101
|
Guandalini A, Cocchi C, Pittalis S, Ruini A, Rozzi CA. Nonlinear light absorption in many-electron systems excited by an instantaneous electric field: a non-perturbative approach. Phys Chem Chem Phys 2021; 23:10059-10069. [PMID: 33870971 DOI: 10.1039/d0cp04958a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applications of low-cost non-perturbative approaches in real time, such as time-dependent density functional theory, for the study of nonlinear optical properties of large and complex systems are gaining increasing popularity. However, their assessment still requires the analysis and understanding of elementary dynamical processes in simple model systems. Motivated by the aim of simulating optical nonlinearities in molecules, here exemplified by the case of the quaterthiophene oligomer, we investigate light absorption in many-electron interacting systems beyond the linear regime by using a single broadband impulse of an electric field; i.e. an electrical impulse in the instantaneous limit. We determine non-pertubatively the absorption cross section from the Fourier transform of the time-dependent induced dipole moment, which can be obtained from the time evolution of the wavefunction. We discuss the dependence of the resulting cross section on the magnitude of the impulse and we highlight the advantages of this method in comparison with perturbation theory by working on a one-dimensional model system for which numerically exact solutions are accessible. Thus, we demonstrate that the considered non-pertubative approach provides us with an effective tool for investigating fluence-dependent nonlinear optical excitations.
Collapse
Affiliation(s)
- Alberto Guandalini
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy. .,Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany.,Physics Department, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
| | - Stefano Pittalis
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy.
| | - Alice Ruini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | | |
Collapse
|
102
|
Beaulieu S, Dong S, Tancogne-Dejean N, Dendzik M, Pincelli T, Maklar J, Xian RP, Sentef MA, Wolf M, Rubio A, Rettig L, Ernstorfer R. Ultrafast dynamical Lifshitz transition. SCIENCE ADVANCES 2021; 7:7/17/eabd9275. [PMID: 33883128 PMCID: PMC8059938 DOI: 10.1126/sciadv.abd9275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal T d-MoTe2 We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
Collapse
Affiliation(s)
- Samuel Beaulieu
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
| | - Shuo Dong
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Nicolas Tancogne-Dejean
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.
| | - Maciej Dendzik
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
- Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Tommaso Pincelli
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Julian Maklar
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - R Patrick Xian
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Michael A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Laurenz Rettig
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Ralph Ernstorfer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
| |
Collapse
|
103
|
Lively K, Albareda G, Sato SA, Kelly A, Rubio A. Simulating Vibronic Spectra without Born-Oppenheimer Surfaces. J Phys Chem Lett 2021; 12:3074-3081. [PMID: 33750137 PMCID: PMC8020382 DOI: 10.1021/acs.jpclett.1c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
We show how linear vibronic spectra in molecular systems can be simulated efficiently using first-principles approaches without relying on the explicit use of multiple Born-Oppenheimer potential energy surfaces. We demonstrate and analyze the performance of mean-field and beyond-mean-field dynamics techniques for the H2 molecule in one dimension, in the later case capturing the vibronic structure quite accurately, including quantum Franck-Condon effects. In a practical application of this methodology we simulate the absorption spectrum of benzene in full dimensionality using time-dependent density functional theory at the multitrajectory Ehrenfest level, finding good qualitative agreement with experiment and significant spectral reweighting compared to commonly used single-trajectory Ehrenfest dynamics. These results form the foundation for nonlinear spectral calculations and show promise for future application in capturing phenomena associated with vibronic coupling in more complex molecular and potentially condensed phase systems.
Collapse
Affiliation(s)
- Kevin Lively
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Guillermo Albareda
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute
of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco, 20018 San Sebastían, Spain
| | - Shunsuke A. Sato
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Sciences, University of
Tsukuba, Tsukuba 305-8577, Japan
| | - Aaron Kelly
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department
of Chemistry, Dalhousie University, Halifax B3H 4R2, Canada
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco, 20018 San Sebastían, Spain
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
104
|
Kowalski K, Bair R, Bauman NP, Boschen JS, Bylaska EJ, Daily J, de Jong WA, Dunning T, Govind N, Harrison RJ, Keçeli M, Keipert K, Krishnamoorthy S, Kumar S, Mutlu E, Palmer B, Panyala A, Peng B, Richard RM, Straatsma TP, Sushko P, Valeev EF, Valiev M, van Dam HJJ, Waldrop JM, Williams-Young DB, Yang C, Zalewski M, Windus TL. From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Chem Rev 2021; 121:4962-4998. [PMID: 33788546 DOI: 10.1021/acs.chemrev.0c00998] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems. As the hardware and software have evolved, so have the theoretical and computational chemistry methods and algorithms. Parallel computers clearly changed the common computing paradigm in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent of graphical processing units. This review explores the challenges and some of the solutions in transforming software from the terascale to the petascale and now to the upcoming exascale computers. While discussing the field in general, NWChem and its redesign, NWChemEx, will be highlighted as one of the early codesign projects to take advantage of massively parallel computers and emerging software standards to enable large scientific challenges to be tackled.
Collapse
Affiliation(s)
- Karol Kowalski
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Raymond Bair
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas P Bauman
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Eric J Bylaska
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff Daily
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wibe A de Jong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thom Dunning
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert J Harrison
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Murat Keçeli
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | | | - Suraj Kumar
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erdal Mutlu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bruce Palmer
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ajay Panyala
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
| | - Peter Sushko
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marat Valiev
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | | | | - Chao Yang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marcin Zalewski
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Theresa L Windus
- Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
105
|
Wang DS, Ciccarino CJ, Flick J, Narang P. Hybridized Defects in Solid-State Materials as Artificial Molecules. ACS NANO 2021; 15:5240-5248. [PMID: 33600145 DOI: 10.1021/acsnano.0c10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional materials can be crafted with structural precision approaching the atomic scale, enabling quantum defects-by-design. These defects are frequently described as "artificial atoms" and are emerging optically addressable spin qubits. However, interactions and coupling of such artificial atoms with each other, in the presence of the lattice, warrants further investigation. Here we present the formation of "artificial molecules" in solids, introducing a chemical degree of freedom in control of quantum optoelectronic materials. Specifically, in monolayer hexagonal boron nitride as our model system, we observe configuration- and distance-dependent dissociation curves and hybridization of defect orbitals within the bandgap into bonding and antibonding orbitals, with splitting energies ranging from ∼10 meV to nearly 1 eV. We calculate the energetics of cis and trans out-of-plane defect pairs CHB-CHB against an in-plane defect pair CB-CB and find that in-plane defect pair interacts more strongly than out-of-plane pairs. We demonstrate an application of this chemical degree of freedom by varying the distance between CB and VN of CBVN and observe changes in the predicted peak absorption wavelength from the visible to the near-infrared spectral band. We envision leveraging this chemical degree of freedom of defect complexes to precisely control and tune defect properties toward engineering robust quantum memories and quantum emitters for quantum information science.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher J Ciccarino
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
106
|
Bhan L, Covington C, Rivas J, Varga K. Simulation of photo-electron spectrum and electron scattering by dual time propagation. J Chem Phys 2021; 154:114110. [PMID: 33752384 DOI: 10.1063/5.0045591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A dual time propagation approach is introduced to describe electron scattering and ionization. The space is divided into two regions, a central region with a full time-dependent Hamiltonian and an outer region where the kinetic operator and the laser field dominate. The two regions are connected by a source term. Time-dependent density functional theory calculations of wave packet scattering on molecules and photoelectron spectrum due to circularly polarized laser are presented to illustrate the efficiency and applicability of the approach.
Collapse
Affiliation(s)
- Luke Bhan
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Cody Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee 37044, USA
| | - Jason Rivas
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee 37044, USA
| | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
107
|
Wang DS, Neuman T, Flick J, Narang P. Light-matter interaction of a molecule in a dissipative cavity from first principles. J Chem Phys 2021; 154:104109. [PMID: 33722047 DOI: 10.1063/5.0036283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open-quantum systems. Here, we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics of the cavity and describe coupled cavity-single molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling, we achieve cavity-mediated energy transfer between electronically excited states. This generalized ab initio quantum-electrodynamical density functional theory treatment can be naturally extended to describe cavity-mediated interactions in arbitrary electromagnetic environments, accessing correlated light-matter observables and thereby closing the gap between electronic structure theory, quantum optics, and nanophotonics.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tomáš Neuman
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
108
|
Haugland TS, Schäfer C, Ronca E, Rubio A, Koch H. Intermolecular interactions in optical cavities: An ab initio QED study. J Chem Phys 2021; 154:094113. [PMID: 33685159 DOI: 10.1063/5.0039256] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intermolecular bonds are weak compared to covalent bonds, but they are strong enough to influence the properties of large molecular systems. In this work, we investigate how strong light-matter coupling inside an optical cavity can modify intermolecular forces and illustrate the varying necessity of correlation in their description. The electromagnetic field inside the cavity can modulate the ground state properties of weakly bound complexes. Tuning the field polarization and cavity frequency, the interactions can be stabilized or destabilized, and electron densities, dipole moments, and polarizabilities can be altered. We demonstrate that electron-photon correlation is fundamental to describe intermolecular interactions in strong light-matter coupling. This work proposes optical cavities as a novel tool to manipulate and control ground state properties, solvent effects, and intermolecular interactions for molecules and materials.
Collapse
Affiliation(s)
- Tor S Haugland
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Enrico Ronca
- Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
109
|
Pauletti CF, Coccia E, Luppi E. Role of exchange and correlation in high-harmonic generation spectra of H 2, N 2, and CO 2: Real-time time-dependent electronic-structure approaches. J Chem Phys 2021; 154:014101. [PMID: 33412879 DOI: 10.1063/5.0033072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study arises from the attempt to answer the following question: how different descriptions of electronic exchange and correlation affect the high-harmonic generation (HHG) spectroscopy of H2, N2, and CO2 molecules? We compare HHG spectra for H2, N2, and CO2 with different ab initio electronic structure methods: real-time time-dependent configuration interaction and real-time time-dependent density functional theory (RT-TDDFT) using truncated basis sets composed of correlated wave functions expanded on Gaussian basis sets. In the framework of RT-TDDFT, we employ Perdew-Burke-Ernzerhof (PBE) and long-range corrected Perdew-Burke-Ernzerhof (LC-ωPBE) functionals. We study HHG spectroscopy by disentangling the effect of electronic exchange and correlation. We first analyze the electronic exchange alone, and in the case of RT-TDDFT with LC-ωPBE, we use ω = 0.3 and ω = 0.4 to tune the percentage of long-range Hartree-Fock exchange and short-range exchange PBE. Then, we added the correlation as described by the PBE functional. All the methods give very similar HHG spectra, and they seem not to be particularly sensitive to the different description of exchange and correlation or to the correct asymptotic behavior of the Coulomb potential. Despite this general trend, some differences are found in the region connecting the cutoff and the background. Here, the harmonics can be resolved with different accuracy depending on the theoretical schemes used. We believe that the investigation of the molecular continuum and its coupling with strong fields merits further theoretical investigations in the near future.
Collapse
Affiliation(s)
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Giorgieri 1, Trieste Italy
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
110
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
111
|
De Giovannini U, Hübener H, Sato SA, Rubio A. Direct Measurement of Electron-Phonon Coupling with Time-Resolved ARPES. PHYSICAL REVIEW LETTERS 2020; 125:136401. [PMID: 33034494 DOI: 10.1103/physrevlett.125.136401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Time- and angular- resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on the electronic structure. Here, we show with the help of ab initio simulations that the Fourier analysis of the time-resolved measurements of solids with excited phonon modes enables the determination of the band- and mode-resolved electron-phonon coupling directly from the experimental data without any additional input from theory. Such an observation is not restricted to regions of strong electron-phonon coupling and does not require strongly excited or hot phonons, but can be employed to monitor the dynamical renormalization of phonons in driven phases of matter.
Collapse
Affiliation(s)
- Umberto De Giovannini
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Hannes Hübener
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Shunsuke A Sato
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth avenue, New York, New York 10010, USA
| |
Collapse
|
112
|
Buchholz F, Theophilou I, Giesbertz KJH, Ruggenthaler M, Rubio A. Light-Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. J Chem Theory Comput 2020; 16:5601-5620. [PMID: 32692551 PMCID: PMC7482321 DOI: 10.1021/acs.jctc.0c00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A detailed
understanding of strong matter–photon interactions
requires first-principle methods that can solve the fundamental Pauli–Fierz
Hamiltonian of nonrelativistic quantum electrodynamics efficiently.
A possible way to extend well-established electronic-structure methods
to this situation is to embed the Pauli–Fierz Hamiltonian in
a higher-dimensional light–matter hybrid auxiliary configuration
space. In this work we show the importance of the resulting hybrid
Fermi–Bose statistics of the polaritons, which are the new
fundamental particles of the “photon-dressed” Pauli–Fierz
Hamiltonian for systems in cavities. We show that violations of these
statistics can lead to unphysical results. We present an efficient
way to ensure the correct statistics by enforcing representability
conditions on the dressed one-body reduced density matrix. We further
present a general prescription how to extend a given first-principles
approach to polaritons and as an example introduce polaritonic Hartree–Fock
theory. While being a single-reference method in polariton space,
polaritonic Hartree–Fock is a multireference method in the
electronic space, i.e., it describes electronic correlations. We also
discuss possible applications to polaritonic QEDFT. We apply this
theory to a lattice model and find that, the more delocalized the
bound-state wave function of the particles is, the stronger it reacts
to photons. The main reason is that within a small energy range, many
states with different electronic configurations are available as opposed
to a strongly bound (and hence energetically separated) ground-state
wave function. This indicates that under certain conditions coupling
to the quantum vacuum of a cavity can indeed modify ground state properties.
Collapse
Affiliation(s)
- Florian Buchholz
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Iris Theophilou
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Klaas J H Giesbertz
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Michael Ruggenthaler
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany.,Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
113
|
Flick J, Narang P. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J Chem Phys 2020; 153:094116. [PMID: 32891103 DOI: 10.1063/5.0021033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advances in nanophotonics, quantum optics, and low-dimensional materials have enabled precise control of light-matter interactions down to the nanoscale. Combining concepts from each of these fields, there is now an opportunity to create and manipulate photonic matter via strong coupling of molecules to the electromagnetic field. Toward this goal, here we demonstrate a first principles framework to calculate polaritonic excited-state potential-energy surfaces, transition dipole moments, and transition densities for strongly coupled light-matter systems. In particular, we demonstrate the applicability of our methodology by calculating the polaritonic excited-state manifold of a formaldehyde molecule strongly coupled to an optical cavity. This proof-of-concept calculation shows how strong coupling can be exploited to alter photochemical reaction pathways by influencing avoided crossings with tuning of the cavity frequency and coupling strength. Therefore, by introducing an ab initio method to calculate excited-state potential-energy surfaces, our work opens a new avenue for the field of polaritonic chemistry.
Collapse
Affiliation(s)
- Johannes Flick
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
114
|
Wenzel G, Joblin C, Giuliani A, Rodriguez Castillo S, Mulas G, Ji M, Sabbah H, Quiroga S, Peña D, Nahon L. Astrochemical relevance of VUV ionization of large PAH cations . ASTRONOMY AND ASTROPHYSICS 2020; 641:A98. [PMID: 33154599 PMCID: PMC7116310 DOI: 10.1051/0004-6361/202038139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CONTEXT As a part of interstellar dust, polycyclic aromatic hydrocarbons (PAHs) are processed by the interaction with vacuum ultra-violet (VUV) photons that are emitted by hot young stars. This interaction leads to the emission of the well-known aromatic infrared bands but also of electrons, which can significantly contribute to the heating of the interstellar gas. AIMS Our aim is to investigate the impact of molecular size on the photoionization properties of cationic PAHs. METHODS Trapped PAH cations of sizes between 30 and 48 carbon atoms were submitted to VUV photons in the range of 9 to 20 eV from the DESIRS beamline at the synchrotron SOLEIL. All resulting photoproducts including dications and fragment cations were mass-analyzed and recorded as a function of photon energy. RESULTS Photoionization is found to be predominant over dissociation at all energies, which differs from an earlier study on smaller PAHs. The photoionization branching ratio reaches 0.98 at 20 eV for the largest studied PAH. The photoionization threshold is observed to be between 9.1 and 10.2 eV, in agreement with the evolution of the ionization potential with size. Ionization cross sections were indirectly obtained and photoionization yields extracted from their ratio with theoretical photoabsorption cross sections, which were calculated using time-dependent density functional theory. An analytical function was derived to calculate this yield for a given molecular size. CONCLUSIONS Large PAH cations could be efficiently ionized in H i regions and provide a contribution to the heating of the gas by photoelectric effect. Also, at the border of or in H ii regions, PAHs could be exposed to photons of energy higher than 13.6 eV. Our work provides recipes to be used in astronomical models to quantify these points.
Collapse
Affiliation(s)
- G. Wenzel
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - C. Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - A. Giuliani
- Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Saint Aubin, Gif-sur-Yvette, France
- INRAE, UAR1008, Transform Department, Rue de la Géraudière, BP 71627, F-44316 Nantes, France
| | - S. Rodriguez Castillo
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - G. Mulas
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
- Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy
| | - M. Ji
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - H. Sabbah
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - S. Quiroga
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - D. Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - L. Nahon
- Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Saint Aubin, Gif-sur-Yvette, France
| |
Collapse
|
115
|
Sherrill CD, Manolopoulos DE, Martínez TJ, Michaelides A. Electronic structure software. J Chem Phys 2020; 153:070401. [DOI: 10.1063/5.0023185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- C. David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332-0400, USA
| | - David E. Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, Oxford University, South Parks Road, Oxford OX1
3QZ, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305,
USA
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
116
|
Krumland J, Valencia AM, Pittalis S, Rozzi CA, Cocchi C. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules. J Chem Phys 2020; 153:054106. [PMID: 32770886 DOI: 10.1063/5.0008194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.
Collapse
Affiliation(s)
- Jannis Krumland
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | - Ana M Valencia
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | | | | | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| |
Collapse
|
117
|
Oliveira MJT, Papior N, Pouillon Y, Blum V, Artacho E, Caliste D, Corsetti F, de Gironcoli S, Elena AM, García A, García-Suárez VM, Genovese L, Huhn WP, Huhs G, Kokott S, Küçükbenli E, Larsen AH, Lazzaro A, Lebedeva IV, Li Y, López-Durán D, López-Tarifa P, Lüders M, Marques MAL, Minar J, Mohr S, Mostofi AA, O'Cais A, Payne MC, Ruh T, Smith DGA, Soler JM, Strubbe DA, Tancogne-Dejean N, Tildesley D, Torrent M, Yu VWZ. The CECAM electronic structure library and the modular software development paradigm. J Chem Phys 2020; 153:024117. [PMID: 32668924 DOI: 10.1063/5.0012901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.
Collapse
Affiliation(s)
- Micael J T Oliveira
- Max Planck Institute for the Structure and Dynamics of Matter, D-22761 Hamburg, Germany
| | - Nick Papior
- DTU Computing Center, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yann Pouillon
- Departamento CITIMAC, Universidad de Cantabria, Santander, Spain
| | - Volker Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | | | - Damien Caliste
- Department of Physics, IRIG, Univ. Grenoble Alpes and CEA, F-38000 Grenoble, France
| | - Fabiano Corsetti
- Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Alin M Elena
- Scientific Computing Department, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Alberto García
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193, Spain
| | | | - Luigi Genovese
- Department of Physics, IRIG, Univ. Grenoble Alpes and CEA, F-38000 Grenoble, France
| | - William P Huhn
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Georg Huhs
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | | | - Emine Küçükbenli
- Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | - Alfio Lazzaro
- Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | | | - Yingzhou Li
- Department of Mathematics, Duke University, Durham, North Carolina 27708-0320, USA
| | | | - Pablo López-Tarifa
- Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Martin Lüders
- Max Planck Institute for the Structure and Dynamics of Matter, D-22761 Hamburg, Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jan Minar
- New Technologies Research Centre, University of West Bohemia, 301 00 Plzen, Czech Republic
| | - Stephan Mohr
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Arash A Mostofi
- Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alan O'Cais
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Mike C Payne
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Thomas Ruh
- Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | - Daniel G A Smith
- Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - José M Soler
- Departamento e Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David A Strubbe
- Department of Physics, University of California, Merced, California 95343, USA
| | | | - Dominic Tildesley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Victor Wen-Zhe Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
118
|
Bonafé FP, Aradi B, Hourahine B, Medrano CR, Hernández FJ, Frauenheim T, Sánchez CG. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J Chem Theory Comput 2020; 16:4454-4469. [DOI: 10.1021/acs.jctc.9b01217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Franco P. Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Ben Hourahine
- SUPA, Department of Physics, John Anderson Building, The University of Strathclyde, 107 Rottenrow, Glasgow G15 6QN, United Kingdom
| | - Carlos R. Medrano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Federico J. Hernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
- Department of Physics, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago, Chile
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
- Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, China
| | - Cristián G. Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|