of Medical Oncology and
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Keith Adler
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Helen E Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vignesh Shanmugam
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vinodh Pillai
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Jianli Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel Brooks
- Center for Advanced Orthopedic Studies, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - David M Dorfman
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Geraldine S Pinkus
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, FAS Division of Science, Harvard University, Cambridge, MA; and
| | - Petr Jarolim
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- Department of Medical Oncology and
- Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C Anderson
- Department of Medical Oncology and
- Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
121
|
Pasqualucci L, Klein U. Mouse Models in the Study of Mature B-Cell Malignancies. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034827. [PMID: 32398289 DOI: 10.1101/cshperspect.a034827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past two decades, genomic analyses of several B-cell lymphoma entities have identified a large number of genes that are recurrently mutated, suggesting that their aberrant function promotes lymphomagenesis. For many of those genes, the specific role in normal B-cell development is unknown; moreover, whether and how their deregulated activity contributes to lymphoma initiation and/or maintenance is often difficult to determine. Genetically engineered mouse models that faithfully mimic lymphoma-associated genetic alterations represent valuable tools for elucidating the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, as well as for the preclinical testing of novel therapeutic principles in an intact microenvironment. Here we summarize what has been learned about the mechanisms of oncogenic transformation from accurately modeling the most common and well-characterized genetic alterations identified in mature B-cell malignancies. This information is expected to guide the design of improved molecular diagnostics and mechanism-based therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
122
|
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138:111528. [PMID: 33770669 DOI: 10.1016/j.biopha.2021.111528] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that post-transcriptionally control expression of genes by targeting mRNAs. miRNA alterations partake in the establishment and progression of different types of human cancer. Consequently, expression profiling of miRNA in human cancers has correlations with cancer detection, staging, progression, and response to therapies. Particularly, amplification, deletion, abnormal pattern of epigenetic factors and the transcriptional factors that mediate regulation of primary miRNA frequently change the landscape of miRNA expression in cancer. Indeed, changes in the quantity and quality of miRNAs are associated with the initiation of cancer, its progression and metastasis. Additionally, miRNA profiling has been used to categorize genes that can affect oncogenic pathways in cancer. Here, we discuss several circulating miRNA signatures, their expression profiles in different types of cancer and their impacts on cellular processes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Dana K Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
123
|
LINC00978 promotes hepatocellular carcinoma carcinogenesis partly via activating the MAPK/ERK pathway. Biosci Rep 2021; 40:222177. [PMID: 32077915 PMCID: PMC7064789 DOI: 10.1042/bsr20192790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: To study the role of long non-coding RNA (lncRNA) LINC00978 in hepatocellular carcinoma (HCC) carcinogenesis. Materials and methods: LINC00978 expression level was measured by reverse transcription quantitative real-time PCR (RT-qPCR) in HCC tissues and adjacent healthy liver tissues from 49 HCC patients. MTT assay, colony forming assay, and flow cytometry were performed to evaluate the effects of shRNA-mediated LINC00978 knockdown on HCC cell proliferation, cell cycle progression, and apoptosis in vitro. Xenograft tumor model was performed to determine the effects of LINC00978 knockdown on HCC tumor growth in vivo. Western blot was used to assess the activation of signaling molecules in the apoptosis and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Results: LINC00978 expression was significantly up-regulated in human HCC tissue relative to adjacent normal tissue, and LINC00978 high expression was correlated with poor HCC overall survival. LINC00978 was up-regulated in HCC cell lines. ShRNA-mediated LINC00978 knockdown significantly decreased HCC cell proliferation, and induced HCC cell cycle arrest and apoptosis in vitro. LINC00978 knockdown led to significant decrease in tumor xenograft size in vivo. Western blots revealed LINC00978 inhibition decreased ERK, p38, and c-Jun N-terminal kinase (JNK) phosphorylation in HCC cells. Conclusions: LINC00978 is highly expressed in human HCC tissue and correlates with poor HCC prognosis. LINC00978 promotes HCC cell proliferation, cell cycle progression, and survival, partially by activating the MAPK/ERK pathway. Our findings partially elucidated the roles of LINC00978 in HCC carcinogenesis, and identified a therapeutic target for HCC.
Collapse
|
124
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
125
|
Lovat F, Gasparini P, Nigita G, Larkin K, Byrd JC, Minden MD, Andreeff M, Carter BZ, Croce CM. Loss of expression of both miR-15/16 loci in CML transition to blast crisis. Proc Natl Acad Sci U S A 2021; 118:e2101566118. [PMID: 33836616 PMCID: PMC7980455 DOI: 10.1073/pnas.2101566118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances that have improved the treatment of chronic myeloid leukemia (CML) patients in chronic phase, the mechanisms of the transition from chronic phase CML to blast crisis (BC) are not fully understood. Considering the key role of miR-15/16 loci in the pathogenesis of myeloid and lymphocytic leukemia, here we aimed to correlate the expression of miR-15a/16 and miR-15b/16 to progression of CML from chronic phase to BC. We analyzed the expression of the two miR-15/16 clusters in 17 CML patients in chronic phase and 22 patients in BC and in 11 paired chronic phase and BC CML patients. BC CMLs show a significant reduction of the expression of miR-15a/-15b/16 compared to CMLs in chronic phase. Moreover, BC CMLs showed an overexpression of miR-15/16 direct targets such as Bmi-1, ROR1, and Bcl-2 compared to CMLs in chronic phase. This study highlights the loss of both miR-15/16 clusters as a potential oncogenic driver in the transition from chronic phase to BC in CML patients.
Collapse
Affiliation(s)
- Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, 2308 NSW, Australia
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Karilyn Larkin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
126
|
Fairlie WD, Lee EF. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Int J Mol Sci 2021; 22:2841. [PMID: 33799592 PMCID: PMC8000576 DOI: 10.3390/ijms22062841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
B-Cell Lymphoma 2 (BCL-2), c-MYC and related proteins are arguably amongst the most widely studied in all of biology. Every year there are thousands of papers reporting on different aspects of their biochemistry, cellular and physiological mechanisms and functions. This plethora of literature can be attributed to both proteins playing essential roles in the normal functioning of a cell, and by extension a whole organism, but also due to their central role in disease, most notably, cancer. Many cancers arise due to genetic lesions resulting in deregulation of both proteins, and indeed the development and survival of tumours is often dependent on co-operativity between these protein families. In this review we will discuss the individual roles of both proteins in cancer, describe cancers where co-operativity between them has been well-characterised and finally, some strategies to target these proteins therapeutically.
Collapse
Affiliation(s)
- Walter Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| |
Collapse
|
127
|
Barik S, Mitra S, Suryavanshi M, Dewan A, Kaur I, Kumar D, Mishra M, Vishwakarma G. To study the role of pre-treatment microRNA (micro ribonucleic acid) expression as a predictor of response to chemoradiation in locally advanced carcinoma cervix. Cancer Rep (Hoboken) 2021; 4:e1348. [PMID: 33660436 PMCID: PMC8388174 DOI: 10.1002/cnr2.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
Background Concurrent chemoradiotherapy followed by brachytherapy is the standard of care in locally advanced carcinoma cervix. There is no prognostic factor at present to predict the outcome of disease in locally advanced carcinoma cervix. Aim Differential expression of microRNAs can be used as biomarkers to predict clinical response in locally advanced carcinoma cervix patients. Methods Thirty‐two patients of locally advanced carcinoma cervix with International Federation of Gynecology and Obstetrics Stage IB‐IVA were enrolled from 2017 to 2018. Expression of microRNA‐9 5p, ‐31 3p, ‐100 5p, ‐125a 5p, ‐125b‐5p, and –200a 5p in formalin‐fixed paraffin embedded (FFPE) biopsied tissue were analyzed by real time quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Pretreatment evaluation was done with clinical examination and MRI pelvis. All patients received concurrent chemoradiotherapy followed by brachytherapy. Patients were evaluated for the clinical response after 3 months of treatment, with clinical examination and MRI pelvis scan using RECIST 1.1 criteria. Patients with no residual disease were classified as Complete responders (CR) and with residual or progressive disease were classified as Nonresponders (NR). Results were statistically analyzed using Mann Whiney U test to examine significant difference between the expression of microRNA between complete responders (CR) and nonresponders (NR). Results microRNA‐100 5p was upregulated in complete responders (CR) which showed a trend towards statistical significance (p value = 0.05). Conclusion microRNA‐100 5p can serve as a potential molecular biomarker in predicting clinical response to chemoradiation in locally advanced Carcinoma cervix. Its role should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Soumitra Barik
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Swarupa Mitra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Moushumi Suryavanshi
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Abhinav Dewan
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjeet Kaur
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Dushyant Kumar
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Maninder Mishra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
128
|
Hutter K, Rülicke T, Drach M, Andersen L, Villunger A, Herzog S. Differential roles of miR-15a/16-1 and miR-497/195 clusters in immune cell development and homeostasis. FEBS J 2021; 288:1533-1545. [PMID: 32705746 PMCID: PMC7984384 DOI: 10.1111/febs.15493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress almost all genes in mammals and thereby form an additional layer of gene regulation. As such, miRNAs impact on nearly every physiological process and have also been associated with cancer. Prominent examples of such miRNAs can be found in the miR-15 family, composed of the bicistronic clusters miR-15a/16-1, miR-15b/16-2, and miR-497/195. In particular, the miR-15a/16-1 cluster is deleted in almost two thirds of all chronic B lymphocytic leukemia (CLL) cases, a phenotype that is also recapitulated by miR-15a/16-1-deficient as well as miR-15b/16-2-deficient mice. Under physiological conditions, those two clusters have been implicated in T-cell function, and B-cell and natural killer (NK) cell development; however, it is unclear whether miR-497 and miR-195 confer similar roles in health and disease. Here, we have generated a conditional mouse model for tissue-specific deletion of miR-497 and miR-195. While mice lacking miR-15a/16-1 in the hematopoietic compartment developed clear signs of CLL over time, aging mice deficient for miR-497/195 did not show such a phenotype. Likewise, loss of miR-15a/16-1 impaired NK and early B-cell development, whereas miR-497/195 was dispensable for these processes. In fact, a detailed analysis of miR-497/195-deficient mice did not reveal any effect on steady-state hematopoiesis or immune cell function. Unexpectedly, even whole-body deletion of the cluster was well-tolerated and had no obvious impact on embryonic development or healthy life span. Therefore, we postulate that the miR-497/195 cluster is redundant to its paralog clusters or that its functional relevance is restricted to certain physiological and pathological conditions.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental ImmunologyBiocenterMedical University InnsbruckInnsbruckAustria
| | - Thomas Rülicke
- Institute of Laboratory Animal ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - Mathias Drach
- Department of Dermatology, Venereology and AllergologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Lill Andersen
- Institute of Laboratory Animal ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - Andreas Villunger
- Institute of Developmental ImmunologyBiocenterMedical University InnsbruckInnsbruckAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Sebastian Herzog
- Institute of Developmental ImmunologyBiocenterMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
129
|
Kim S, Bae WJ, Ahn JM, Heo JH, Kim KM, Choi KW, Sung CO, Lee D. MicroRNA signatures associated with lymph node metastasis in intramucosal gastric cancer. Mod Pathol 2021; 34:672-683. [PMID: 32973329 DOI: 10.1038/s41379-020-00681-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Although a certain proportion of intramucosal carcinomas (IMCs) of the stomach does metastasize, the majority of patients are currently treated with endoscopic resection without lymph node dissection, and this potentially veils any existing metastasis and may put some patients in danger. In this regard, biological markers from the resected IMC that can predict metastasis are warranted. Here, we discovered unique miRNA expression profiles that consist of 21 distinct miRNAs that are specifically upregulated (miR-628-5p, miR-1587, miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507, miR-4720-5p, miR-4742-5p, and miR-6779-5p) or downregulated (miR-106b-3p, miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p, miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-6831-5p) in metastatic (M)-IMC compared to nonmetastatic (N)-IMC, or nonneoplastic gastric mucosa. Intriguingly, most of these selected miRNAs showed stepwise increased or decreased expression from nonneoplastic tissue to N-IMC to M-IMC. This suggests that common oncogenic mechanisms are gradually intensified during the metastatic process. Using a machine-learning algorithm, we demonstrated that such miRNA signatures could distinguish M-IMC from N-IMC. Gene ontology and pathway analysis revealed that TGF-β signaling was enriched from upregulated miRNAs, whereas E2F targets, apoptosis-related, hypoxia-related, and PI3K/AKT/mTOR signaling pathways, were enriched from downregulated miRNAs. Immunohistochemical staining of samples from multiple institutions indicated that PI3K/AKT/mTOR pathway components, MAPK1, phospho-p44/42 MAPK, and pS6 were highly expressed and the expression of SMAD7, a TGF-β pathway component, was decreased in M-IMC, which could aid in distinguishing M-IMC from N-IMC. The miRNA signature discovered in this study is a valuable biological marker for identifying metastatic potential of IMCs, and provides novel insights regarding the metastatic progression of IMC.
Collapse
Affiliation(s)
- Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Won Jung Bae
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Ji Mi Ahn
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeong Woon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ohk Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
130
|
Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online 2021; 20:21. [PMID: 33593374 PMCID: PMC7885381 DOI: 10.1186/s12938-021-00857-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, microRNAs (miRNAs) have emerged as important molecules associated with the regulation of gene expression in humans and other organisms, expanding the strategies available to diagnose and handle several diseases. This paper presents a systematic review of literature of miRNAs related to cancer development and explores the main techniques used to quantify these molecules and their limitations as screening strategy. The bibliographic research was conducted using the online databases, PubMed, Google Scholar, Web of Science, and Science Direct searching the terms "microRNA detection", "miRNA detection", "miRNA and prostate cancer", "miRNA and cervical cancer", "miRNA and cervix cancer", "miRNA and breast cancer", and "miRNA and early cancer diagnosis". Along the systematic review over 26,000 published papers were reported, and 252 papers were returned after applying the inclusion and exclusion criteria, which were considered during this review. The aim of this study is to identify potential miRNAs related to cancer development that may be useful for early cancer diagnosis, notably in the breast, prostate, and cervical cancers. In addition, we suggest a preliminary top 20 miRNA panel according to their relevance during the respective cancer development. Considering the progressive number of new cancer cases every year worldwide, the development of new diagnostic tools is critical to refine the accuracy of screening tests, improving the life expectancy and allowing a better prognosis for the affected patients.
Collapse
Affiliation(s)
- Leonardo J. Galvão-Lima
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Antonio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| | - Elio J. S. S. Barreto
- Division of Oncology and Hematology, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
131
|
Katsaraki K, Karousi P, Artemaki PI, Scorilas A, Pappa V, Kontos CK, Papageorgiou SG. MicroRNAs: Tiny Regulators of Gene Expression with Pivotal Roles in Normal B-Cell Development and B-Cell Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13040593. [PMID: 33546241 PMCID: PMC7913321 DOI: 10.3390/cancers13040593] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The involvement of miRNAs in physiological cellular processes has been well documented. The development of B cells, which is dictated by a miRNA-transcription factor regulatory network, suggests a typical process partly orchestrated by miRNAs. Besides their contribution in normal hematopoiesis, miRNAs have been severally reported to be implicated in hematological malignancies, a typical example of which is B-cell chronic lymphocytic leukemia (B-CLL). Numerous studies have attempted to highlight the regulatory role of miRNAs in B-CLL or establish some of them as molecular biomarkers or therapeutic targets. Thus, a critical review summarizing the current knowledge concerning the multifaceted role of miRNAs in normal B-cell development and B-CLL progression, prognosis, and therapy, is urgent. Moreover, this review aims to highlight important miRNAs in both normal B-cell development and B-CLL and discuss future perspectives concerning their regulatory potential and establishment in clinical practice. Abstract MicroRNAs (miRNAs) represent a class of small non-coding RNAs bearing regulatory potency. The implication of miRNAs in physiological cellular processes has been well documented so far. A typical process orchestrated by miRNAs is the normal B-cell development. A stage-specific expression pattern of miRNAs has been reported in the developmental procedure, as well as interactions with transcription factors that dictate B-cell development. Besides their involvement in normal hematopoiesis, miRNAs are severally implicated in hematological malignancies, a typical paradigm of which is B-cell chronic lymphocytic leukemia (B-CLL). B-CLL is a highly heterogeneous disease characterized by the accumulation of abnormal B cells in blood, bone marrow, lymph nodes, and spleen. Therefore, timely, specific, and sensitive assessment of the malignancy is vital. Several studies have attempted to highlight the remarkable significance of miRNAs as regulators of gene expression, biomarkers for diagnosis, prognosis, progression, and therapy response prediction, as well as molecules with potential therapeutic utility. This review seeks to outline the linkage between miRNA function in normal and malignant hematopoiesis by demonstrating the main benchmarks of the implication of miRNAs in the regulation of normal B-cell development, and to summarize the key findings about their value as regulators, biomarkers, or therapeutic targets in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| |
Collapse
|
132
|
Lin WY, Fordham SE, Sunter N, Elstob C, Rahman T, Willmore E, Shepherd C, Strathdee G, Mainou-Fowler T, Piddock R, Mearns H, Barrow T, Houlston RS, Marr H, Wallis J, Summerfield G, Marshall S, Pettitt A, Pepper C, Fegan C, Forconi F, Dyer MJS, Jayne S, Sellors A, Schuh A, Robbe P, Oscier D, Bailey J, Rais S, Bentley A, Cawkwell L, Evans P, Hillmen P, Pratt G, Allsup DJ, Allan JM. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat Commun 2021; 12:665. [PMID: 33510140 PMCID: PMC7843618 DOI: 10.1038/s41467-020-20822-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47-2.15; P = 2.71 × 10-9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55-2.55; P = 5.08 × 10-8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Shepherd
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tryfonia Mainou-Fowler
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Mearns
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Jonathan Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | - Christopher Fegan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, UK
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - April Sellors
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | | | | | - James Bailey
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Syed Rais
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Alison Bentley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | | | - Paul Evans
- Haematological Malignancy Diagnostic Service Laboratory, St James' Institute of Oncology, Leeds, UK
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Guy Pratt
- University of Birmingham, Birmingham, UK
| | - David J Allsup
- Hull University Teaching Hospital NHS Trust, Hull, UK.
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
133
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
134
|
Paul S, Madhumita. Pattern Recognition Algorithms for Multi-Omics Data Analysis. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
135
|
Wang YY, Zhang HY, Jiang WJ, Liu F, Li L, Deng SM, He ZY, Wang YZ. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study. Neural Regen Res 2021; 16:1302-1307. [PMID: 33318409 PMCID: PMC8284288 DOI: 10.4103/1673-5374.301019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is a complicated disease, and its pathogenesis has been attributed to the occurrence of genetic polymorphisms. Evidence has suggested that the microRNA let-7a is involved in the pathogenesis of ischemic stroke. Pri-miRNA is the primary transcript, which undergoes several processing steps to generate pre-miRNA and, later, mature miRNAs. In this case-control study, we analyzed the distribution of pri-let-7a-2 variants in patients at a high risk for ischemic stroke and the interactions of pri-let-7a-2 variants and environmental factors. Blood samples and clinical information were collected from 1086 patients with ischemic stroke and 836 healthy controls between December 2013 and December 2015 at the First Affiliated Hospital of China Medical University. We found that the rs1143770 CC genotype and the C allele were associated with a decreased risk of ischemic stroke, whereas the rs629367 CC genotype was associated with an increased risk for ischemic stroke. Moreover, these two single-nucleotide polymorphisms were in linkage disequilibrium in this study sample. We analyzed gene-environment interactions and found that rs1143770 exerted a combined effect on the pathogenesis of ischemic stroke, together with alcohol use, smoking, and a history of hypertension. Therefore, the detection of pri-let-7a-2 polymorphisms may increase the awareness of ischemic stroke risk. This study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of China Medical University, China (approval No. 2012-38-1) on February 20, 2012, and was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559) on December 27, 2017.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong Province, China
| | - Wen-Juan Jiang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
136
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
137
|
Hellberg T, Mohr R, Geisler L, Knorr J, Wree A, Demir M, Benz F, Lambrecht J, Loosen SH, Tacke F, Roderburg C, Jann H, Özdirik B. Serum levels of miR-223 but not miR-21 are decreased in patients with neuroendocrine tumors. PLoS One 2020; 15:e0244504. [PMID: 33382770 PMCID: PMC7775044 DOI: 10.1371/journal.pone.0244504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023] Open
Abstract
Background and aims MicroRNAs (miRNAs) are profoundly involved into the pathophysiology of manifold cancers. Recent data suggested a pivotal role of miRNAs as biomarkers in different biological processes including carcinogenesis. However, their role in neuroendocrine tumors (NETs) is only poorly understood. Methods We determined circulating levels of miR-21 and miR-223 in 45 samples from patients with NET treated between 2010 and 2019 at our department and compared them to healthy controls. Results were correlated with clinical records. Results In the total cohort of Patients with NET, miR-223 presented significantly lower levels compared to healthy control samples. In contrast, levels of miR-21 indicated no significant changes between the two groups. Interestingly, despite being significantly downregulated in all NET patients, concentrations of miR-223 were independent of clinical or histopathological factors such as proliferation activity according to Ki-67 index, tumor grading, TNM stage, somatostatin receptor expression, presence of functional/ non-functional disease or tumor relapse. Moreover, in contrast to data from recent publications analyzing other tumor entities, levels of miR-223 serum levels did not reflect prognosis of patients with NET. Conclusion Lower concentrations of circulating miR-223 rather reflect the presence of NET itself than certain tumor characteristics. The value of miR-223 as a biomarker in NET might be limited to diagnostic, but not prognostic purposes.
Collapse
Affiliation(s)
- Teresa Hellberg
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Lukas Geisler
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Jana Knorr
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Alexander Wree
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Fabian Benz
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Joeri Lambrecht
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Sven H. Loosen
- Medical Faculty of Heinrich Heine University Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- * E-mail:
| | - Henning Jann
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
138
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
139
|
Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol 2020; 14:31. [PMID: 33414912 PMCID: PMC7783718 DOI: 10.3892/mco.2020.2193] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA or miR) is stably present in plasma. It has been reported that miRNA could be used for detecting cancer. Circulating miRNAs are being increasingly recognized as powerful biomarkers in a number of different pathologies, including in breast cancer. The aim of the current study was to establish and validate miRNA sets that are useful for the early diagnosis of breast cancer. Specifically, the current study intended to determine whether miRNA biomarkers were tumor-specific and to statistically verify whether circulating miRNA analysis could be used for breast cancer diagnosis. In the present study, a total of nine candidate miRNA biomarkers were selected by examining reference miRNAs associated with the generation and progression of breast cancer to identify novel miRNAs that could be used to detect early breast cancer. A total of 226 plasma samples from patients with breast cancer were used. In addition, 146 plasma healthy samples were used as non-cancer controls. These samples were divided into training and validation cohorts. The training cohort was used to identify a combination of miRNA that could detect breast cancer. The validation cohort was used to validate this combination of miRNA. Total RNAs were isolated from collected samples. A total of 9 miRNAs were quantified using reverse-transcription quantitative PCR. A total of nine candidate miRNA expression levels were compared between patients with breast cancer and healthy controls. It was indicated that combinations of two or more of the nine miRNAs could detect breast cancer with higher accuracy than the use of a single biomarker. As a representative example, combinations of four miRNAs (miR-1246+miR-206+miR-24+miR-373) of the nine miRNAs had a sensitivity of 98%, a specificity of 96% and an accuracy of 97% for breast cancer detection in the validation cohort. The results of the present study suggest that multiple miRNAs could be used as potential biomarkers for early diagnosis of breast cancer. These biomarkers are expected to overcome limitations of mammography when used as an auxiliary diagnosis of mammography.
Collapse
Affiliation(s)
- Ji Young Jang
- BIOINFRA Life Science Inc., Jongno-gu, Seoul 03127, Republic of Korea
| | - Yeon Soo Kim
- DIOGENE Inc., Bundang-gu, Seongnam-Si 13486, Republic of Korea
| | - Kyung Nam Kang
- BIOINFRA Life Science Inc., Jongno-gu, Seoul 03127, Republic of Korea
| | - Kyo Hyun Kim
- DIOGENE Inc., Bundang-gu, Seongnam-Si 13486, Republic of Korea
| | - Yu Jin Park
- BIOINFRA Life Science Inc., Jongno-gu, Seoul 03127, Republic of Korea
| | - Chul Woo Kim
- BIOINFRA Life Science Inc., Jongno-gu, Seoul 03127, Republic of Korea
| |
Collapse
|
140
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
141
|
Braun T, Glass M, Wahnschaffe L, Otte M, Mayer P, Franitza M, Altmüller J, Hallek M, Hüttelmaier S, Schrader A, Herling M. Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways. Haematologica 2020; 107:187-200. [PMID: 33543866 PMCID: PMC8719084 DOI: 10.3324/haematol.2020.267500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL’s pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL’s genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicin Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Markus Glass
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Moritz Otte
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Petra Mayer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marek Franitza
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne.
| |
Collapse
|
142
|
Yoo JY, Yeh M, Kaur B, Lee TJ. Targeted delivery of small noncoding RNA for glioblastoma. Cancer Lett 2020; 500:274-280. [PMID: 33176185 DOI: 10.1016/j.canlet.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Aberrant expression of certain genes and microRNAs (miRNAs) has been shown to drive cancer development and progression, thus the modification of aberrant gene and miRNA expression presents an opportunity for therapeutic targeting. Ectopic modulation of a single dysregulated miRNA has the potential to revert therapeutically unfavorable gene expression in cancer cells by targeting multiple genes simultaneously. Although the use of noncoding RNA-based cancer therapy is a promising approach, the lack of a feasible delivery platform for small noncoding RNAs has hindered the development of this therapeutic modality. Recently, however, there has been an evolution in RNA nanotechnology, in which small noncoding RNA is loaded onto nanoparticles derived from the pRNA-3WJ viral RNA motif of the bacteriophage phi29. Preclinical studies have shown the capacity of this technology to specifically target tumor cells by conjugating these nanoparticles with ligands specific for cancer cells and resulting in the endocytic delivery of siRNA and miRNA inhibitors directly into the cell. Here we provide a systematic review of the various strategies, which have been utilized for miRNA delivery with a specific focus on the preclinical evaluation of promising RNA nanoparticles for glioblastoma (GBM) targeted therapy.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaret Yeh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
143
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
144
|
Shiosaki J, Tiirikainen M, Peplowska K, Shaeffer D, Machida M, Sakamoto K, Takahashi M, Kojima K, Machi J, Bryant-Greenwood P, Kuwada SK. Serum micro-RNA Identifies Early Stage Colorectal Cancer in a Multi-Ethnic Population. Asian Pac J Cancer Prev 2020; 21:3019-3026. [PMID: 33112562 PMCID: PMC7798181 DOI: 10.31557/apjcp.2020.21.10.3019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Certain microRNAs (miR) have been previously described to be dysregulated in cancers and can be detected in blood samples. Studies examining the utility of miRs for colon cancer screening have primarily been performed in ethnically homogeneous groups of patients, thus the performance of miRs in multiethnic populations is unknown. METHODS Four miRs were selected that were shown to be aberrantly expressed in the blood or stool of patients with colorectal cancer (CRC) of various ethnicities. In this study, the ability of these miRs to discern early stage CRC was determined in a previously untested multiethnic population of 73 CRC cases and 18 controls. RESULTS The ratios of non-vesicular to extracellular vesicular levels of miR's -21, -29a, and -92a were statistically and quantitatively related to CRC stage compared to controls. CONCLUSION Serum levels of miR-21, miR-29a and miR-92a were able to significantly detect early stage CRC in a multiethnic and previously untested population.<br />.
Collapse
Affiliation(s)
- Jessica Shiosaki
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| | - Karolina Peplowska
- University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| | - David Shaeffer
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | - Michio Machida
- Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Kuniaki Kojima
- Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Junji Machi
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | | | - Scott K Kuwada
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States.,University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| |
Collapse
|
145
|
Al-Othman N, Ahram M, Alqaraleh M. Role of androgen and microRNA in triple-negative breast cancer. Breast Dis 2020; 39:15-27. [PMID: 31839601 DOI: 10.3233/bd-190416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the most frequent type of malignancy affecting females worldwide. Molecular-based studies resulted in an identification of at least four subtypes of breast carcinoma, including luminal A and luminal B, Human growth factor receptor (HER-2)-enriched and triple-negative tumors (basal-like and normal breast-like). A proportion of BC cases are of the triple-negative breast cancer (TNBC) type. TNBC lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and HER-2, and is known to express androgen receptor (AR) at considerable levels. AR has been shown to promote the progression of TNBC. However, the exact mechanisms have yet to be unraveled. One of these mechanisms could be through regulating the expression of microRNA (miRNA) molecules, which play an important regulatory role in BC through post-transcriptional gene silencing. Activation of AR controls the expression of miRNA molecules, which target selective mRNAs, consequently, affecting protein expression. In this review we attempt to elucidate the relations between AR and miRNA in TNBC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry and Genetic, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Moath Alqaraleh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
146
|
Wei X, Liu H, Li X, Liu X. Over-expression of MiR-122 promotes apoptosis of hepatocellular carcinoma via targeting TLR4. Ann Hepatol 2020; 18:869-878. [PMID: 31477445 DOI: 10.1016/j.aohep.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVE MiR-122 has been regarded as a tumor suppressor. Toll-like receptor 4 (TLR4) has been found to be closely related to metastasis and immune escape of hepatocellular carcinoma (HCC). In the study, we sought to investigate the effect of miR-122 on HCC and the expression of TLR4. PATIENTS OR MATERIALS AND METHODS Real-time PCR and Western blot were performed to detect the expressions of target factors. CCK-8 and flow cytometry analysis were employed to evaluate cell viability and apoptosis, respectively. Luciferase reporter assay was used to determine whether miR-122 could directly regulate the expression of TLR4. Enzyme-linked Immuno Sorbent Assay was adopted to detect the secretion of inflammatory cytokines. RESULTS Both down-regulation of miR-122 and up-regulation of TLR4 were found to be correlated with low overall survival rate of HCC patients. TLR4 may be a direct target gene of miR-122. Over-expression of miR-122 induced apoptosis and inhibited cell viability of HCC by down-regulating TLR4, enhanced the expression of pro-apoptotic genes and suppressed the expression of anti-apoptotic genes. MiR-122 inhibited expressions and activities of inflammatory cytokines, including vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), cyclooxygenase-2 (Cox-2) and prostaglandin E2 (PGE2) and also reduced the expression of matrix metallopeptidase 9 (MMP-9). Furthermore, activities of phosphatidylinositide 3-kinases (PI3K), Akt and nuclear factor-kappa B (NF-κB) were suppressed by miR-122. CONCLUSIONS Down-regulation of miR-122 facilitated the immune escape of HCC by targeting TLR4, which was related to PI3K/Akt/NF-κB signaling pathways. Our study may provide a possible strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Chongqing, China.
| |
Collapse
|
147
|
Liu J, Li SM. MiR-484 suppressed proliferation, migration, invasion and induced apoptosis of gastric cancer via targeting CCL-18. Int J Exp Pathol 2020; 101:203-214. [PMID: 32985776 DOI: 10.1111/iep.12366] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a common and high-incidence malignant gastro-intestinal cancer that seriously threatens human life. Evidence suggests that microRNAs (miRNAs) play an essential role in regulating the occurrence and development of gastric cancer, but the possible mechanisms and effects remain to be further explored. In the present study, a new tumour suppresser function of miR-484 was identified in gastric cancer. The expression of miR-484 was obviously decreased, and the expression of CCL-18 was obviously increased in gastric cancer tissues and cell lines. In addition, upregulation of miR-484 suppressed cell proliferation, migration and invasion, and induced cell cycle arrest in G1 phase and cell apoptosis in gastric cancer cells. Besides, miR-484 mimics could block the PI3K/AKT signalling pathway. Moreover, CCL-18 was confirmed as a direct target of miR-484 by binding its 3'-UTR, and over-expression of CCL-18 could restore the effects of miR-484 on the growth and metastasis of gastric cancer. Finally, in vivo experiments showed that over-expression of miR-484 inhibited the subcutaneous tumorigenicity of gastric cancer cells, and the inhibition was blocked after over-expression of CCL-18. To conclude, miR-484 expression was downregulated in gastric cancer tissues and cells and played an anti-cancer role in the occurrence and development of gastric cancer, which may be achieved by inhibiting the expression of transcription factor CCL-18 and blocking the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jin Liu
- Department of Oncology, Suqian First Hospital, Suqian, China
| | - Shi Meng Li
- Department of Oncology, Suqian First Hospital, Suqian, China
| |
Collapse
|
148
|
Borran S, Ahmadi G, Rezaei S, Anari MM, Modabberi M, Azarash Z, Razaviyan J, Derakhshan M, Akhbari M, Mirzaei H. Circular RNAs: New players in thyroid cancer. Pathol Res Pract 2020; 216:153217. [PMID: 32987339 DOI: 10.1016/j.prp.2020.153217] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of thyroid cancer the most frequent endocrine malignancy, is rapidly increasing. Most of thyroid cancers are relatively indolent, however, some cases still possess a risk of developing into lethal types of thyroid cancer. Regarding its multistep tumorigenesis, the determination of the underlying mechanisms is a vital issue for thyroid cancer therapy. Circular RNAs (circRNAs) are a type of non-coding RNAs with a closed loop structure. Numerous circRNAs have been identified in cancerous tissues. Mounting data recommends that the biological activities of circRNAs, such as serving as microRNA or ceRNAs sponges, interacting with proteins, modulating gene translation and transcription, suggesting that circRNAs will be potential targets as well as agents for the prognosis and diagnosis of diseases, including cancer. Given that circular RNAs acts as oncogenes or tumor suppressors in the thyroid cancer. Several studies documented that circular RNAs via microRNA and protein sponges could regulate a sequences of cellular and molecular mechanisms e.g., apoptosis, angiogenesis, tumor growth, and invasion that are involved in thyroid cancer pathogenesis. Herein, we summarized the role of circular RNAs as therapeutic and diagnostic biomarkers in the thyroid cancer. Moreover, we highlighted the role of these molecules in the pathogenesis of various cancers.
Collapse
Affiliation(s)
- Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelavizh Ahmadi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | | | - Mohsen Modabberi
- Physical Medicine and Rehabilitation Department and Research Center, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Ziba Azarash
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Razaviyan
- Student Research Committee, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoume Akhbari
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
149
|
Fabris L, Juracek J, Calin G. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. Int J Mol Sci 2020; 21:E6720. [PMID: 32937758 PMCID: PMC7554994 DOI: 10.3390/ijms21186720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) and their role in tumor onset and progression has revolutionized the way scientists and clinicians study cancers. This discovery opened new layers of complexity in understanding the fine-tuned regulation of cellular processes leading to cancer. NcRNAs represent a heterogeneous group of transcripts, ranging from a few base pairs to several kilobases, that are able to regulate gene networks and intracellular pathways by interacting with DNA, transcripts or proteins. Deregulation of ncRNAs impinge on several cellular responses and can play a major role in each single hallmark of cancer. This review will focus on the most important short and long non-coding RNAs in chronic lymphocytic leukemia (CLL), highlighting their implications as potential biomarkers and therapeutic targets as they relate to the well-established hallmarks of cancer. The key molecular events in the onset of CLL will be contextualized, taking into account the role of the "dark matter" of the genome.
Collapse
Affiliation(s)
- Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
150
|
Yun X, Zhang Y, Wang X. Recent progress of prognostic biomarkers and risk scoring systems in chronic lymphocytic leukemia. Biomark Res 2020; 8:40. [PMID: 32939265 PMCID: PMC7487566 DOI: 10.1186/s40364-020-00222-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent adult leukemia with high heterogeneity in the western world. Thus, investigators identified a number of prognostic biomarkers and scoring systems to guide treatment decisions and validated them in the context of immunochemotherapy. A better understanding of prognostic biomarkers, including serum markers, flow cytometry outcomes, IGHV mutation status, microRNAs, chromosome aberrations and gene mutations, have contributed to prognosis in CLL. Del17p/ TP53 mutation, NOTCH1 mutation, CD49d, IGHV mutation status, complex karyotypes and microRNAs were reported to be of predictive values to guide clinical decisions. Based on the biomarkers above, classic prognostic models, such as the Rai and Binet staging systems, MDACC nomogram, GCLLSG model and CLL-IPI, were developed to improve risk stratification and tailor treatment intensity. Considering the presence of novel agents, many investigators validated the conventional prognostic biomarkers in the setting of novel agents and only TP53 mutation status/del 17p and CD49d expression were reported to be of prognostic value. Whether other prognostic indicators and models can be used in the context of novel agents, further studies are required.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|