101
|
Abubakr S, Hazem NM, Sherif RN, Elhawary AA, Botros KG. Correlation between SDF-1α, CD34 positive hematopoietic stem cells and CXCR4 expression with liver fibrosis in CCl4 rat model. BMC Gastroenterol 2023; 23:323. [PMID: 37730560 PMCID: PMC10512633 DOI: 10.1186/s12876-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND One of the most frequent disorders is liver fibrosis. An improved understanding of the different events during the process of liver fibrosis & its reversibility could be helpful in its staging and in finding potential therapeutic agents. AIM The goal of this research was to evaluate the relationship among CD34 + HPSCs, SDF-1α, and CXCR4 receptor expression with the percentage of the area of hepatic fibrosis. MATERIALS AND METHODS Thirty-six male Sprague-Dawley rats were separated into the control group, liver injury group & spontaneous reversion group. The liver injury was induced by using 2 ml/kg CCl4 twice a week. Flow cytometric examination of CD34 + cells in the blood & liver was performed. Bone marrow & liver samples were taken for evaluation of the SDF-1α mRNA by PCR. Liver specimens were stained for histopathological and CXCR4 immuno-expression evaluation. RESULTS In the liver injury group, the hepatic enzymes, fibrosis area percentage, CXCR4 receptor expression in the liver, CD34 + cells in the blood and bone marrow & the level SDF-1α in the liver and its concentration gradient were statistically significantly elevated with the progression of the liver fibrosis. On the contrary, SDF-1α in the bone marrow was statistically significantly reduced with the development of liver fibrosis. During the spontaneous reversion group, all the studied parameters apart from SDF-1α in the bone marrow were statistically substantially decreased compared with the liver injury group. We found a statistically substantial positive correlation between fibrosis area and all of the following: liver enzymes, CXCR4 receptor expression in the liver, CD34 + cells in the blood and liver, and SDF- 1α in the liver and its concentration gradient. In conclusion, in CCl4 rat model, the fibrosis area is significantly correlated with many parameters in the blood, bone marrow, and liver, which can be used during the process of follow-up during the therapeutic interventions.
Collapse
Affiliation(s)
- Sara Abubakr
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Algomhoria Street, Mansoura, 35516, Egypt.
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - R N Sherif
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelmohdy Elhawary
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kamal G Botros
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
102
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
103
|
Hernandez-Tejero M, Ravi S, Behari J, Arteel GE, Arab JP, Bataller R. High Variability on Alcohol Intake Threshold in Articles Using the MAFLD Acronym. GASTRO HEP ADVANCES 2023; 3:96-100. [PMID: 39132176 PMCID: PMC11308239 DOI: 10.1016/j.gastha.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 08/13/2024]
Affiliation(s)
- Maria Hernandez-Tejero
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Samhita Ravi
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
104
|
Kasper P, Demir M. [Alcoholic hepatitis - current and future treatment approaches]. Dtsch Med Wochenschr 2023; 148:1095-1101. [PMID: 37611573 DOI: 10.1055/a-1941-7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Acute severe alcoholic hepatitis is a serious disease with poor prognosis. As a result of an improved understanding of the underlying pathomechanisms, a variety of new, innovative therapeutic modalities are currently being investigated that may help to improve prognosis. New approaches include the application of anti-inflammatory agents (e.g., interleukin-1 inhibitors), modifications of the gut-liver axis via fecal microbiome transfer or the administration of non-absorbable antibiotics (e.g., rifaximin), and drugs to enhance hepatocellular regeneration (e.g., interleukin-22 agonists). This article describes current management concepts of alcoholic hepatitis and provides an overview of new potential treatment approaches.
Collapse
Affiliation(s)
- Philipp Kasper
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Köln, Köln, Deutschland
| | - Münevver Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte
| |
Collapse
|
105
|
Aguilar-Bravo B, Ariño S, Blaya D, Pose E, Martinez García de la Torre RA, Latasa MU, Martínez-Sánchez C, Zanatto L, Sererols-Viñas L, Cantallops-Vilà P, Affo S, Coll M, Thillen X, Dubuquoy L, Avila MA, Argemi J, Paz AL, Nevzorova YA, Cubero FJ, Bataller R, Lozano JJ, Ginès P, Mathurin P, Sancho-Bru P. Hepatocyte dedifferentiation profiling in alcohol-related liver disease identifies CXCR4 as a driver of cell reprogramming. J Hepatol 2023; 79:728-740. [PMID: 37088308 PMCID: PMC10540088 DOI: 10.1016/j.jhep.2023.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.
Collapse
Affiliation(s)
- Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa Pose
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain
| | | | - María U Latasa
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Celia Martínez-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Sererols-Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Cantallops-Vilà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier Thillen
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Matías A Avila
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Josepmaria Argemi
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Arantza Lamas Paz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Yulia A Nevzorova
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Ramon Bataller
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pere Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Philippe Mathurin
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
106
|
Ravi S, Hernandez-Tejero M, Lopez-Pelayo H, Bataller R. Psychological interventions to treat alcohol use disorder in patients with liver disease. Clin Liver Dis (Hoboken) 2023; 22:95-98. [PMID: 37799637 PMCID: PMC10550018 DOI: 10.1097/cld.0000000000000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 10/07/2023] Open
Affiliation(s)
- Samhita Ravi
- Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Maria Hernandez-Tejero
- Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hugo Lopez-Pelayo
- Addiction Research Group, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
107
|
Clària J, Arroyo V, Moreau R. Roles of systemic inflammatory and metabolic responses in the pathophysiology of acute-on-chronic liver failure. JHEP Rep 2023; 5:100807. [PMID: 37600957 PMCID: PMC10432809 DOI: 10.1016/j.jhepr.2023.100807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 08/22/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is the most severe form of acutely decompensated cirrhosis and is characterised by the presence of one or more organ failures, intense systemic inflammation, peripheral blood lymphopenia, and a high risk of death without liver transplantation within 28 days. Herein, we propose the hypothesis that intense systemic inflammation may lead to organ failures through five different non-mutually exclusive mechanisms. First, pathogen-associated molecular patterns and inflammatory mediators (i.e. cytokines and lipid mediators) stimulate the production of the vasorelaxant nitric oxide in the walls of splanchnic arterioles, leading to enhanced splanchnic and systemic vasodilation which, in turn, induces enhanced activity of endogenous vasoconstrictor systems causing renal vasoconstriction and acute kidney injury. Second, neutrophils that reach the systemic circulation are prone to adhere to the vascular endothelium. Cytokines and lipid mediators act on the endothelium in microvessels of vital organs, an effect that favours the migration of neutrophils (and probably other leukocytes) to surrounding tissues where neutrophils can cause tissue damage and thereby contribute to organ failure. Third, cytokines and lipid mediators promote the formation of microthrombi that impair microcirculation and tissue oxygenation. Fourth, acute inflammation stimulates intense peripheral catabolism of amino acids whose products may be metabotoxins that contribute to hepatic encephalopathy. Fifth, acute inflammatory responses, which include the production of a broad variety of biomolecules (proteins and lipids), and an increase in biomass (i.e., granulopoiesis requiring de novo nucleotide synthesis), among others, are energetically expensive processes that require large amounts of nutrients. Therefore, immunity competes with other maintenance programmes for energy. The brain stem integrates the energy demand of each organ system, with immunity considered a top priority. The brain stem may "decide" to make a trade-off which involves the induction of a dormancy programme that permits the shutdown of mitochondrial respiration and oxidative phosphorylation in peripheral organs. In the context of acutely decompensated cirrhosis, the consequence of a shutdown of mitochondrial respiration and ATP production would be a dramatic decrease in organ function.
Collapse
Affiliation(s)
- Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- Hospital Clínic-IDIBAPS, CIBERehd, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- INSERM, Université de Paris, Centre de Recherche sur l’Inflammation (CRI), Paris, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Service d’Hépatologie, Clichy, France
| |
Collapse
|
108
|
Mitri J, Almeqdadi M, Karagozian R. Prognostic and diagnostic scoring models in acute alcohol-associated hepatitis: A review comparing the performance of different scoring systems. World J Hepatol 2023; 15:954-963. [PMID: 37701919 PMCID: PMC10494564 DOI: 10.4254/wjh.v15.i8.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-associated hepatitis (AAH) is a severe form of liver disease caused by alcohol consumption. In the absence of confounding factors, clinical features and laboratory markers are sufficient to diagnose AAH, rule out alternative causes of liver injury and assess disease severity. Due to the elevated mortality of AAH, assessing the prognosis is a radical step in management. The Maddrey discriminant function (MDF) is the first established clinical prognostic score for AAH and was commonly used in the earliest AAH clinical trials. A MDF > 32 indicates a poor prognosis and a potential benefit of initiating corticosteroids. The model for end stage liver disease (MELD) score has been studied for AAH prognostication and new evidence suggests MELD may predict mortality more accurately than MDF. The Lille score is usually combined to MDF or MELD score after corticosteroid initiation and offers the advantage of assessing response to treatment a 4-7 d into the course. Other commonly used scores include the Glasgow Alcoholic Hepatitis Score and the Age Bilirubin international normalized ratio Creatinine model. Clinical AAH correlate adequately with histologic severity scores and leave little indication for liver biopsy in assessing AAH prognosis. AAH presenting as acute on chronic liver failure (ACLF) is so far prognosticated with ACLF-specific scoring systems. New artificial intelligence-generated prognostic models have emerged and are being studied for use in AAH. Acute kidney injury (AKI) is one possible complication of AAH and is significantly associated with increased AAH mortality. Predicting AKI and alcohol relapse are important steps in the management of AAH. The aim of this review is to discuss the performance and limitations of different scoring models for AAH mortality, emphasize the most useful tools in prognostication and review predictors of recurrence.
Collapse
Affiliation(s)
- Jad Mitri
- Department of Medicine, Saint Elizabeth's Medical Center, Boston, MA 02135, United States
| | - Mohammad Almeqdadi
- Division of Transplant and Hepatobiliary Disease, Tufts Medical Center, Boston, MA 02111, United States
| | - Raffi Karagozian
- Division of Gastroenterology & Hepatology, Tufts Medical Center, Boston, MA 02111, United States.
| |
Collapse
|
109
|
Díaz LA, Fuentes-López E, Ayares G, Idalsoaga F, Arnold J, Valverde MA, Perez D, Gómez J, Escarate R, Villalón A, Ramírez CA, Hernandez-Tejero M, Zhang W, Qian S, Simonetto DA, Ahn JC, Buryska S, Dunn W, Mehta H, Agrawal R, Cabezas J, García-Carrera I, Cuyàs B, Poca M, Soriano G, Sarin SK, Maiwall R, Jalal PK, Abdulsada S, Higuera-de-la-Tijera F, Kulkarni AV, Rao PN, Salazar PG, Skladaný L, Bystrianska N, Clemente-Sanchez A, Villaseca-Gómez C, Haider T, Chacko KR, Romero GA, Pollarsky FD, Restrepo JC, Castro-Sanchez S, Toro LG, Yaquich P, Mendizabal M, Garrido ML, Marciano S, Dirchwolf M, Vargas V, Jiménez C, Louvet A, García-Tsao G, Roblero JP, Abraldes JG, Shah VH, Kamath PS, Arrese M, Singal AK, Bataller R, Arab JP. MELD 3.0 adequately predicts mortality and renal replacement therapy requirements in patients with alcohol-associated hepatitis. JHEP Rep 2023; 5:100727. [PMID: 37456675 PMCID: PMC10339256 DOI: 10.1016/j.jhepr.2023.100727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims Model for End-Stage Liver Disease (MELD) score better predicts mortality in alcohol-associated hepatitis (AH) but could underestimate severity in women and malnourished patients. Using a global cohort, we assessed the ability of the MELD 3.0 score to predict short-term mortality in AH. Methods This was a retrospective cohort study of patients admitted to hospital with AH from 2009 to 2019. The main outcome was all-cause 30-day mortality. We compared the AUC using DeLong's method and also performed a time-dependent AUC with competing risks analysis. Results A total of 2,124 patients were included from 28 centres from 10 countries on three continents (median age 47.2 ± 11.2 years, 29.9% women, 71.3% with underlying cirrhosis). The median MELD 3.0 score at admission was 25 (20-33), with an estimated survival of 73.7% at 30 days. The MELD 3.0 score had a better performance in predicting 30-day mortality (AUC:0.761, 95%CI:0.732-0.791) compared with MELD sodium (MELD-Na; AUC: 0.744, 95% CI: 0.713-0.775; p = 0.042) and Maddrey's discriminant function (mDF) (AUC: 0.724, 95% CI: 0.691-0.757; p = 0.013). However, MELD 3.0 did not perform better than traditional MELD (AUC: 0.753, 95% CI: 0.723-0.783; p = 0.300) and Age-Bilirubin-International Normalised Ratio-Creatinine (ABIC) (AUC:0.757, 95% CI: 0.727-0.788; p = 0.765). These results were consistent in competing-risk analysis, where MELD 3.0 (AUC: 0.757, 95% CI: 0.724-0.790) predicted better 30-day mortality compared with MELD-Na (AUC: 0.739, 95% CI: 0.708-0.770; p = 0.028) and mDF (AUC:0.717, 95% CI: 0.687-0.748; p = 0.042). The MELD 3.0 score was significantly better in predicting renal replacement therapy requirements during admission compared with the other scores (AUC: 0.844, 95% CI: 0.805-0.883). Conclusions MELD 3.0 demonstrated better performance compared with MELD-Na and mDF in predicting 30-day and 90-day mortality, and was the best predictor of renal replacement therapy requirements during admission for AH. However, further prospective studies are needed to validate its extensive use in AH. Impact and implications Severe AH has high short-term mortality. The establishment of treatments and liver transplantation depends on mortality prediction. We evaluated the performance of the new MELD 3.0 score to predict short-term mortality in AH in a large global cohort. MELD 3.0 performed better in predicting 30- and 90-day mortality compared with MELD-Na and mDF, but was similar to MELD and ABIC scores. MELD 3.0 was the best predictor of renal replacement therapy requirements. Thus, further prospective studies are needed to support the wide use of MELD 3.0 in AH.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes-López
- Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Ayares
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Arnold
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Diego Perez
- Servicio Medicina Interna, Hospital El Pino, Santiago, Chile
| | - Jaime Gómez
- Servicio Medicina Interna, Hospital El Pino, Santiago, Chile
| | | | - Alejandro Villalón
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Médicas, Facultad de Medicina y Odontología, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina A. Ramírez
- Department of Anesthesia & Perioperative Medicine, Western University, London, ON, Canada
| | - Maria Hernandez-Tejero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Wei Zhang
- Division of Gastroenterology and Hepatology, University of Florida, Gainesville, FL, USA
- Gastroenterology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Steve Qian
- Division of Gastroenterology and Hepatology, University of Florida, Gainesville, FL, USA
| | | | - Joseph C. Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seth Buryska
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Heer Mehta
- University of Kansas Medical Center, KS, USA
| | - Rohit Agrawal
- Division of Gastroenterology and Hepatology, University of Illinois, Chicago, IL, USA
| | - Joaquín Cabezas
- Gastroenterology and Hepatology Department. University Hospital Marqués de Valdecilla, Santander, Spain
- Research Institute Valdecilla (IDIVAL), Santander, Spain
| | - Inés García-Carrera
- Gastroenterology and Hepatology Department. University Hospital Marqués de Valdecilla, Santander, Spain
- Research Institute Valdecilla (IDIVAL), Santander, Spain
| | - Berta Cuyàs
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Hospital de Sant Pau-IIB Sant Pau, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | - Maria Poca
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Hospital de Sant Pau-IIB Sant Pau, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Hospital de Sant Pau-IIB Sant Pau, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | - Shiv K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Prasun K. Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Saba Abdulsada
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Fátima Higuera-de-la-Tijera
- Servicio de Gastroenterología, Hospital General de México ‘Dr. Eduardo Liceaga’, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anand V. Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - P. Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Lubomir Skladaný
- Division of Hepatology, Gastroenterology and Liver Transplantation, Department of Internal Medicine II, Slovak Medical University, F.D. Roosevelt University Hospital, Banska Bystrica, Slovak Republic
| | - Natália Bystrianska
- Division of Hepatology, Gastroenterology and Liver Transplantation, Department of Internal Medicine II, Slovak Medical University, F.D. Roosevelt University Hospital, Banska Bystrica, Slovak Republic
| | - Ana Clemente-Sanchez
- Liver Unit, Department of Digestive Diseases Hospital General Universitario Gregorio Marañón Madrid, Madrid, Spain
- CIBERehd Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Madrid, Madrid, Spain
| | - Clara Villaseca-Gómez
- Liver Unit, Department of Digestive Diseases Hospital General Universitario Gregorio Marañón Madrid, Madrid, Spain
- CIBERehd Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Madrid, Madrid, Spain
| | - Tehseen Haider
- Division of Gastroenterology and Hepatology, Montefiore Medical Center, Bronx, NY, USA
| | - Kristina R. Chacko
- Division of Gastroenterology and Hepatology, Montefiore Medical Center, Bronx, NY, USA
| | - Gustavo A. Romero
- Sección Hepatología, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Buenos Aires, Argentina
| | - Florencia D. Pollarsky
- Sección Hepatología, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Buenos Aires, Argentina
| | - Juan Carlos Restrepo
- Unidad de Hepatología del Hospital Pablo Tobon Uribe, Grupo de Gastrohepatología de la Universidad de Antioquia, Medellín, Colombia
| | - Susana Castro-Sanchez
- Unidad de Hepatología del Hospital Pablo Tobon Uribe, Grupo de Gastrohepatología de la Universidad de Antioquia, Medellín, Colombia
| | - Luis G. Toro
- Hepatology and Liver Transplant Unit, Hospitales de San Vicente Fundación de Medellín y Rionegro, Medellín, Colombia
| | - Pamela Yaquich
- Departamento de Gastroenterología, Hospital San Juan de Dios, Santiago, Chile
| | - Manuel Mendizabal
- Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Buenos Aires, Argentina
| | | | | | - Melisa Dirchwolf
- Unidad de Hígado, Hospital Privado de Rosario, Rosario, Argentina
| | - Victor Vargas
- Liver Unit, Hospital Vall d’Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma Barcelona, CIBEREHD, Barcelona, Spain
| | - César Jiménez
- Liver Unit, Hospital Vall d’Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma Barcelona, CIBEREHD, Barcelona, Spain
| | - Alexandre Louvet
- Hôpital Claude Huriez, Services des Maladies de l'Appareil Digestif, CHRU Lille, and Unité INSERM 995, Lille, France
| | - Guadalupe García-Tsao
- Section of Digestive Diseases, Yale University School of Medicine/VA-CT Healthcare System, New Haven/West Haven, CT, USA
| | - Juan Pablo Roblero
- Sección Gastroenterología, Hospital Clínico Universidad de Chile, Escuela de Medicina Universidad de Chile, Santiago, Chile
| | - Juan G. Abraldes
- Division of Gastroenterology, Liver Unit, University of Alberta, Edmonton, AB, Canada
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Patrick S. Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ashwani K. Singal
- Department of Medicine, University of South Dakota Sanford School of Medicine and Transplant Hepatology, Avera Transplant Institute, Sioux Falls, SD, USA
| | | | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, ONT, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, ONT, Canada
| |
Collapse
|
110
|
Abstract
Globally, liver disease caused by alcohol is becoming more prevalent each year. Misuse of alcohol causes a spectrum of liver diseases, such as liver steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The cornerstone of treatment is abstinence from alcohol. In spite of this, available treatment for alcohol-associated liver disease (ALD) shows limited effectiveness currently. There are numerous ways in which alcohol disrupts the gut-liver axis, including dysbiosis of the gut microbiome, disruption of mucus and epithelial cell barriers, impaired production of antimicrobial molecules, and dysfunction of the immune system, causing translocation of viable microbes and microbial products to the liver and systemic circulation. Microbial exposure results in not only inflammation and progression of liver disease but also infections in late-stage ALD. This led scientists to focus their therapeutic strategies and targets for ALD on the gut microbiome. Throughout this review, we address the role of gut microbiome-centered therapeutic approaches for ALD focusing predominantly on randomized controlled trials. We will summarize the latest clinical trials using probiotics, antibiotics, and fecal microbial transplants in modulating the gut-liver axis and for improvement of ALD.
Collapse
Affiliation(s)
- Tannaz Ranjbarian
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
111
|
Arab JP, Addolorato G, Mathurin P, Thursz MR. Alcohol-Associated Liver Disease: Integrated Management With Alcohol Use Disorder. Clin Gastroenterol Hepatol 2023; 21:2124-2134. [PMID: 36858144 DOI: 10.1016/j.cgh.2023.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
Alcohol-associated liver disease (ALD) is the most common cause of cirrhosis and liver-related mortality in many regions worldwide. Around 75% of patients with cirrhosis are unaware of their disease until they are referred to the emergency department. An innovative, noninvasive screening approach is required for an earlier diagnosis of liver fibrosis. In patients with ALD the physician is inevitably dealing with 2 major disorders: the liver disease itself and the alcohol use disorder (AUD). Focus only on the liver disease will inevitably lead to failure because transient improvements in liver function are rapidly overturned if the patient returns to alcohol consumption. For this reason, integrated models of care provided by hepatologists and addiction specialists are an effective approach, which are, however, not widely available. There are multiple pharmacologic and non-pharmacologic therapies for AUD. Progress has recently been made in the management of patients with severe AH who have improved survival through better understanding of the concept of response to medical treatment, improved survival prediction, and the advent of early liver transplantation. The emerging concept is that listing for transplantation a patient with severe ALD could lead to adjusting the duration of abstinence according to the severity and evolution of liver dysfunction and the patient's addictive profile.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Giovanni Addolorato
- Department of Medical and Surgical Sciences, Internal Medicine and Hepatology Unit, Catholic University of Rome, Rome, Italy
| | - Philippe Mathurin
- Service des maladies de l'appareil digestif, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Mark R Thursz
- Division of Digestive Diseases, Imperial College, London, United Kingdom
| |
Collapse
|
112
|
Pose E, Bataller R. Web Exclusive. Annals for Hospitalists Inpatient Notes - Key Clinical Concepts for Diagnosis and Treatment of Alcohol-Associated Hepatitis for Hospitalists. Ann Intern Med 2023; 176:eM231088. [PMID: 37335996 DOI: 10.7326/m23-1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Affiliation(s)
- Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, and Faculty of Medicine and Health Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), and Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas, Barcelona, Spain (E.P., R.B.)
| | - Ramón Bataller
- Liver Unit, Hospital Clínic de Barcelona, and Faculty of Medicine and Health Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), and Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas, Barcelona, Spain (E.P., R.B.)
| |
Collapse
|
113
|
Horhat A, Fischer P, Nicoara-Farcau O, Rusu I, Morar C, Bumbu A, Ignat M, Procopet B, Socaciu C, Sparchez Z, Stefanescu H. Enhanced diagnosis and prognosis of severe alcoholic hepatitis using novel metabolomic biomarkers. Alcohol Alcohol 2023:7152893. [PMID: 37154612 DOI: 10.1093/alcalc/agad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
AIM Differentiating alcoholic hepatitis (AH) from acute decompensation of alcoholic cirrhosis (DC) is challenging, as the presentation and biochemistry are similar. We aimed to identify potential metabolomic biomarkers to differentiate between AH and DC, and to predict short-term mortality. METHODS We included consecutive biopsy proven AH and DC patients, which were managed according to current guidelines and followed up until the end of the study. Untargeted metabolomics was assessed in all patients at baseline. Specific analyses were successively performed to identify potential biomarkers, which were further semi-quantitatively analysed against relevant clinical endpoints. RESULTS Thirty-four patients with AH and 37 with DC were included. UHPLC-MS analysis identified 83 molecules potentially differentiating between AH and DC. C16-Sphinganine-1P (S1P) was the most increased, whereas Prostaglandin E2 (PGE2) was the most decreased. The PGE2/S1P ratio < 1.03 excellently discriminates between AH and DC: AUC 0.965 (p < 0.001), Se 90%, Sp 100%, PPV 0.91, NPV 1, and diagnostic accuracy 95%. This ratio is not influenced by the presence of infection (AUC 0.967 vs. 0.962), correlates with the Lille score at 7 days (r = -0.60; P = 0.022) and tends to be lower in corticosteroid non-responders as compared with patients who responded [0.85(±0.02) vs. 0.89(±0.05), P = 0.069]. Additionally, decreased ursodeoxycholic acid levels are correlated with MELD and Maddrey scores and predict mortality with a 77.27% accuracy (NPV = 100%). CONCLUSION This study suggests the PGE2 (decreased)/S1P (increased) ratio as a biomarker to differentiate AH from DC. The study also finds that low levels of ursodeoxycholic acid could predict increased mortality in AH.
Collapse
Affiliation(s)
- Adelina Horhat
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Third Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| | - Petra Fischer
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| | - Oana Nicoara-Farcau
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Third Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| | - Ioana Rusu
- Pathology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Corina Morar
- Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy BIODIATECH, Cluj-Napoca 400478, Romania
| | - Andreea Bumbu
- Liver Research Club, Cluj-Napoca 400162, Romania
- First Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Mina Ignat
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| | - Bogdan Procopet
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Third Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| | - Carmen Socaciu
- Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy BIODIATECH, Cluj-Napoca 400478, Romania
| | - Zeno Sparchez
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Third Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Horia Stefanescu
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Liver Research Club, Cluj-Napoca 400162, Romania
| |
Collapse
|
114
|
Odriozola A, Santos-Laso A, Del Barrio M, Cabezas J, Iruzubieta P, Arias-Loste MT, Rivas C, Duque JCR, Antón Á, Fábrega E, Crespo J. Fatty Liver Disease, Metabolism and Alcohol Interplay: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24097791. [PMID: 37175497 PMCID: PMC10178387 DOI: 10.3390/ijms24097791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, and its incidence has been increasing in recent years because of the high prevalence of obesity and metabolic syndrome in the Western population. Alcohol-related liver disease (ArLD) is the most common cause of cirrhosis and constitutes the leading cause of cirrhosis-related deaths worldwide. Both NAFLD and ArLD constitute well-known causes of liver damage, with some similarities in their pathophysiology. For this reason, they can lead to the progression of liver disease, being responsible for a high proportion of liver-related events and liver-related deaths. Whether ArLD impacts the prognosis and progression of liver damage in patients with NAFLD is still a matter of debate. Nowadays, the synergistic deleterious effect of obesity and diabetes is clearly established in patients with ArLD and heavy alcohol consumption. However, it is still unknown whether low to moderate amounts of alcohol are good or bad for liver health. The measurement and identification of the possible synergistic deleterious effect of alcohol consumption in the assessment of patients with NAFLD is crucial for clinicians, since early intervention, advising abstinence and controlling cardiovascular risk factors would improve the prognosis of patients with both comorbidities. This article seeks to perform a comprehensive review of the pathophysiology of both disorders and measure the impact of alcohol consumption in patients with NAFLD.
Collapse
Affiliation(s)
- Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Joaquín Cabezas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodríguez Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Ángela Antón
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Emilio Fábrega
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
115
|
Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol 2023:S0168-8278(23)00218-0. [PMID: 37061196 DOI: 10.1016/j.jhep.2023.03.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Successful development of treatments for non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH) has been challenging. Because NASH and fibrosis lead to NAFLD progression towards cirrhosis and to clinical outcomes, approaches have either sought to attenuate metabolic dysregulation and cell injury, or directly target the inflammation and fibrosis that ensue. Targets for reducing the activation of inflammatory cascades include nuclear receptor agonists (thyroid hormone receptor-beta, e.g. resmetirom, peroxisome proliferator-activated receptor [PPAR], e.g. lanifibranor, farnesoid X receptor [FXR], e.g. obeticholic acid), modulators of lipotoxicity (e.g. aramchol, acetyl-CoA carboxylase inhibitors) or modification of genetic variants (e.g. PNPLA3 gene silencing). Extrahepatic inflammatory signals from circulation, adipose tissue or gut are targets of hormonal agonists (e.g. glucagon-like peptide-1 [GLP-1] like semaglutide, fibroblast growth factor [FGF]-19 or FGF21), microbiota or lifestyle (weight loss, diet, exercise) interventions. Stress signals and hepatocyte death activate immune responses engaging innate (macrophages, lymphocytes) and adaptive (auto-aggressive T-cells) mechanisms. Therapies seek to blunt immune cell activation, recruitment (chemokine receptor inhibitors) and responses (e.g. galectin 3 inhibition, anti-platelet drugs). The disease-driving pathways of NASH converge to elicit fibrosis, which is reversible. The activation of hepatic stellate cells (HSC) into matrix-producing myofibroblasts can be inhibited by antagonizing soluble factors (e.g. integrins, cytokines), cellular crosstalk (e.g. with macrophages), and agonizing nuclear receptor signaling (e.g. FXR or PPAR agonists). In advanced fibrosis, cell therapy with restorative macrophages or reprogrammed T-cells (e.g., CAR T) may accelerate repair through HSC deactivation or killing, or by enhancing matrix degradation. Heterogeneity of disease - either due to genetics or divergent disease drivers - is an obstacle to defining effective drugs for all patients with NASH that will be incrementally overcome.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, United States.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
116
|
Aguilar-Bravo B, Ariño S, Blaya D, Pose E, Martinez García de la Torre RA, Latasa MU, Martínez-Sánchez C, Zanatto L, Sererols-Viñas L, Cantallops P, Affo S, Coll M, Thillen X, Dubuquoy L, Avila MA, Argemi JM, Paz AL, Nevzorova YA, Cubero J, Bataller R, Lozano JJ, Ginès P, Mathurin P, Sancho-Bru P. Hepatocyte Dedifferentiation Profiling In Alcohol-Related Liver Disease Identifies CXCR4 As A Driver Of Cell Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535566. [PMID: 37066245 PMCID: PMC10104068 DOI: 10.1101/2023.04.04.535566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background and Aims Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocytes markers and showing immature features. However, the mechanisms and the impact of hepatocyte dedifferentiation in liver disease are poorly understood. Methods HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ALD). Hepatocyte- specific overexpression or deletion of CXCR4, and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. Results Here we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness and cancer gene programs. CXCR4 pathway was highly enriched in HB cells, and correlated with disease severity and hepatocyte dedifferentiation. In vitro , CXCR4 was associated with biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased hepatocyte specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. Conclusions This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. Lay summary Here we describe that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis.
Collapse
|
117
|
Farokhnia M, Wang T, Jourdan T, Godlewski G, Farinelli LA, Kunos G, Leggio L. A human laboratory study on the link between alcohol administration and circulating fibroblast growth factor 21 (FGF21) in individuals with alcohol use disorder. Drug Alcohol Depend 2023; 245:109809. [PMID: 36822122 PMCID: PMC10084703 DOI: 10.1016/j.drugalcdep.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Growing evidence indicates that the crosstalk between the central nervous system and the periphery plays an important role in the pathophysiology of neuropsychiatric conditions, including addictive disorders. Fibroblast growth factor 21 (FGF21) is part of the liver-brain axis and regulates energy homeostasis, metabolism, and macronutrient intake. In addition, FGF21 signaling modulates alcohol intake and preference, and changes in FGF21 levels are observed following alcohol consumption. To further elucidate the relationship between alcohol use and FGF21, we assessed serum FGF21 concentrations in 16 non-treatment seeking individuals with alcohol use disorder (AUD) in a naturalistic outpatient setting, as well as a controlled laboratory experiment that included alcohol cue-reactivity, alcohol priming, and alcohol self-administration in a bar-like setting. FGF21 levels were stable during the outpatient phase when participants received placebo and had no significant lifestyle changes. During the bar-like laboratory experiment, a robust increase in serum FGF21 concentrations was found after the 2-hr alcohol self-administration session (F3, 49 = 23.39, p < 0.001). Percent change in FGF21 levels positively correlated with the amount of alcohol self-administered but did not reach statistical significance. No significant changes in FGF21 levels were found after exposure to alcohol cues or consuming the priming drink. Given the bidirectional link between FGF21 and alcohol, targeting the FGF21 system may be further examined as a potential pharmacotherapy for AUD.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, USA; Pathophysiology of Dyslipidemia research group, INSERM UMR1231 Lipids, Nutrition, Cancer, Université de Bourgogne, Dijon, France
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
118
|
Guo Y, Ma X, Nie Y, Kostallari E, Gao J. Editorial: Hepatic immune response underlying liver cirrhosis and portal hypertension. Front Immunol 2023; 14:1174562. [PMID: 36969230 PMCID: PMC10034766 DOI: 10.3389/fimmu.2023.1174562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Yangkun Guo
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, National Healthy Commission (NHC) Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| |
Collapse
|
119
|
Howarth NC, Arab JP. Acute Kidney Injury in Alcohol-Associated Hepatitis: More than a Bystander. J Clin Exp Hepatol 2023; 13:193-195. [PMID: 36950482 PMCID: PMC10025756 DOI: 10.1016/j.jceh.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Affiliation(s)
- Nisha C Howarth
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Juan P Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
120
|
Idalsoaga F, Ayares G, Díaz LA, Arnold J, Ayala-Valverde M, Hudson D, Arrese M, Arab JP. Current and emerging therapies for alcohol-associated hepatitis. LIVER RESEARCH 2023; 7:35-46. [PMID: 39959695 PMCID: PMC11792060 DOI: 10.1016/j.livres.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alcohol-related liver disease (ALD) encompasses a spectrum of diseases caused by excessive alcohol consumption. ALD includes hepatic steatosis, steatohepatitis, variable degrees of fibrosis, cirrhosis, and alcohol-associated hepatitis (AH), the latter being the most severe acute form of the disease. Severe AH is associated with high mortality (reaching up to 30%-50%) at 90 days. The cornerstone of ALD, and particularly AH, treatment continues to be abstinence, accompanied by support measures such as nutritional supplementation and management of alcohol withdrawal syndrome (AWS). In severe AH with model for end-stage liver disease (MELD) score ≥21, corticosteroids can be used, especially MELD score between 25 and 39, where the highest benefit is achieved. Other key aspects of treatment include the early identification of infections and their associated management and the proper identification of potential candidates for liver transplantation. The development of new therapies based on the pathophysiology and mechanisms of liver injury are underway. This includes the modulation and management of the innate immune response, gut dysbiosis, bacterial translocation, and bacteria-derived products from the intestine. These hold promise for the future of AH treatment.
Collapse
Affiliation(s)
- Francisco Idalsoaga
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Ayares
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Antonio Díaz
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Arnold
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Ayala-Valverde
- Internal Medicine Service, Hospital El Pino, Critical Patient Unit, Clinica Davila, Santiago, Chile
| | - David Hudson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
- Alimentiv, London, Ontario, Canada
| |
Collapse
|