101
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
102
|
Guzzardo GM, Sidonio R, Callaghan MU, Regling K. Early stage clinical trials for the treatment of hemophilia A. Expert Opin Investig Drugs 2022; 31:1169-1186. [PMID: 36265129 DOI: 10.1080/13543784.2022.2138742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Hemophilia A is a severe bleeding disorder affecting about 1 in 5,000 males. The gold standard for prophylaxis and treatment of acute bleeding has been factor (F) VIII concentrate. A multitude of treatment modalities are now available and under clinical investigation. AREAS COVERED This review discusses ongoing/recently completed early-phase clinical trials registered on ClinicalTrials.gov in patients with hemophilia A through April 2022. These new pipeline therapies are focused on addressing the safety and efficacy of new factor-related products, non-factor related products, and gene therapy options for hemophilia. EXPERT OPINION Current standard of care effectively prevents and treats acute bleeding and has significantly improved the quality of life in hemophilia. The biggest challenges in the improvement of care are treatment-related burden and the burden of cost in developing countries. New drugs under development are likely to enter practice by the end of this decade and address many of the unmet needs particularly of those with severe disease. Data is limited in unique populations (e.g. congenital/inherited FVIII inhibitors, non-severe hemophilia A, women/girls with hemophilia and children) which are important areas for future research; additional clinical trials and long-term outcome data are necessary prior to incorporating these new therapies in our treatment arsenal.
Collapse
Affiliation(s)
- Gianna M Guzzardo
- Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Robert Sidonio
- Pediatric Hematology Oncology, Emory University and Aflac Cancer and Blood Disorders, Atlanta, GA, USA
| | - Michael U Callaghan
- Agios Pharmaceuticals, Cambridge, MA, USA.,Department of Pediatrics, Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Katherine Regling
- Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
103
|
Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:113-126. [PMID: 36336357 DOI: 10.1016/j.lssr.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
104
|
Xiang M, Li Y, Liu J, Shi J, Ge Y, Peng C, Bin Y, Wang Z, Wang L. G-Quadruplex Linked DNA Guides Selective Transfection into Nucleolin-Overexpressing Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102247. [PMID: 36297681 PMCID: PMC9609445 DOI: 10.3390/pharmaceutics14102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gene therapy is a promising approach for treating tumors. Conventional approaches of DNA delivery depending on non-viral or viral vectors are unsatisfactory due to the concerns of biosafety and cell-targeting efficiency. The question how to deliver DNA into tumor cells efficiently and selectively is a major technological problem in tumor gene therapy. Here, we develop a vector-free gene transfer strategy to deliver genes effectively and selectively by taking advantage of targeting nucleolin. Nucleolin, a shuttle protein moving between cell membrane, cytoplasm and nuclei, is overexpressed in tumor cells. It has a natural ligand G-quadruplex (Gq). Gq-linked DNA (Gq-DNA) is likely to be internalized by ligand dependent uptake mechanisms independently of vectors after neutralizing negative charges of cell membrane by targeting nucleolin. This strategy is referred to as Gq-DNA transfection. Benefiting from its high affinity to nucleolin, Gq-DNA can be effectively delivered into nucleolin-positive tumor cells even nuclei. Gq-DNA transfection is characterized by low cytotoxicity, high efficiency, ease of synthesis, high stability in serum, direct access into nuclei, and specific nucleolin-positive tumor cell targeting.
Collapse
Affiliation(s)
- Mengxi Xiang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhi Ge
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Peng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yawen Bin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (Z.W.); (L.W.)
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (Z.W.); (L.W.)
| |
Collapse
|
105
|
Nakahara E, Mullapudi V, Collier GE, Joachimiak LA, Hulleman JD. Development of a New DHFR-Based Destabilizing Domain with Enhanced Basal Turnover and Applicability in Mammalian Systems. ACS Chem Biol 2022; 17:2877-2889. [PMID: 36122928 PMCID: PMC11212008 DOI: 10.1021/acschembio.2c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Destabilizing domains (DDs) are an attractive strategy allowing for positive post-transcriptional small molecule-regulatable control of a fusion protein's abundance. However, in many instances, the currently available DDs suffer from higher-than-desirable basal levels of the fusion protein. Accordingly, we redesigned the E. coli dihydrofolate reductase (ecDHFR) DD by introducing a library of ∼1200 random ecDHFR mutants fused to YFP into CHO cells. Following successive rounds of fluorescence-activated cell sorting, we identified six new ecDHFR DD clones with significantly enhanced proteasomal turnover in the absence of a stabilizing ligand, trimethoprim (TMP). One of these clones, designated as "C12", contained four unique missense mutations (W74R/T113S/E120D/Q146L) and demonstrated a significant 2.9-fold reduction in basal levels compared to the conventional ecDHFR DD (i.e., R12Y/G67S/Y100I). This domain was similarly responsive to TMP with respect to dose response and maximal stabilization, indicating an overall enhanced dynamic range. Interestingly, both computational and wet-lab experiments identified the W74R and T113S mutations of C12 as the main contributors toward its basal destabilization. However, the combination of all the C12 mutations was required to maintain both its enhanced degradation and TMP stabilization. We further demonstrate the utility of C12 by fusing it to IκBα and Nrf2, two stress-responsive proteins that have previously been challenging to regulate. In both instances, C12 significantly enhanced the basal turnover of these proteins and improved the dynamic range of regulation post stabilizer addition. These advantageous features of the C12 ecDHFR DD variant highlight its potential for replacing the conventional N-terminal ecDHFR DD and improving the use of DDs overall, not only as a chemical biology tool but for gene therapy avenues as well.
Collapse
Affiliation(s)
- Emi Nakahara
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Gracen E Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
106
|
Aebischer MK, Gizardin-Fredon H, Lardeux H, Kochardt D, Elger C, Haindl M, Ruppert R, Guillarme D, D’Atri V. Anion-Exchange Chromatography at the Service of Gene Therapy: Baseline Separation of Full/Empty Adeno-Associated Virus Capsids by Screening of Conditions and Step Gradient Elution Mode. Int J Mol Sci 2022; 23:ijms232012332. [PMID: 36293189 PMCID: PMC9604245 DOI: 10.3390/ijms232012332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Gene therapy is opening unprecedented opportunities for novel therapeutic approaches. Based on the concept of rescuing function mutations by co-expressing the correct gene to allow biological functions to be restored, it requires the use of viral vectors to ensure the proper delivery of therapeutic genes. In this context, recombinant adeno-associated viruses (rAAV) are the most widely used vectors. Their biomanufacturing process requires the insertion of the therapeutic gene into the rAAV (full capsids). However, a percentage of rAAV that do not contain the desired gene (empty capsids), as well as partly filled capsids, might also be produced, potentially impacting the efficiency of the therapy. Therefore, the determination of the rAAV capsids’ full/empty ratio needs to be monitored to ensure consistent product quality and efficacy. Anion-exchange chromatography (AEX) can serve this need. In this contribution, thorough AEX method development, including a mobile phase, a stationary phase and gradient conditions, has highlighted its potential in supporting gene therapy. Taking advantage of the fact that viral capsids follow an “on/off” retention behavior, the application of a step gradient approach to the rAAV serotype 8 (rAAV8) allowed the unprecedented separation of rAAV8 full/empty capsids, with a resolution gain of 3.7 as compared to the resolution obtained with a fully optimized linear gradient. Finally, the developed analytical approach allowed a precise and accurate baseline separation and quantification of full and empty rAAV8 capsids, with the potential to be applied as a high-throughput quality control (QC) method.
Collapse
Affiliation(s)
- Megane K. Aebischer
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Hugo Gizardin-Fredon
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Honorine Lardeux
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | - Carsten Elger
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Haindl
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raphael Ruppert
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
107
|
Rajan DS, Escolar ML. Evolving therapies in neuronopathic LSDs: opportunities and challenges. Metab Brain Dis 2022; 37:2245-2256. [PMID: 35442005 DOI: 10.1007/s11011-022-00939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomal storage disorders (LSD) are multisystemic progressive disorders caused by genetic mutations involving lysosomal function. While LSDs are individually considered rare diseases, the overall true prevalence of these disorders is likely higher than our current estimates. More than two third of the LSDs have associated neurodegeneration and the neurological phenotype often defines the course of the disease and treatment outcomes. Addressing the neurological involvement in LSDs has posed a significant challenge in the rapidly evolving field of therapies for these diseases. In this review, we summarize current approaches and clinical trials available for patients with neuronopathic lysosomal storage disorders, exploring the opportunities and challenges that have emerged with each of these.
Collapse
Affiliation(s)
- Deepa S Rajan
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
108
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
109
|
Han J, Zhu L, Zhang J, Guo L, Sun X, Huang C, Xu K, Zhang Y, Li W, Zhou Q. Rational engineering of adeno-associated virus capsid enhances human hepatocyte tropism and reduces immunogenicity. Cell Prolif 2022; 55:e13339. [PMID: 36135100 DOI: 10.1111/cpr.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Gene therapy based on recombinant adeno-associated viral (rAAV) vectors has been proved to be clinically effective for genetic diseases. However, there are still some limitations, including possible safety concerns for high dose delivery and a decreasing number of target patients caused by the high prevalence of pre-existing neutralizing antibodies, hindering its application. Herein, we explored whether there was an engineering strategy that can obtain mutants with enhanced transduction efficiency coupled with reduced immunogenicity. METHODS We described a new strategy for AAV capsids engineering by combining alterations of N-linked glycosylation and the mutation of PLA2-like motif. With this combined strategy, we generated novel variants derived from AAV8 and AAVS3. RESULTS The variants mediated higher transduction efficiency in human liver carcinoma cell lines and human primary hepatocytes as well as other human tissue cell lines. Importantly, all the variants screened out showed lower sensitivity to neutralizing antibody in vitro and in vivo. Moreover, the in vivo antibody profiles of variants were different from their parental AAV capsids. CONCLUSIONS Our work proposed a new combined engineering strategy and engineered two liver-tropic AAVs. We also obtained several AAV variants with a higher transduction efficiency and lower sensitivity of neutralizing antibodies. By expanding the gene delivery toolbox, these variants may further facilitate the success of AAV gene therapy.
Collapse
Affiliation(s)
- Jiabao Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liyu Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Nankai University, Tianjin, China
| | - Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Xuehan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
110
|
Tajima G, Huh S, Schmidt NA, Macdonald JC, Fleischmann T, Wonnacott KM. Impact of genetically modified organism requirements on gene therapy development in the EU, Japan, and the US. Mol Ther Methods Clin Dev 2022; 26:74-83. [PMID: 35782596 PMCID: PMC9207611 DOI: 10.1016/j.omtm.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced therapies are emerging as an important class of medicinal products; among these, gene therapies are advancing at an exceptional rate. However, one of the major challenges for gene therapies relates to the additional regulatory requirements for genetically modified organisms. In this paper, we provide an overview of the regulatory requirements for genetically modified organisms in the European Union, Japan, and the United States. We share our experience in managing these requirements and their impact on the adeno-associated virus gene therapies that are under development at Pfizer. Specifically, we discuss the relative complexity of the approval process and the impact of risk assessment expectations on the clinical development of genetically modified organisms. We also compare the regulatory processes and timelines of various regions based on our experience with adeno-associated viral vectors. Finally, we propose that genetically modified organisms, for which pathogenicity and replication competency are well controlled, should be regulated solely under medicinal product regulations and be exempt from additional requirements for genetically modified organisms. Even if an exemption is not implemented, it should still be possible to significantly reduce the sponsor and agency burden by simplifying and harmonizing documentation and data requirements as well as timelines for applications for genetically modified organisms.
Collapse
Affiliation(s)
- Gentaro Tajima
- Pfizer R&D Japan G.K., Regulatory Affairs, Shibuya-ku, 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Seoan Huh
- Pfizer, Inc., Global Regulatory Affairs, Lake Forest, IL, USA
| | | | | | - Tobias Fleischmann
- Pfizer Pharma, GmbH, Biotransformation and Environmental Sciences, Germany
| | | |
Collapse
|
111
|
Castaman G, Di Minno G, De Cristofaro R, Peyvandi F. The Arrival of Gene Therapy for Patients with Hemophilia A. Int J Mol Sci 2022; 23:10228. [PMID: 36142153 PMCID: PMC9499514 DOI: 10.3390/ijms231810228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Historically, the standard of care for hemophilia A has been intravenous administration of exogenous factor VIII (FVIII), either as prophylaxis or episodically. The development of emicizumab, a humanized bispecific monoclonal antibody mimicking activated FVIII, was a subsequent advance in treatment. However, both exogenous FVIII and emicizumab require repeated and lifelong administration, negatively impacting patient quality of life. A recent breakthrough has been the development of gene therapy. This allows a single intravenous treatment that could result in long-term expression of FVIII, maintenance of steady-state plasma concentrations, and minimization (or possibly elimination) of bleeding episodes for the recipient's lifetime. Several gene therapies have been assessed in clinical trials, with positive outcomes. Valoctocogene roxaparvovec (an adeno-associated viral 5-based therapy encoding human B domain-deleted FVIII) is expected to be the first approved gene therapy in European countries, including Italy, in 2022. Some novel challenges exist including refining patient selection criteria, managing patient expectations, further elucidation of the durability and variability of transgene expression and long-term safety, and the development of standardized 'hub and spoke' centers to optimize and monitor this innovative treatment. Gene therapy represents a paradigm shift, and may become a new reference standard for treating patients with hemophilia A.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Via S. Pansini 5, 80131 Naples, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitraio “A. Gemelli” IRCCS, Università Cattolica S. Cuore Roma, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122 Milan, Italy
| |
Collapse
|
112
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
113
|
Hou YC, Zhang C, Zhang ZJ, Xia L, Rao KQ, Gu LH, Wu YC, Lv ZC, Wu HX, Zuo XL, Li F, Feng H, Xia Q. Aggregation-Induced Emission (AIE) and Magnetic Resonance Imaging Characteristics for Targeted and Image-Guided siRNA Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2022; 11:e2200579. [PMID: 35749736 DOI: 10.1002/adhm.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and remains a global health challenge. Small interfering RNA (siRNA) is a promising therapeutic modality that blocks multiple disease-causing genes without impairing cell structures. However, siRNA therapeutics still have off-target proportion and lack effective quantitative analysis method in vivo. Thus, a novel theragnostic nanoparticle with dual-mode imaging is synthesized for targeted and image-guided siRNA therapy of HCC. Survivin siRNA is carried by Poly-ethylenimine (PEI) and interacted with T7-AIE/Gd NPs, which are self-assembled of DSPE-PEG-DTPA(Gd), DSPE-PEG-Mal, DSPE-PEG-PEI, and TPE. The resulting theragnostic nanoparticles exhibit lower toxicity and high therapeutic effect, and excellent T1-weighted magnetic resonance imaging (MRI) and aggregation-induced emission (AIE) imaging performance. Moreover, in vivo MRI and AIE imaging indicate that this kind of theragnostic nanoparticles rapidly accumulates in the tumor due to active targeting and enhanced permeability and retention (EPR) effects. Sur@T7-AIE-Gd suppresses HCC tumor growth by inducing autophagy and destabilizes DNA integrity in tumor cells. The results suggest that T7-AIE-Gd nanoparticles carrying Survivin siRNA with dual-mode imaging characteristics are promising for targeted and image-guided siRNA therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chao Zhang
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zi-Jie Zhang
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ke-Qiang Rao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Hong Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao-Xiang Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Feng
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| |
Collapse
|
114
|
Zeng S, Feng X, Xing S, Xu Z, Miao Z, Liu Q. Advanced Peptide Nanomedicines for Bladder Cancer Theranostics. Front Chem 2022; 10:946865. [PMID: 35991612 PMCID: PMC9389364 DOI: 10.3389/fchem.2022.946865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is still a global public health problem. Although remarkable success has been achieved in cancer diagnosis and treatment, the high recurrence and mortality rates remain severely threatening to human lives and health. In recent years, peptide nanomedicines with precise selectivity and high biocompatibility have attracted intense attention in biomedical applications. In particular, there has been a significant increase in the exploration of peptides and their derivatives for malignant tumor therapy and diagnosis. Herein, we review the applications of peptides and their derivatives in the diagnosis and treatment of bladder cancer, providing new insights for the design and development of novel peptide nanomedicines for the treatment of bladder cancer in the future.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaodi Feng
- Department of Urology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), ShanDong, China
| | - Shaoqiang Xing
- Department of Urology, Weihai Central Hospital, ShanDong, China
| | - Zhaoliang Xu
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhizhao Miao
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Qian Liu,
| |
Collapse
|
115
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
116
|
Cho S, Perry AM, Cheng AM, Wang C, Rico JF. Advances in Hemophilia A Management. Adv Pediatr 2022; 69:133-147. [PMID: 35985706 DOI: 10.1016/j.yapd.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hemophilia A is an inherited insufficiency of Factor VIII (FVIII), one of the critical clotting factors. The gold standard for the management of moderate-to-severe hemophilia A is prophylaxis using regular replacement therapy with clotting factor concentrates. Compared with conventional treatment, extended half-life products reduce the burden of frequent factor replacement injections. Of note, up to 30% of patients with hemophilia A receiving prophylactic factor infusions develop "inhibitors," neutralizing anti-FVIII autoantibodies. Therapeutic options for patients with hemophilia A and inhibitors include the immune tolerance induction (ie, eradication of inhibitors) and the management of acute bleeds with bypassing agents and/or emicizumab. Emicizumab is a biphasic monoclonal antibody mimicking activated FVIII, approved for patients with hemophilia A with/without inhibitors. Gene therapy is an emerging therapy for hemophilia A, essentially curing patients with hemophilia A or transforming them to a milder phenotype by establishing continuous endogenous expression of FVIII after one-time treatment.
Collapse
Affiliation(s)
- Sukjoo Cho
- Division of Hematology/Oncology, Department of Pediatrics, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, 5th Floor, Tampa, FL 33606, USA
| | - Ashley M Perry
- Division of Hematology/Oncology, Department of Pediatrics, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, 5th Floor, Tampa, FL 33606, USA
| | - Anna M Cheng
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carrie Wang
- University of South Florida Morsani College of Medicine, 560 Channelside Drive, Tampa, FL 33602, USA
| | - Juan Felipe Rico
- Division of Hematology/Oncology, Department of Pediatrics, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, 5th Floor, Tampa, FL 33606, USA.
| |
Collapse
|
117
|
Porteus MH, Pavel-Dinu M, Pai SY. A Curative DNA Code for Hematopoietic Defects: Novel Cell Therapies for Monogenic Diseases of the Blood and Immune System. Hematol Oncol Clin North Am 2022; 36:647-665. [PMID: 35773054 PMCID: PMC9365196 DOI: 10.1016/j.hoc.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3040B, MC 5462, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3045, MC 5175, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1102, Bethesda, MD 20892, USA
| |
Collapse
|
118
|
Lan C, Chen C, Qu S, Cao N, Luo H, Yu C, Wang N, Xue Y, Xia X, Fan C, Ren H, Yang Y, Jose PA, Xu Z, Wu G, Zeng C. Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine 2022; 82:104139. [PMID: 35810562 PMCID: PMC9278077 DOI: 10.1016/j.ebiom.2022.104139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND While the adult mammalian heart undergoes only modest renewal through cardiomyocyte proliferation, boosting this process is considered a promising therapeutic strategy to repair cardiac injury. This study explored the role and mechanism of dual-specificity tyrosine regulated kinase 1A (DYRK1A) in regulating cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction (MI). METHODS DYRK1A-knockout mice and DYRK1A inhibitors were used to investigate the role of DYRK1A in cardiomyocyte cell cycle activation and cardiac repair following MI. Additionally, we explored the underlying mechanisms by combining genome-wide transcriptomic, epigenomic, and proteomic analyses. FINDINGS In adult mice subjected to MI, both conditional deletion and pharmacological inhibition of DYRK1A induced cardiomyocyte cell cycle activation and cardiac repair with improved cardiac function. Combining genome-wide transcriptomic and epigenomic analyses revealed that DYRK1A knockdown resulted in robust cardiomyocyte cell cycle activation (shown by the enhanced expression of many genes governing cell proliferation) associated with increased deposition of trimethylated histone 3 Lys4 (H3K4me3) and acetylated histone 3 Lys27 (H3K27ac) on the promoter regions of these genes. Mechanistically, via unbiased mass spectrometry, we discovered that WD repeat-containing protein 82 and lysine acetyltransferase 6A were key mediators in the epigenetic modification of H3K4me3 and H3K27ac and subsequent pro-proliferative transcriptome and cardiomyocyte cell cycle activation. INTERPRETATION Our results reveal a significant role of DYRK1A in cardiac repair and suggest a drug target with translational potential for treating cardiomyopathy. FUNDING This study was supported in part by grants from the National Natural Science Foundation of China (81930008, 82022005, 82070296, 82102834), National Key R&D Program of China (2018YFC1312700), Program of Innovative Research Team by the National Natural Science Foundation (81721001), and National Institutes of Health (5R01DK039308-31, 7R37HL023081-37, 5P01HL074940-11).
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Nian Cao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, PR China; Department of Internal Medicine, the 519th Hospital of Chinese PLA, Xichang, PR China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Cheng Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Yuanzheng Xue
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Chao Fan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington DC, United States
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
119
|
Luo N, Zhong W, Li J, Zhai Z, Lu J, Dong R. Targeted activation of HNF4α/HGF1/FOXA2 reverses hepatic fibrosis via exosome-mediated delivery of CRISPR/dCas9-SAM system. Nanomedicine (Lond) 2022; 17:1411-1427. [PMID: 36326013 DOI: 10.2217/nnm-2022-0083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: Hepatic fibrosis is one of the most common conditions worldwide, and yet no effective antifibrotic therapy is available. This study aimed to reverse hepatic fibrosis via exosome-mediated delivery of the CRISPR/dCas9-SAM system. Materials & methods: The authors constructed a modified-exosome delivery system targeting hepatic stellate cells (HSCs), and constructed the CRISPR/dCas9-SAM system inducing HSCs convert into hepatocyte-like cells in vitro and in vivo. Results: RBP4-modified exosomes could efficiently load and deliver the CRISPR/dCas9 system to HSCs. The in vitro CRISPR/dCas9 system induced the conversion from HSCs to hepatocyte-like cells via targeted activation of HNF4α/HGF1/FOXA2 genes. Importantly, in vivo targeted delivery of this system significantly attenuated CCl4-induced hepatic fibrosis. Conclusion: Targeted activation of HNF4α/HGF1/FOXA2 reverses hepatic fibrosis via exosome-mediated delivery of the CRISPR/dCas9-SAM system, which provides a feasible antifibrotic strategy.
Collapse
Affiliation(s)
- Nianan Luo
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of General Surgery, 943 Hospital of PLA, Wuwei, 733000, China
| | - Wenjun Zhong
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, 710032, China
| | - Jiangbin Li
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhongjie Zhai
- Department of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianguo Lu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Rui Dong
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
120
|
Puthumana J, Egilman AC, Ramachandran R, Naushad N, Shah N, Ross J. Early experience with the FDA's regulatory review of novel gene therapies. BMJ Evid Based Med 2022; 27:195-198. [PMID: 34635478 DOI: 10.1136/bmjebm-2021-111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Jeremy Puthumana
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexander C Egilman
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Reshma Ramachandran
- Yale National Clinician Scholars Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nida Naushad
- Yale National Clinician Scholars Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nilay Shah
- Division of Health Care Delivery Research, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Ross
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
121
|
Hu N, Zhu L, Zhang L, Wang J, Wang Y, Luo J, He L, Hao Z, Zhang L. Immunomodulatory effect and safety of TNF-α RNAi mediated by oral yeast microcapsules in rheumatoid arthritis therapy. Mater Today Bio 2022; 16:100384. [PMID: 35991628 PMCID: PMC9386491 DOI: 10.1016/j.mtbio.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that requires long-term treatment and monitoring. Inhibition of inflammatory gene expression by gene therapy is a significant breakthrough in RA treatment, but the lack of a safe and effective gene delivery system hinders its application. Since oral administration can significantly reduce wound infection caused by parenteral administration, it also has the advantages of high patient compliance and convenience. Therefore, oral administration may be the best option for the treatment of this chronic disease. In this study, we developed a novel oral drug system by delivering tumor necrosis factor-α (TNF-α) short hairpin RNA (shRNA) mediated by non-pathogenic yeast to evaluate its regulation of systemic immune inflammation and safety in RA. Non-pathogenic yeast can resist the destruction of the gastrointestinal acid-base environment and can be recognized by the intestinal macrophages and act on systemic inflammatory lesions. Oral administration of yeast-mediated TNF-α shRNA significantly reduced the expression of TNF-α predominant pro-inflammatory factors in intestinal macrophages and joint synovium, and up-regulated the expression of anti-inflammatory cytokine IL-10 and M2 macrophages, systematically regulating the inflammatory response. This yeast-mediated oral gene delivery system can not only significantly inhibit knee joint synovial inflammation, but also has no toxic effects on peripheral blood and major organs. Therefore, yeast-mediated oral delivery of TNF-α shRNA may be used as a novel gene therapy strategy to treat RA through immunomodulating the mononuclear phagocyte system from the intestine to the joint synovium, and ultimately regulating systemic and local immune inflammation, providing new ideas for the clinical treatment of RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhang
- Xi'an Fifth Hospital, Shaanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Xi'an, 710082, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Corresponding author.
| |
Collapse
|
122
|
Chowdary P, Shapiro S, Makris M, Evans G, Boyce S, Talks K, Dolan G, Reiss U, Phillips M, Riddell A, Peralta MR, Quaye M, Patch DW, Tuddenham E, Dane A, Watissée M, Long A, Nathwani A. Phase 1-2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B. N Engl J Med 2022; 387:237-247. [PMID: 35857660 DOI: 10.1056/nejmoa2119913] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND FLT180a (verbrinacogene setparvovec) is a liver-directed adeno-associated virus (AAV) gene therapy that uses a synthetic capsid and a gain-of-function protein to normalize factor IX levels in patients with hemophilia B. METHODS In this multicenter, open-label, phase 1-2 trial, we assessed the safety and efficacy of varying doses of FLT180a in patients with severe or moderately severe hemophilia B (factor IX level, ≤2% of normal value). All the patients received glucocorticoids with or without tacrolimus for immunosuppression to decrease the risk of vector-related immune responses. After 26 weeks, patients were enrolled in a long-term follow-up study. The primary end points were safety and efficacy, as assessed by factor IX levels at week 26. RESULTS Ten patients received one of four FLT180a doses of vector genomes (vg) per kilogram of body weight: 3.84×1011 vg, 6.40×1011 vg, 8.32×1011 vg, or 1.28×1012 vg. After receiving the infusion, all the patients had dose-dependent increases in factor IX levels. At a median follow-up of 27.2 months (range, 19.1 to 42.4), sustained factor IX activity was observed in all the patients except one, who resumed factor IX prophylaxis. As of the data-cutoff date (September 20, 2021), five patients had normal factor IX levels (range, 51 to 78%), three patients had levels from 23 to 43%, and one had a level of 260%. Of the reported adverse events, approximately 10% were related to FLT180a and 24% to immunosuppression. Increases in liver aminotransferase levels were the most common FLT180a-related adverse events. Late increases in aminotransferase levels occurred in patients who had received prolonged tacrolimus beyond the glucocorticoid taper. A serious adverse event of arteriovenous fistula thrombosis occurred in the patient with high factor IX levels. CONCLUSIONS Sustained factor IX levels in the normal range were observed with low doses of FLT180a but necessitated immunosuppression with glucocorticoids with or without tacrolimus. (Funded by Freeline Therapeutics; ClinicalTrials.gov numbers, NCT03369444 and NCT03641703; EudraCT numbers, 2017-000852-24 and 2017-005080-40.).
Collapse
Affiliation(s)
- Pratima Chowdary
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Susan Shapiro
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Mike Makris
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Gillian Evans
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Sara Boyce
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Kate Talks
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Gerard Dolan
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Ulrike Reiss
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Mark Phillips
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Anne Riddell
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Maria R Peralta
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Michelle Quaye
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - David W Patch
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Edward Tuddenham
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Allison Dane
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Marie Watissée
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Alison Long
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| | - Amit Nathwani
- From the Katharine Dormandy Haemophilia and Thrombosis Centre (P.C., M.P., A.R., M.R.P., E.T., A.N.), Health Services Laboratory, Sonic Healthcare (A.R.), and the Department of Hepatology and Liver Transplantation (D.W.P.), Royal Free Hospital, University College London (P.C., M.P., M.Q., A.N.), Guy's and St. Thomas' Hospital (G.D.), and Wstats (M.W.), London, Oxford University Hospitals Foundation Trust, Oxford NIHR Biomedical Research Centre, and Oxford University, Oxford (S.S.), the University of Sheffield, Sheffield (M.M.), East Kent Hospitals NHS University Foundation Trust, Canterbury (G.E.), University Hospital Southampton, Southampton (S.B.), Newcastle upon Tyne Hospitals NHS Trust, Newcastle (K.T.), and Freeline Therapeutics, Stevenage (A.D., A.N.) - all in the United Kingdom; St. Jude Children's Research Hospital, Memphis, TN (U.R.); and Freeline Therapeutics, New York (A.L.)
| |
Collapse
|
123
|
Liu MX, Zhang XL, Yang JB, Lu ZL, Zhang QT. Highly water-dispersible PCN nanosheets as light-controlled lysosome self-promoting escape type non-cationic gene carriers for tumor therapy. J Mater Chem B 2022; 10:5430-5438. [PMID: 35775960 DOI: 10.1039/d2tb00440b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qi-Tao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
124
|
Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, Flower MD, Scahill RI, Wild EJ, Muñoz-Sanjuan I, Sampaio C, Rosser AE, Leavitt BR. Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities. Lancet Neurol 2022; 21:645-658. [PMID: 35716694 PMCID: PMC7613206 DOI: 10.1016/s1474-4422(22)00121-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 01/03/2023]
Abstract
Huntington's disease is the most frequent autosomal dominant neurodegenerative disorder; however, no disease-modifying interventions are available for patients with this disease. The molecular pathogenesis of Huntington's disease is complex, with toxicity that arises from full-length expanded huntingtin and N-terminal fragments of huntingtin, which are both prone to misfolding due to proteolysis; aberrant intron-1 splicing of the HTT gene; and somatic expansion of the CAG repeat in the HTT gene. Potential interventions for Huntington's disease include therapies targeting huntingtin DNA and RNA, clearance of huntingtin protein, DNA repair pathways, and other treatment strategies targeting inflammation and cell replacement. The early termination of trials of the antisense oligonucleotide tominersen suggest that it is time to reflect on lessons learned, where the field stands now, and the challenges and opportunities for the future.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Michael D Flower
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Cristina Sampaio
- CHDI Management, CHDI Foundation Los Angeles, CA, USA; Laboratory of Clinical Pharmacology, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Anne E Rosser
- BRAIN unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Blair R Leavitt
- Centre for Huntington's disease, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
125
|
Yang Z, Lin L, Guo Z, Guo X, Tang Z, Tian H, Chen X. Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules 2022; 23:2867-2877. [PMID: 35678301 DOI: 10.1021/acs.biomac.2c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relatively low transfection efficiency limits further application of polymeric gene carriers. It is imperative to exploit a universal and simple strategy to enhance the gene transfection efficiency of polymeric gene carriers. Herein, we prepared a cationic polypeptide poly(γ-aminoethylthiopropyl-l-glutamate) (PALG-MEA, termed PM) with a stable α-helical conformation, which can significantly improve the gene transfection efficiency of cationic polymers. PM can be integrated into polymeric gene delivery systems noncovalently through electrostatic interactions. With the assistance of PM, polymeric gene delivery systems exhibited excellent cellular uptake and endosomal escape, thereby enhancing transfection efficiency. The transfection enhancement effect of PM was applicable to a variety of cationic polymers such as polyethylenimine (PEI), poly-l-lysine (PLL), and polyamidoamine (PAMAM). The ternary gene delivery system PM/pshVEGF/PEI exhibited an excellent antitumor effect against the B16F10 tumor model. Moreover, we demonstrated that PM could also enhance the delivery of gene editing systems (sgRNA-Cas9 plasmids). This work provides a facile and effective strategy for constructing polymeric gene delivery systems with a high transfection efficiency.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
126
|
Haar J, Blazevic D, Strobel B, Kreuz S, Michelfelder S. MSD-based assays facilitate a rapid and quantitative serostatus profiling for the presence of anti-AAV antibodies. Mol Ther Methods Clin Dev 2022; 25:360-369. [PMID: 35573045 PMCID: PMC9065051 DOI: 10.1016/j.omtm.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) vector applications are often limited by capsid-directed humoral immune responses, mainly through neutralizing antibodies (NAbs), which are present throughout the human population due to natural AAV infections. Currently, antibody levels are often quantified via ELISA-based protocols or by cellular NAb assays and less frequently by in vivo NAb assays in mice. These methods need optimization for each serotype and are often not applicable to AAV variants with poor in vitro transduction. To tackle these limitations, we have established Meso Scale Discovery (MSD)-based assays for the quantification of binding antibodies (BAbs) and NAbs against the three most commonly used AAV serotypes, AAV2, AAV8, and AAV9. Both assays detect anti-AAV-IgG1-3 with high sensitivity and consistency as shown in a screen of sera from 40 healthy human donors. Subsequently, BAb and NAb titers were determined for identification of seronegative animals in a non-human primate (NHP) cohort. Moreover, the MSD-based BAb assay protocol was extended to a panel of 14 different AAV serotypes. In summary, our platform allows a rapid and quantitative assessment of the immunological properties of any natural or engineered AAV variant irrespective of transduction efficiency and enables high-throughput screens.
Collapse
Affiliation(s)
- Janina Haar
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Benjamin Strobel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Venture Fund GmbH, 55218 Ingelheim am Rhein, Germany
| | - Stefan Michelfelder
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| |
Collapse
|
127
|
Chakraborty E, Sarkar D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2798. [PMID: 35681776 PMCID: PMC9179883 DOI: 10.3390/cancers14112798] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020, globally HCC is the sixth most common cancer and the third most common cause of cancer-related deaths. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. Liver transplantation is the treatment of choice in early stages, while surgical resection, radiofrequency ablation (RFA) and trans arterial chemoembolization (TACE) are Food and Drug Administration (FDA)-approved treatments for advanced HCC. Additional first line therapy for advanced HCC includes broad-spectrum tyrosine kinase inhibitors (TKIs), such as sorafenib and lenvatinib, as well as a combination of immunotherapy and anti-angiogenesis therapy, namely atezolizumab and bevacizumab. However, these strategies provide nominal extension in the survival curve, cause broad spectrum toxic side effects, and patients eventually develop therapy resistance. Some common mutations in HCC, such as in telomerase reverse transcriptase (TERT), catenin beta 1 (CTNNB1) and tumor protein p53 (TP53) genes, are still considered to be undruggable. In this context, identification of appropriate gene targets and specific gene delivery approaches create the potential of gene- and immune-based therapies for the safe and effective treatment of HCC. This review elaborates on the current status of HCC treatment by focusing on potential gene targets and advanced techniques, such as oncolytic viral vectors, nanoparticles, chimeric antigen receptor (CAR)-T cells, immunotherapy, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), and describes future prospects in HCC treatment.
Collapse
Affiliation(s)
- Eesha Chakraborty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
128
|
Consiglieri G, Bernardo ME, Brunetti-Pierri N, Aiuti A. Ex Vivo and In Vivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematol Oncol Clin North Am 2022; 36:865-878. [DOI: 10.1016/j.hoc.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
129
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
130
|
Pan X, Yue Y, Boftsi M, Wasala LP, Tran NT, Zhang K, Pintel DJ, Tai PWL, Duan D. Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Ther 2022; 29:333-345. [PMID: 34611321 PMCID: PMC8983793 DOI: 10.1038/s41434-021-00296-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (μDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free μDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type μDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Maria Boftsi
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
131
|
Hernández-Bazán S, Mata-Espinosa D, Lozano-Ordaz V, Ramos-Espinosa O, Barrios-Payán J, López-Casillas F, Hernández-Pando R. Immune regulatory effect of osteopontin gene therapy in a murine model of multi-drug resistant pulmonary tuberculosis. Hum Gene Ther 2022; 33:1037-1051. [PMID: 35615876 DOI: 10.1089/hum.2022.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tuberculosis (TB) has been for many years a major public health problem since treatment is long and sometimes ineffective favoring the increase of multi-drug-resistant mycobacteria (MDR). Gene therapy is a novel and effective tool to regulate immune responses. In this study we evaluated the therapeutic effect of an adenoviral vector codifying osteopontin (AdOPN), a molecule known for their roles to favour Th1 and Th17 type-cytokine expression which are crucial in TB containment. A single-dose of AdOPN administration in BALB/c mice suffering late progressive pulmonary MDR-TB, produced significant lower bacterial load and pneumonia, due to higher expression of IFN-γ, IL-12 and IL-17 in coexistence with increase of granulomas in number and size, resulting in higher survival, in contrast with mice treated with the control adenovirus that codify the green fluorescent protein (AdGFP). Combined therapy of AdOPN with a regimen of 2nd line antibiotics produced a better control of bacterial load in lung during the first days of treatment, suggesting that AdOPN can shorten chemotherapy. Taken together, gene therapy with AdOPN leads to higher immune responses against TB infection, resulting in a new potential treatment against pulmonary TB that can co-adjuvant chemotherapy.
Collapse
Affiliation(s)
- Sujhey Hernández-Bazán
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Dulce Mata-Espinosa
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Vasti Lozano-Ordaz
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Octavio Ramos-Espinosa
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Jorge Barrios-Payán
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Fernando López-Casillas
- Universidad Nacional Autónoma de México Instituto de Fisiología Celular, 61739, Department of Cellular and Developmental Biology, Coyoacán, CDMX, Mexico;
| | - Rogelio Hernández-Pando
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| |
Collapse
|
132
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
133
|
Hickox AE, Valero MD, McLaughlin JT, Robinson GS, Wellman JA, McKenna MJ, Sewell WF, Simons EJ. Genetic Medicine for Hearing Loss: OTOF as Exemplar. J Am Acad Audiol 2022; 32:646-653. [PMID: 35609591 DOI: 10.1055/s-0041-1730410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss. We will use the example of otoferlin gene (OTOF)-mediated hearing loss, a sensorineural hearing loss due to autosomal recessive mutations of the OTOF gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William F Sewell
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
134
|
Luo D, Lin X, Zhao Y, Hu J, Mo F, Song G, Zou Z, Wang F, Liu X. A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation. Chem Sci 2022; 13:5155-5163. [PMID: 35655573 PMCID: PMC9093187 DOI: 10.1039/d2sc00459c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Nucleic acid therapeutics has reached clinical utility through modulating gene expression. As a potential oligonucleotide drug, DNAzyme has RNA-cleaving activity for gene silencing, but faces challenges due to the lack of a safe and effective delivery vehicle and low in vivo catalytic activity. Here we describe DNAzyme-mediated gene regulation using dynamic DNA nanomaterials with intrinsic biocompatibility, stability, tumor-targeted delivery and uptake, and self-enhanced efficacy. We assemble programmable DNA nanosponges to package and deliver diverse nucleic acid drugs and therapeutic agents such as aptamer, DNAzyme and its cofactor precursor, and photosensitizer in one pot through the rolling circle amplification reaction, formulating a controllable nanomedicine using encoded instructions. Upon environmental stimuli, DNAzyme activity increases and RNA cleavage accelerates by a supplementary catalytic cofactor. In addition, this approach induces elevated O2 and 1O2 generation as auxiliary treatment, achieving simultaneously self-enhanced gene-photodynamic cancer therapy. These findings may advance the clinical trial of oligonucleotide drugs as tools for gene modulation.
Collapse
Affiliation(s)
- Dan Luo
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Xue Lin
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yun Zhao
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Jialing Hu
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Gege Song
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Zhiqiao Zou
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
135
|
Milani M, Canepari C, Liu T, Biffi M, Russo F, Plati T, Curto R, Patarroyo-White S, Drager D, Visigalli I, Brombin C, Albertini P, Follenzi A, Ayuso E, Mueller C, Annoni A, Naldini L, Cantore A. Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nat Commun 2022; 13:2454. [PMID: 35508619 PMCID: PMC9068791 DOI: 10.1038/s41467-022-30102-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Liver gene therapy with adeno-associated viral (AAV) vectors delivering clotting factor transgenes into hepatocytes has shown multiyear therapeutic benefit in adults with hemophilia. However, the mostly episomal nature of AAV vectors challenges their application to young pediatric patients. We developed lentiviral vectors, which integrate in the host cell genome, that achieve efficient liver gene transfer in mice, dogs and non-human primates, by intravenous delivery. Here we first compare engineered coagulation factor VIII transgenes and show that codon-usage optimization improved expression 10-20-fold in hemophilia A mice and that inclusion of an unstructured XTEN peptide, known to increase the half-life of the payload protein, provided an additional >10-fold increase in overall factor VIII output in mice and non-human primates. Stable nearly life-long normal and above-normal factor VIII activity was achieved in hemophilia A mouse models. Overall, we show long-term factor VIII activity and restoration of hemostasis, by lentiviral gene therapy to hemophilia A mice and normal-range factor VIII activity in non-human primate, paving the way for potential clinical application. “Lentiviral gene therapy to the liver establishes stable long-term normal to supra-normal coagulation factor VIII activity in mouse models of hemophilia A and in non-human primates, representing a potential new treatment option for people with hemophilia A.”.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Albertini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, CHU de Nantes, 44093, Nantes, France
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
136
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
137
|
Ryan MM. Gene therapy for neuromuscular disorders: prospects and ethics. Arch Dis Child 2022; 107:421-426. [PMID: 34462265 DOI: 10.1136/archdischild-2020-320908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Most childhood neuromuscular disorders are caused by mutations causing abnormal expression or regulation of single genes or genetic pathways. The potential for gene therapy, gene editing and genetic therapies to ameliorate the course of these conditions is extraordinarily exciting, but there are significant challenges associated with their use, particularly with respect to safety, efficacy, cost and equity. Engagement with these novel technologies mandates careful assessment of the benefits and burdens of treatment for the patient, their family and their society. The examples provided by spinal muscular atrophy and Duchenne muscular dystrophy illustrate the potential value and challenges of gene and genetic therapies for paediatric neurological conditions. The cost and complexity of administration of these agents is a challenge for all countries. Jurisdictional variations in availability of newborn screening, genetic diagnostics, drug approval and reimbursement pathways, treatment and rehabilitation will affect equity of access, nationally and internationally. These challenges will best be addressed by collaboration by governments, pharma, clinicians and patient groups to establish frameworks for safe and cost-effective use of these exciting new therapies.
Collapse
Affiliation(s)
- Monique M Ryan
- Children's Neurosciences Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia .,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
138
|
Abstract
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
139
|
Peng H, Ramadurgum P, Woodard DR, Daniel S, Nakahara E, Renwick M, Aredo B, Datta S, Chen B, Ufret-Vincenty R, Hulleman JD. Utility of the DHFR-based destabilizing domain across mouse models of retinal degeneration and aging. iScience 2022; 25:104206. [PMID: 35521529 PMCID: PMC9062244 DOI: 10.1016/j.isci.2022.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli dihydrofolate reductase (DHFR) destabilizing domain (DD) serves as a promising approach to conditionally regulate protein abundance in a variety of tissues. To test whether this approach could be effectively applied to a wide variety of aged and disease-related ocular mouse models, we evaluated the DHFR DD system in the eyes of aged mice (up to 24 months), a light-induced retinal degeneration (LIRD) model, and two genetic models of retinal degeneration (rd2 and Abca4−/− mice). The DHFR DD was effectively degraded in all model systems, including rd2 mice, which showed significant defects in chymotrypsin proteasomal activity. Moreover, trimethoprim (TMP) administration stabilized the DHFR DD in all mouse models. Thus, the DHFR DD-based approach allows for control of protein abundance in a variety of mouse models, laying the foundation to use this strategy for the conditional control of gene therapies to potentially treat multiple eye diseases. Destabilizing domains (DDs) confer conditional control of ocular protein abundance The DHFR DD is effectively turned over and stabilized in aged mouse’s retina DHFR DDs perform well in environmental and genetic retinal degenerative models
Collapse
|
140
|
Guan S, Liu H, Zhou J, Zhang Q, Bi H. The MIR100HG/miR-29a-3p/Tab1 axis modulates TGF-β1-induced fibrotic changes in type II alveolar epithelial cells BLM-caused lung fibrogenesis in mice. Toxicol Lett 2022; 363:45-54. [PMID: 35472619 DOI: 10.1016/j.toxlet.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Transforming growth factor (TGF)-β1-induced fibrotic changes in alveolar epithelium is a critical event in pulmonary fibrosis. Herein, we recognized that lncRNA mir-100-let-7a-2-mir-125b-1 cluster host gene (MIR100HG) was abnormally upregulated within human idiopathic pulmonary fibrosis (IPF) lung tissue, bleomycin (BLM)-caused pulmonary fibrotic model mice and TGF-β1-stimulated mice type II alveolar epithelial cells. In vivo, MIR100HG knockdown attenuated BLM-caused lung fibrogenesis in mice; in vitro, MIR100HG knockdown attenuated TGF-β1-induced fibrotic changes in mice type II alveolar epithelial cells. Through direct binding, MIR100HG knockdown upregulated microRNA-29a-3p (miR-29a-3p) expression; through serving as competing endogenous RNA for miR-29a-3p, MIR100HG knockdown downregulated TGF-beta activated kinase 1/MAP3K7 binding protein 1 (Tab1) expression. Finally, under TGF-β1 stimulation, Tab1 knockdown attenuated TGF-β1-induced fibrotic changes and partially attenuated the effects of miR-29a-3p inhibition. In conclusion, we demonstrated the aberrant upregulation of lncRNA MIR100HG in BLM-caused lung fibrogenesis and TGF-β1-stimulated MLE 12 cells. The MIR100HG/miR-29a-3p/Tab1 axis could modulate TGF-β1-induced fibrotic changes in type II alveolar epithelial cells and, thus, might be promising targets for pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, the Third Clinical Medicine School of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China.
| | - Qiudi Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Hui Bi
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| |
Collapse
|
141
|
Ferraz Sallum JM, Godoy J, Kondo A, Kutner JM, Vasconcelos H, Maia A. The first gene therapy for RPE65 biallelic dystrophy with voretigene neparvovec-rzyl in Brazil. Ophthalmic Genet 2022; 43:550-554. [PMID: 35416119 DOI: 10.1080/13816810.2022.2053995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To report the first Brazilian patient with RPE65 deficiency-inherited retinal dystrophy (RPE65-IRD) treated with voretigene neparvovec-rzyl (VN). METHODS An adult patient with Leber congenital amaurosis-2 with a homozygous mutation in the RPE65 gene (p.Phe83Leu) was treated bilaterally with VN. The clinical and surgical aspects are described. The baseline and 4-month postoperative ophthalmologic examinations included measurement of the best-corrected visual acuity (BCVA), full-field stimulus threshold (FST) test, Octopus 900 semiautomated kinetic visual fields (VFs), and microperimetry. RESULTS No complications developed in this patient. The BCVA remained stable. The full-field stimulus threshold test (FST) and VFs showed clinically significant improvements bilaterally. The patient reported significant improvements in the ability to perform daily activities, mainly for those requiring the VFs and vision in a low-luminescence environment. CONCLUSIONS The treatments were beneficial for this patient who was homozygous for RPE65 p.Phe83Leu. The first VN treatments in an adult Brazilian patient in clinical practice showed measurable improvements in visual outcomes that were meaningful for the patient's daily activities. TRANSLATIONAL RELEVANCE This case reinforces the clinical trial results and proves that the procedure is feasible in countries such as Brazil.
Collapse
Affiliation(s)
| | - Juliana Godoy
- Blood Bank Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Andrea Kondo
- Blood Bank Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Andre Maia
- Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
142
|
Chang H, Cai F, Zhang Y, Jiang M, Yang X, Qi J, Wang L, Deng L, Cui W, Liu X. Silencing Gene-Engineered Injectable Hydrogel Microsphere for Regulation of Extracellular Matrix Metabolism Balance. SMALL METHODS 2022; 6:e2101201. [PMID: 34994105 DOI: 10.1002/smtd.202101201] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Extracellular matrix (ECM) metabolism balance is essential for maintaining tissue structure and function. However, the complex crosstalk between the ECM, resident cellular, and tissue microenvironment makes long-term maintenance of ECM metabolism balance in an abnormal microenvironment difficult to achieve. Herein, an injectable circRNA silencing-hydrogel microsphere (psh-circSTC2-lipo@MS) is constructed by grafting circSTC2 silencing genes-loaded 1,2-dioleoyl-3-trimethylammonium-propane/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/Chol/DOPE) cationic liposomes on methacrylated hyaluronic acid (HAMA) microspheres via amide bonds, which could silence pathological genes in nucleus pulposus (NP) cells to regulate ECM metabolism balance in the nutrient-restricted microenvironment, thereby inhibiting intervertebral disc (IVD) degeneration. HAMA microspheres prepared by microfluidics displayed good degradability, swellability, and injectability. And lipoplexes can be efficiently loaded and released for 27 d through chemical grafting. Cocultured under nutrient-restricted conditions for 72 h, psh-circSTC2-lipo@MS significantly promotes the synthesis of ECM-related proteins and inhibits the secretion of ECM catabolism-related proteases in NP cells. In the rat IVD nutrient-restricted model, local injection of psh-circSTC2-lipo@MS promotes ECM synthesis and restored NP tissue after 8 weeks. In summary, this study confirms that psh-circSTC2-lipo@MS as a safe and controllable targeted gene delivery system has great potential in regulating the ECM metabolism balance under an abnormal microenvironment.
Collapse
Affiliation(s)
- Hongze Chang
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Feng Cai
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Yan Zhang
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Mingwei Jiang
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Xiaolong Yang
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiaodong Liu
- Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| |
Collapse
|
143
|
Borna S, Lee E, Sato Y, Bacchetta R. Towards gene therapy for IPEX syndrome. Eur J Immunol 2022; 52:705-716. [PMID: 35355253 PMCID: PMC9322407 DOI: 10.1002/eji.202149210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Immune dysregulation polyendocrinopathy enteropathy X linked (IPEX) syndrome is an uncurable disease of the immune system, with immune dysregulation that is caused by mutations in FOXP3. Current treatment options, such as pharmacological immune suppression and allogeneic hematopoietic stem cell transplantation, have been beneficial but present limitations, and their life‐long consequences are ill‐defined. Other similar blood monogenic diseases have been successfully treated using gene transfer in autologous patient cells, thus providing an effective and less invasive therapeutic. Development of gene therapy for patients with IPEX is particularly challenging because successful strategies must restore the complex expression profile of the transcription factor FOXP3, ensuring it is tightly regulated and its cell subset‐specific roles are maintained. This review summarizes current efforts toward achieving gene therapy to treat immune dysregulation in IPEX patients.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
144
|
Yamada M, Suzuki J, Sato S, Zenimaru Y, Saito R, Konoshita T, Kraemer FB, Ishizuka T. Hormone-sensitive lipase protects adipose triglyceride lipase-deficient mice from lethal lipotoxic cardiomyopathy. J Lipid Res 2022; 63:100194. [PMID: 35283217 PMCID: PMC9062333 DOI: 10.1016/j.jlr.2022.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
|
145
|
Gene Therapy of Chronic Limb-Threatening Ischemia: Vascular Medical Perspectives. J Clin Med 2022; 11:jcm11051282. [PMID: 35268373 PMCID: PMC8910863 DOI: 10.3390/jcm11051282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
A decade ago, gene therapy seemed to be a promising approach for the treatment of chronic limb-threatening ischemia, providing new perspectives for patients without conventional, open or endovascular therapeutic options by potentially enabling neo-angiogenesis. Yet, until now, the results have been far from a safe and routine clinical application. In general, there are two approaches for inserting exogenous genes in a host genome: transduction and transfection. In case of transduction, viral vectors are used to introduce genes into cells, and depending on the selected strain of the virus, a transient or stable duration of protein production can be achieved. In contrast, the transfection of DNA is transmitted by chemical or physical processes such as lipofection, electro- or sonoporation. Relevant risks of gene therapy may be an increasing neo-vascularization in undesired tissue. The risks of malignant transformation and inflammation are the potential drawbacks. Additionally, atherosclerotic plaques can be destabilized by the increased angiogenesis, leading to arterial thrombosis. Clinical trials from pilot studies to Phase II and III studies on angiogenic gene therapy show mainly a mixed picture of positive and negative final results; thus, the role of gene therapy in vascular occlusive disease remains unclear.
Collapse
|
146
|
SINGH G. Resveratrol Delivery <i>via</i> Gene Therapy: Entering the Modern Era. Turk J Pharm Sci 2022; 19:104-109. [DOI: 10.4274/tjps.galenos.2020.89577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
147
|
Pizevska M, Kaeda J, Fritsche E, Elazaly H, Reinke P, Amini L. Advanced Therapy Medicinal Products' Translation in Europe: A Developers' Perspective. Front Med (Lausanne) 2022; 9:757647. [PMID: 35186986 PMCID: PMC8851388 DOI: 10.3389/fmed.2022.757647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) comprising cell, gene, and tissue-engineered therapies have demonstrated enormous therapeutic benefits. However, their development is complex to be managed efficiently within currently existing regulatory frameworks. Legislation and regulation requirements for ATMPs must strike a balance between the patient safety while promoting innovations to optimize exploitation of these novel therapeutics. This paradox highlights the importance of on-going dynamic dialogue between all stakeholders and regulatory science to facilitate the development of pragmatic ATMP regulatory guidelines.
Collapse
Affiliation(s)
- Maja Pizevska
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hisham Elazaly
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
148
|
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022; 79:130. [PMID: 35152318 PMCID: PMC8840918 DOI: 10.1007/s00018-022-04175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
AbstractSince the revolutionary discovery of the CRISPR-Cas technology for programmable genome editing, its range of applications has been extended by multiple biotechnological tools that go far beyond its original function as “genetic scissors”. One of these further developments of the CRISPR-Cas system allows genes to be activated in a targeted and efficient manner. These gene-activating CRISPR-Cas modules (CRISPRa) are based on a programmable recruitment of transcription factors to specific loci and offer several key advantages that make them particularly attractive for therapeutic applications. These advantages include inter alia low off-target effects, independence of the target gene size as well as the potential to develop gene- and mutation-independent therapeutic strategies. Herein, I will give an overview on the currently available CRISPRa modules and discuss recent developments, future potentials and limitations of this approach with a focus on therapeutic applications and in vivo delivery.
Collapse
Affiliation(s)
- Elvir Becirovic
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
149
|
Benatti HR, Gray-Edwards HL. Adeno-Associated Virus Delivery Limitations for Neurological Indications. Hum Gene Ther 2022; 33:1-7. [PMID: 35049369 DOI: 10.1089/hum.2022.29196.hrb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hector Ribeiro Benatti
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
150
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|