101
|
Summer EJ, Enderle CJ, Ahern SJ, Gill JJ, Torres CP, Appel DN, Black MC, Young R, Gonzalez CF. Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. J Bacteriol 2010; 192:179-90. [PMID: 19897657 PMCID: PMC2798268 DOI: 10.1128/jb.01174-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/27/2009] [Indexed: 02/07/2023] Open
Abstract
We report the plaque propagation and genomic analysis of Xfas53, a temperate phage of Xylella fastidiosa. Xfas53 was isolated from supernatants of X. fastidiosa strain 53 and forms plaques on the sequenced strain Temecula. Xfas53 forms short-tailed virions, morphologically similar to podophage P22. The 36.7-kb genome is predicted to encode 45 proteins. The Xfas53 terminase and structural genes are related at a protein and gene order level to P22. The left arm of the Xfas53 genome has over 90% nucleotide identity to multiple prophage elements of the sequenced X. fastidiosa strains. This arm encodes proteins involved in DNA metabolism, integration, and lysogenic control. In contrast to Xfas53, each of these prophages encodes head and DNA packaging proteins related to the siphophage lambda and tail morphogenesis proteins related to those of myophage P2. Therefore, it appears that Xfas53 was formed by recombination between a widespread family of X. fastidiosa P2-related prophage elements and a podophage distantly related to phage P22. The lysis cassette of Xfas53 is predicted to encode a pinholin, a signal anchor and release (SAR) endolysin, and Rz and Rz1 equivalents. The holin gene encodes a pinholin and appears to be subject to an unprecedented degree of negative regulation at both the level of expression, with rho-independent transcriptional termination and RNA structure-dependent translational repression, and the level of holin function, with two upstream translational starts predicted to encode antiholin products. A notable feature of Xfas53 and related prophages is the presence of 220- to 390-nucleotide degenerate tandem direct repeats encoding putative DNA binding proteins. Additionally, each phage encodes at least two BroN domain-containing proteins possibly involved in lysogenic control. Xfas53 exhibits unusually slow adsorption kinetics, possibly an adaptation to the confined niche of its slow-growing host.
Collapse
Affiliation(s)
- Elizabeth J. Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Christopher J. Enderle
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Stephen J. Ahern
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Jason J. Gill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Cruz P. Torres
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - David N. Appel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Mark C. Black
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Carlos F. Gonzalez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| |
Collapse
|
102
|
Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. FEBS J 2009; 276:7329-42. [DOI: 10.1111/j.1742-4658.2009.07443.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
103
|
Sun Q, Kuty GF, Arockiasamy A, Xu M, Young R, Sacchettini JC. Regulation of a muralytic enzyme by dynamic membrane topology. Nat Struct Mol Biol 2009; 16:1192-4. [PMID: 19881499 PMCID: PMC3075974 DOI: 10.1038/nsmb.1681] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/26/2009] [Indexed: 11/09/2022]
Abstract
R(21), the lysozyme of coliphage 21, has an N-terminal signal-anchor-release (SAR) domain that directs its secretion in a membrane-tethered, inactive form and then its release and activation in the periplasm. Both genetic and crystallographic studies show that the SAR domain, once extracted from the bilayer, refolds into the body of the enzyme and effects muralytic activation by repositioning one residue of the canonical lysozyme catalytic triad.
Collapse
Affiliation(s)
- Qingan Sun
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128
| | - Gabriel F. Kuty
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128
| | - Arulandu Arockiasamy
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Min Xu
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128
| |
Collapse
|
104
|
Abstract
Perhaps the simplest of biological timing systems, bacteriophage holins accumulate during the phage morphogenesis period and then trigger to permeabilize the cytoplasmic membrane with lethal holes; thus, terminating the infection cycle. Canonical holins form very large holes that allow nonspecific release of fully-folded proteins, but a recently discovered class of holins, the pinholins, make much smaller holes, or pinholes, that serve only to depolarize the membrane. Here, we interrogate the structure of the prototype pinholin by negative-stain transmission electron-microscopy, cysteine-accessibility, and chemical cross-linking, as well as by computational approaches. Together, the results suggest that the pinholin forms symmetric heptameric structures with the hydrophilic surface of one transmembrane domain lining the surface of a central channel approximately 15 A in diameter. The structural model also suggests a rationale for the prehole state of the pinholin, the persistence of which defines the duration of the viral latent period, and for the sensitivity of the holin timing system to the energized state of the membrane.
Collapse
|
105
|
Biophysical studies of the interactions between the phage varphiKZ gp144 lytic transglycosylase and model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:263-76. [PMID: 19669132 DOI: 10.1007/s00249-009-0530-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
The use of naturally occurring lytic bacteriophage proteins as specific antibacterial agents is a promising way to treat bacterial infections caused by antibiotic-resistant pathogens. The opportunity to develop bacterial resistance to these agents is minimized by their broad mechanism of action on bacterial membranes and peptidoglycan integrity. In the present study, we have investigated lipid interactions of the gp144 lytic transglycosylase from the Pseudomonas aeruginosa phage varphiKZ. Interactions with zwitterionic lipids characteristic of eukaryotic cells and with anionic lipids characteristic of bacterial cells were studied using fluorescence, solid-state nuclear magnetic resonance, Fourier transform infrared, circular dichroism, Langmuir monolayers, and Brewster angle microscopy (BAM). Gp144 interacted preferentially with anionic lipids, and the presence of gp144 in anionic model systems induced membrane disruption and lysis. Lipid domain formation in anionic membranes was observed by BAM. Gp144 did not induce disruption of zwitterionic membranes but caused an increase in rigidity of the lipid polar head group. However, gp144 interacted with zwitterionic and anionic lipids in a model membrane system containing both lipids. Finally, the gp144 secondary structure was not significantly modified upon lipid binding.
Collapse
|
106
|
The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol 2009; 191:5428-40. [PMID: 19581370 DOI: 10.1128/jb.00477-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most bacteriophages (phages) release their progeny through the action of holins that form lesions in the cytoplasmic membrane and lysins that degrade the bacterial peptidoglycan. Although the function of each protein is well established in phages infecting Streptococcus pneumoniae, the role--if any--of the powerful bacterial autolysin LytA in virion release is currently unknown. In this study, deletions of the bacterial and phage lysins were done in lysogenic S. pneumoniae strains, allowing the evaluation of the contribution of each lytic enzyme to phage release through the monitoring of bacterial-culture lysis and phage plaque assays. In addition, we assessed membrane integrity during phage-mediated lysis using flow cytometry to evaluate the regulatory role of holins over the lytic activities. Our data show that LytA is activated at the end of the lytic cycle and that its triggering results from holin-induced membrane permeabilization. In the absence of phage lysin, LytA is able to mediate bacterial lysis and phage release, although exclusive dependence on the autolysin results in reduced virion egress and altered kinetics that may impair phage fitness. Under normal conditions, activation of bacterial LytA, together with the phage lysin, leads to greater phage progeny release. Our findings demonstrate that S. pneumoniae phages use the ubiquitous host autolysin to accomplish an optimal phage exiting strategy.
Collapse
|
107
|
Heineman RH, Bull JJ, Molineux IJ. Layers of evolvability in a bacteriophage life history trait. Mol Biol Evol 2009; 26:1289-98. [PMID: 19264970 PMCID: PMC2680503 DOI: 10.1093/molbev/msp037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional redundancy in genomes arises from genes with overlapping functions, allowing phenotypes to persist after gene knockouts. Evolutionary redundancy or evolvability of a genome is one step removed, in that functional redundancy is absent but the genome has the potential to evolve to restore a lost phenotype. Exploring the extent to which this recovery alters gene networks can illuminate how functional gene interactions change through time. Here, the evolvability of lysis was studied in bacteriophage T7, revealing hidden functional interactions. Lysis is the destruction of host cell wall and membranes that releases progeny and is therefore essential for phage propagation. In most phages, lysis is mediated by a two-component genetic module: a muralytic enzyme that degrades the bacterial cell wall (endolysin) and a holin that permeabilizes the inner membrane to allow the endolysin access to the cell wall. T7 carries one known holin, one endolysin, and a second muralytic enzyme that plays little role in lysis by wild-type phage. If the primary endolysin is deleted, the second muralytic enzyme evolves to restore normal lysis after selection for faster growth. Here, a second level of evolutionary redundancy was revealed. When the second muralytic enzyme was prevented from adapting in a genome lacking the primary endolysin, the phage reevolved lysis de novo in the absence of any known muralytic enzymes by changes in multiple genes outside the original lysis module. This second level of redundancy proved to be evolutionarily inferior to the first, and both result in a lower fitness and slower lysis than wild-type T7. Deletion of the holin gene delayed lysis time modestly; fitness was restored by compensatory substitutions in genes that lack known roles in lysis of the wild type.
Collapse
|
108
|
Bogomolnaya LM, Santiviago CA, Yang HJ, Baumler AJ, Andrews-Polymenis HL. 'Form variation' of the O12 antigen is critical for persistence of Salmonella Typhimurium in the murine intestine. Mol Microbiol 2008; 70:1105-19. [PMID: 18826410 DOI: 10.1111/j.1365-2958.2008.06461.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.
Collapse
Affiliation(s)
- Lydia M Bogomolnaya
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
109
|
Berry J, Summer EJ, Struck DK, Young R. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 2008; 70:341-51. [PMID: 18713319 DOI: 10.1111/j.1365-2958.2008.06408.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage lambda has four adjacent genes -S, R, Rz and Rz1- dedicated to host cell lysis. While S, encoding the holin and antiholin, and R, encoding the endolysin, have been intensively studied, the products of Rz and Rz1 have not been characterized at either the structural or functional levels. Rz1 is an outer membrane lipoprotein and our results indicate that Rz is a type II signal anchor protein. Here we present evidence that an Rz-Rz1 complex that spans the periplasm carries out the final step in the process of host lysis. These results are discussed in terms of a model where endolysin-mediated degradation of the cell wall is a prerequisite for conformational changes in the Rz-Rz1 complex leading to the juxtaposition and fusion of the IM and OM. Fusion of the two membranes removes the last physical barrier to efficient release of progeny virions.
Collapse
Affiliation(s)
- Joel Berry
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A and M University, College Station TX 77843-2128, USA
| | | | | | | |
Collapse
|
110
|
Zheng Y, Struck DK, Dankenbring CA, Young R. Evolutionary dominance of holin lysis systems derives from superior genetic malleability. MICROBIOLOGY-SGM 2008; 154:1710-1718. [PMID: 18524925 DOI: 10.1099/mic.0.2008/016956-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For the microviruses and the leviviruses, bacteriophages with small single-stranded genomes, host lysis is accomplished by expression of a single gene that encodes an inhibitor of cell wall synthesis. In contrast, phages with double-stranded DNA genomes use a more complex system involving, at minimum, an endolysin, which degrades peptidoglycan, and a holin, which permeabilizes the membrane in a temporally programmed manner. To explore the basis of this difference, a chimera was created in which lysis gene E of the microvirus phiX174 replaced the entire lysis cassette of phage lambda, which includes the holin gene S and the endolysin gene R. The chimeric phage was viable but more variability was observed both in the distribution of plaque sizes and in the burst sizes of single cells, compared to the isogenic S(+) parent. Using different alleles of E, it was found the average burst size increased with the duration of the latent period, just as observed with S alleles with different lysis times. Moreover, within a set of missense E alleles, it was found that variability in lysis timing was limited and almost exclusively derived from changes in the level of E accumulation. By contrast, missense mutations in S resulted in a wide variation in lysis times that was not correlated with levels of accumulation. We suggest that the properties of greater phenotypic plasticity and lesser phenotypic variation make the function of holin proteins more genetically malleable, facilitating rapid adaptation towards a lysis time that would be optimal for changed host and environmental conditions. The inferior malleability of single-gene systems like E would restrict their occurrence to phages in which coding capacity is the overriding evolutionary constraint.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Douglas K Struck
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Chelsey A Dankenbring
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| |
Collapse
|
111
|
Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol Microbiol 2008; 65:1334-44. [PMID: 17697255 DOI: 10.1111/j.1365-2958.2007.05870.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa bacteriophage endolysins KZ144 (phage phiKZ) and EL188 (phage EL) are highly lytic peptidoglycan hydrolases (210 000 and 390 000 units mg(-1)), active on a broad range of outer membrane-permeabilized Gram-negative species. Site-directed mutagenesis indicates E115 (KZ144) and E155 (EL188) as their respective essential catalytic residues. Remarkably, both endolysins have a modular structure consisting of an N-terminal substrate-binding domain and a predicted C-terminal catalytic module, a property previously only demonstrated in endolysins originating from phages infecting Gram-positives and only in an inverse arrangement. Both binding domains contain conserved repeat sequences, consistent with those of some peptidoglycan hydrolases of Gram-positive bacteria. Fusions of these domains with green fluorescent protein immediately label all outer membrane-permeabilized Gram-negative bacteria tested, isolated P. aeruginosa peptidoglycan and N-acetylated Bacillus subtilis peptidoglycan, demonstrating the broad range of peptidoglycan-binding capacity by these domains. Specifically, A1 chemotype peptidoglycan and fully N-acetylated glucosamine units are essential for binding. Both KZ144 and EL188 appear to be a natural chimeric enzyme, originating from a recombination of a cell wall-binding domain encoded by a Bacillus or Clostridium species and a catalytic domain of an unknown ancestor.
Collapse
Affiliation(s)
- Yves Briers
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
112
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
113
|
Ye T, Zhang X. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl Microbiol Biotechnol 2008; 78:635-41. [PMID: 18224315 DOI: 10.1007/s00253-008-1353-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/06/2008] [Indexed: 10/22/2022]
Abstract
Thermostable enzymes from thermophiles have attracted extensive studies. However, little is known about thermophilic lysin of bacteriophage obtained from deep-sea hydrothermal vent. In this study, a lysin from deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2) was characterized for the first time. It was found that the GVE2 lysin was highly homologous with N-acetylmuramoyl-L-alanine amidases. After expression in Escherichia coli, the recombinant GVE2 lysin was purified. The recombinant lysin was active over a range of temperature from 40 degrees C to 80 degrees C, with an optimum at 60 degrees C. Its optimal pH was 6.0, and it was stable over a wide range of pH from 4.0 to 10.0. The lysin was highly active when some enzyme inhibitors or detergents (phenylmethylsulfonyl fluoride, Tween 20, Triton X-100, and chaps) were used. However, it was strongly inhibited by sodium dodecyl sulfate and ethylene diamine tetraacetic acid. Its enzymatic activity could be slightly stimulated in the presence of Na(+) and Li(+). But the metal ions Mg(2+), Ba(2+), Zn(2+), Fe(3+), Ca(2+), and Mn(2+) at concentrations of 1 or 10 mM showed inhibitions to the lysin activity. Our study demonstrated the first characterization of lysin from deep-sea thermophilic bacteriophage.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | |
Collapse
|
114
|
Srividhya KV, Krishnaswamy S. Subclassification and targeted characterization of prophage-encoded two-component cell lysis cassette. J Biosci 2007; 32:979-90. [PMID: 17914239 DOI: 10.1007/s12038-007-0097-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteriophage induced lysis of host bacterial cell is mediated by a two component cell lysis cassette comprised of holin and lysozyme. Prophages are integrated forms of bacteriophages in bacterial genomes providing a repertoire for bacterial evolution. Analysis using the prophage database (http://bicmku.in:8082) constructed by us showed 47 prophages were associated with putative two component cell lysis genes. These proteins cluster into four different subgroups. In this process, a putative holin (essd) and endolysin (ybcS), encoded by the defective lambdoid prophage DLP12 was found to be similar to two component cell lysis genes in functional bacteriophages like p21 and P1. The holin essd was found to have a characteristic dual start motif with two transmembrane regions and C-terminal charged residues as in class II holins. Expression of a fusion construct of essd in Escherichia coli showed slow growth. However, under appropriate conditions, this protein could be over expressed and purified for structure function studies. The second component of the cell lysis cassette, ybcS, was found to have an N-terminal SAR (Signal Arrest Release) transmembrane domain. The construct of ybcS has been over expressed in E.coli and the purified protein was functional, exhibiting lytic activity against E.coli and Salmonella typhi cell wall substrate. Such targeted sequence- structure-function characterization of proteins encoded by cryptic prophages will help understand the contribution of prophage proteins to bacterial evolution.
Collapse
Affiliation(s)
- K V Srividhya
- Centre of Excellence in Bioinformatics, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
115
|
Nisin-triggered activity of Lys44, the secreted endolysin from Oenococcus oeni phage fOg44. J Bacteriol 2007; 190:457-61. [PMID: 17981964 DOI: 10.1128/jb.01195-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsic resistance of Oenococcus oeni cells to the secreted endolysin from oenophage fOg44 (Lys44) was investigated. Experiments with several antimicrobials support the hypothesis that the full activity of Lys44 requires sudden ion-nonspecific dissipation of the proton motive force, an event undertaken by the fOg44 holin in the phage infection context.
Collapse
|
116
|
Abstract
Optimality models collapse the vagaries of genetics into simple trade-offs to calculate phenotypes expected to evolve by natural selection. Optimality approaches are commonly criticized for this neglect of genetic details, but resolution of this disagreement has been difficult. The importance of genetic details may be tested by experimental evolution of a trait for which an optimality model exists and in which genetic details can be studied. Here we evolved lysis time in bacteriophage T7, a virus of Escherichia coli. Lysis time is equivalent to the age of reproduction in an organism that reproduces once and then dies. Delaying lysis increases the number of offspring but slows generation time, and this trade-off renders the optimum sensitive to environmental conditions: earlier lysis is favored when bacterial hosts are dense, later lysis is favored when hosts are sparse. In experimental adaptations, T7 evolved close to the optimum in conditions favoring early lysis but not in conditions favoring late lysis. One of the late lysis adaptations exhibited no detectable phenotypic evolution despite genetic evolution; the other evolved only partly toward the expected optimum. Overall, the lysis time of the adapted phages remained closer to their starting values than predicted by the model. From the perspective of the optimality model, the experimental conditions were expected to select changes only along the postulated trade-off, but a trait outside the trade-off evolved as well. Evidence suggests that the model's failure ultimately stems from a violation of the trade-off, rather than a paucity of mutations.
Collapse
Affiliation(s)
- Richard H Heineman
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
117
|
Park T, Struck DK, Dankenbring CA, Young R. The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J Bacteriol 2007; 189:9135-9. [PMID: 17827300 PMCID: PMC2168629 DOI: 10.1128/jb.00847-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phage 21 holin, S(21), forms small membrane holes that depolarize the membrane and is designated as a pinholin, as opposed to large-hole-forming holins, like S(lambda). Pinholins require secreted SAR endolysins, a pairing that may represent an intermediate in the evolution of canonical holin-endolysin systems.
Collapse
Affiliation(s)
- Taehyun Park
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
118
|
Tran TAT, Struck DK, Young R. The T4 RI antiholin has an N-terminal signal anchor release domain that targets it for degradation by DegP. J Bacteriol 2007; 189:7618-25. [PMID: 17693511 PMCID: PMC2168732 DOI: 10.1128/jb.00854-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysis inhibition (LIN) of T4-infected cells was one of the foundational experimental systems for modern molecular genetics. In LIN, secondary infection of T4-infected cells results in a dramatically protracted infection cycle in which intracellular phage and endolysin accumulation can continue for hours. At the molecular level, this is due to the inhibition of the holin, T, by the antiholin, RI. RI is only 97 residues and contains an N-terminal hydrophobic domain and a C-terminal hydrophilic domain; expression of the latter domain fused to a secretory signal sequence is sufficient to impose LIN, due to its specific interaction with the periplasmic domain of the T holin. Here we show that the N-terminal sequence comprises a signal anchor release (SAR) domain, which causes the secretion of RI in a membrane-tethered form and then its subsequent release into the periplasm, without proteolytic processing. Moreover, the SAR domain confers both functional lability and DegP-mediated proteolytic instability on the released form of RI, although LIN is not affected in a degP host. These results are discussed in terms of a model for the activation of RI in the establishment of the LIN state.
Collapse
Affiliation(s)
- Tram Anh T Tran
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
119
|
Paradis-Bleau C, Cloutier I, Lemieux L, Sanschagrin F, Laroche J, Auger M, Garnier A, Levesque RC. Peptidoglycan lytic activity of thePseudomonas aeruginosaphage ÏKZ gp144 lytic transglycosylase. FEMS Microbiol Lett 2007; 266:201-9. [PMID: 17233731 DOI: 10.1111/j.1574-6968.2006.00523.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The gp144 endolysin gene from the Pseudomonas aeruginosa phage phiKZ was cloned and studies of gp144 expression into Escherichia coli showed host cell lysis. The gp144 protein was purified directly from the culture supernatant and from the bacterial cell pellet and showed in vitro antibacterial lytic activity against P. aeruginosa bacteria and degraded purified peptidoglycan of Gram-negative bacteria. MS analysis identified the gp144 peptidoglycan cleavage site and confirmed a lytic transglycosylase enzyme. Studies of gp144 expression in the presence of sodium azide (NaN(3)), an inhibitor of the protein export machinery, and into an E. coli MM52 secA(ts) mutant at permissive and restrictive temperatures showed that gp144 was secreted independently of the Sec system. The solution conformation of purified gp144 analyzed by circular dichroism spectroscopy was 61% in alpha-helical content, and showed a 72% decrease when interacting with dimyristoylphosphatidylglycerol (DMPG), one of the major components of bacterial membranes and less than 10% with dimyristoylphosphatidylcholine (DMPC) found in eukaryotic membranes. Membrane vesicles of DMPG anionic lipids containing calcein indicated that gp144 caused a rapid release of fluorescent calcein when interacting with synthetic membranes. These results indicated that gp144 from phiKZ is a lytic transglycosylase capable of interacting with and disorganizing bacterial membranes and has potential as an antipseudomonal in phage therapy.
Collapse
Affiliation(s)
- Catherine Paradis-Bleau
- Département de Biologie Médicale, Faculté de Médecine, Universite Laval, Sainte-Foy, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Park T, Struck DK, Deaton JF, Young R. Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci U S A 2006; 103:19713-8. [PMID: 17172454 PMCID: PMC1750887 DOI: 10.1073/pnas.0600943103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fate of phage-infected bacteria is determined by the holin, a small membrane protein that triggers to disrupt the membrane at a programmed time, allowing a lysozyme to attack the cell wall. S(21)68, the holin of phage 21, has two transmembrane domains (TMDs) with a predicted N-in, C-in topology. Surprisingly, TMD1 of S(21)68 was found to be dispensable for function, to behave as a SAR ("signal-anchor-release") domain in exiting the membrane to the periplasm, and to engage in homotypic interactions in the soluble phase. The departure of TMD1 from the bilayer coincides with the lethal triggering of the holin and is accelerated by membrane depolarization. Basic residues added at the N terminus of S(21)68 prevent the escape of TMD1 to the periplasm and block hole formation by TMD2. Lysis thus depends on dynamic topology, in that removal of the inhibitory TMD1 from the bilayer frees TMD2 for programmed formation of lethal membrane lesions.
Collapse
Affiliation(s)
- Taehyun Park
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
| | - Douglas K. Struck
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
| | - John F. Deaton
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
121
|
Lee CN, Lin JW, Chow TY, Tseng YH, Weng SF. A novel lysozyme from Xanthomonas oryzae phage ϕXo411 active against Xanthomonas and Stenotrophomonas. Protein Expr Purif 2006; 50:229-37. [PMID: 16908188 DOI: 10.1016/j.pep.2006.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 06/09/2006] [Accepted: 06/10/2006] [Indexed: 10/24/2022]
Abstract
In this study, a bacteriophage of Xanthomonas oryzae pv. oryzae designated as varphiXo411 was isolated. Random sequencing of its genome revealed that it is closely related to another X. oryzae phage, Xp10. A cloned fragment carries the lysozyme gene, lys411. The deduced protein, Lys411, shares 92% identity with Xp10 lysozyme, which contains an extra 46 aa at the N-terminus. Lys411 shows over 40% identities to several other phage lysozymes. The His-tagged protein, Lys411H, expressed in Escherichia coli largely formed as inclusion bodies. The insoluble protein was solubilized in urea and purified by passing through a His-bind column, and the lytic activity was then restored by a refolding process. The optimal assay conditions determined for Lys411H are in 0.1M potassium phosphate buffer, pH 6.6 containing 1 mM CuCl(2) at 25 degrees C. Lysis assays using different bacterial cells as the substrates indicate that Lys411H is the first lysozyme active against both Xanthomonas and Stenotrophomonas maltophilia. This suggests that Lys411 can be a candidate to be developed into a therapeutic agent for treating S. maltophilia infections, in addition to the potential use in control of the plant diseases caused by Xanthomonas. By analogy to the situation in Xp10, we predict that varphiXo411 has no holin, the protein required for lysozyme export, and the N-terminal signal-arrest-release sequence of Lys411 can accommodate its own export to the periplasm.
Collapse
Affiliation(s)
- Chia-Ni Lee
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
122
|
Stojković EA, Rothman-Denes LB. Coliphage N4 N-acetylmuramidase defines a new family of murein hydrolases. J Mol Biol 2006; 366:406-19. [PMID: 17174325 DOI: 10.1016/j.jmb.2006.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 10/25/2006] [Accepted: 11/06/2006] [Indexed: 11/16/2022]
Abstract
Escherichia coli phage N4 infection leads to delayed host cell lysis, 3000 particles per infected bacterium and a small plaque phenotype. We show that bacteriophage N4 encodes a murein hydrolase (gp61) that is essential for N4 plaque-forming ability. gp61 has a high level of sequence similarity to hypothetical proteobacterial proteins, and Vibrio harveyi phage VHML ORF 19. Nano-electrospray ionization (nESI) quadrupole ion trap (QIT) mass spectrometry (MS) analysis of muropeptides from purified gp61 digestion of E. coli peptidoglycan indicates that gp61 is an N-acetylmuramidase. The EGGY motif present near the N terminus of gp61 and its homologs contains the glutamic acid residue essential for enzymatic activity. These results provide evidence that N4 gp61 and its homologs define a new family of N-acetylmuramidases (pfam05838.4, DUF847, COG3926). In contrast to its homologs, gp61 contains an N-terminal signal sequence. When expressed at levels present during phage infection, gp61 localizes primarily to the cell inner membrane; in contrast, over-expression of recombinant N4 gp61 is sufficient for rapid cell lysis. Overproduction of the recombinant Salmonella typhimurium (STM0016) homolog is sufficient for cell lysis only when fused to the gp61 N-terminal signal sequence. The results of subcellular localization and of mutagenesis of the gp61 N-terminal signal sequence indicate that gp61 must be released from the inner membrane to be catalytically active.
Collapse
Affiliation(s)
- Emina A Stojković
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
123
|
Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol 2006; 188:6924-31. [PMID: 16980495 PMCID: PMC1595506 DOI: 10.1128/jb.00831-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic Pseudomonas aeruginosa phages LKD16 and LKA1 were locally isolated and morphologically classified as Podoviridae. While LKD16 adsorbs weakly to its host, LKA1 shows efficient adsorption (ka = 3.9 x 10(-9) ml min(-1)). LKA1, however, displays a narrow host range on clinical P. aeruginosa strains compared to LKD16. Genome analysis of LKD16 (43,200 bp) and LKA1 (41,593 bp) revealed that both phages have linear double-stranded DNA genomes with direct terminal repeats of 428 and 298 bp and encode 54 and 56 genes, respectively. The majority of the predicted structural proteins were experimentally confirmed as part of the phage particle using mass spectrometry. Phage LKD16 is closely related to bacteriophage phiKMV (83% overall DNA homology), allowing a more thoughtful gene annotation of both genomes. In contrast, LKA1 is more distantly related, lacking significant DNA homology and showing protein similarity to phiKMV in 48% of its gene products. The early region of the LKA1 genome has diverged strongly from phiKMV and LKD16, and intriguing differences in tail fiber genes of LKD16 and LKA1 likely reflect the observed discrepancy in infection-related properties. Nonetheless, general genome organization is clearly conserved among phiKMV, LKD16, and LKA1. The three phages carry a single-subunit RNA polymerase gene adjacent to the structural genome region, a feature which distinguishes them from other members of the T7 supergroup. Therefore, we propose that phiKMV represents an independent and widespread group of lytic P. aeruginosa phages within the T7 supergroup.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven B-3001, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Daniels R, Rusan NM, Wilbuer AK, Norkin LC, Wadsworth P, Hebert DN. Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes. J Virol 2006; 80:6575-87. [PMID: 16775344 PMCID: PMC1488938 DOI: 10.1128/jvi.00347-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
125
|
Highlander SK, Weissenberger S, Alvarez LE, Weinstock GM, Berget PB. Complete nucleotide sequence of a P2 family lysogenic bacteriophage, ϕMhaA1-PHL101, from Mannheimia haemolytica serotype A1. Virology 2006; 350:79-89. [PMID: 16631219 DOI: 10.1016/j.virol.2006.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/11/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
The 34,525 nucleotide sequence of a double-stranded DNA bacteriophage (phiMhaA1-PHL101) from Mannheimia haemolytica serotype A1 has been determined. The phage encodes 50 open reading frames. Twenty-three of the proteins are similar to proteins of the P2 family of phages. Other protein sequences are most similar to possible prophage sequences from the draft genome of Histophilus somni 2336. Fourteen open reading frames encode proteins with no known homolog. The P2 orthologues are collinear in phiMhaA1-PHL101, with the exception of the phage tail protein gene T, which maps in a unique location between the S and V genes. The phage ORFs can be arranged into 17 possible transcriptional units and many of the genes are predicted to be translationally coupled. Southern blot analysis revealed phiMhaA1-PHL101 sequences in other A1 isolates as well as in serotype A5, A6, A9, and A12 strains of M. haemolytica, but not in the related organisms, Mannheimia glucosida or Pasteurella trehalosi.
Collapse
Affiliation(s)
- Sarah K Highlander
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
126
|
Tran TAT, Struck DK, Young R. Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition. J Bacteriol 2005; 187:6631-40. [PMID: 16166524 PMCID: PMC1251592 DOI: 10.1128/jb.187.19.6631-6640.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage T4 effects host lysis with a holin, T, and an endolysin, E. T and E accumulate in the membrane and cytoplasm, respectively, throughout the period of late gene expression. At an allele-specific time, T triggers to disrupt the membrane, allowing E to enter the periplasm and attack the peptidoglycan. T triggering can be blocked by secondary infections, leading to the state of lysis inhibition (LIN). LIN requires the T4 antiholin, RI, and is sensitive to the addition of energy poisons. T is unusual among holins in having a large C-terminal periplasmic domain. The rI gene encodes a polypeptide of 97 residues, of which 72 are predicted to be a periplasmic domain. Here, we show that the periplasmic domain of RI is necessary and sufficient to block T-mediated lysis. Moreover, when overexpressed, the periplasmic domain of T (T(CTD)) was found to abolish LIN in T4 infections and to convert wild-type (wt) T4 plaques from small and fuzzy edged to the classic "r" large, sharp-edged plaque morphology. Although RI could be detected in whole cells, attempts to monitor it during subcellular fractionation were unsuccessful, presumably because RI is a highly unstable protein. However, fusing green fluorescence protein (GFP) to the N terminus of RI created a more stable chimera that could be demonstrated to form complexes with wild-type T(CTD) and also with its LIN-defective T75I variant. These results suggest that the function of the unusual periplasmic domain of T is to transduce environmental information for the real-time control of lysis timing.
Collapse
Affiliation(s)
- Tram Anh T Tran
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
127
|
Abstract
The effect of lysis timing on bacteriophage (phage) fitness has received little theoretical or experimental attention. Previously, the impact of lysis timing on phage fitness was studied using a theoretical model based on the marginal value theorem from the optimal foraging theory. An implicit conclusion of the model is that, for any combination of host quantity and quality, an optimal time to lyse the host would exist so that the phage fitness would be the highest. To test the prediction, an array of isogenic lambda-phages that differ only in their lysis times was constructed. For each phage strain, the lysis time, burst size, and fitness (growth rate) were determined. The result showed that there is a positive linear relationship between lysis time and burst size. Moreover, the strain with an intermediate lysis time has the highest fitness, indicating the existence of an optimal lysis time. A mathematical model is also constructed to describe the population dynamics of phage infection. Computer simulations using parameter values derived from phage lambda-infection also showed an optimal lysis time. However, both the optimum and the fitness are different from the experimental result. The evolution of phage lysis timing is discussed from the perspectives of multiple infection and life-history trait evolution.
Collapse
Affiliation(s)
- Ing-Nang Wang
- Department of Biological Sciences, State University of New York, Albany, New York 12222, USA.
| |
Collapse
|
128
|
Loessner MJ. Bacteriophage endolysins--current state of research and applications. Curr Opin Microbiol 2005; 8:480-7. [PMID: 15979390 DOI: 10.1016/j.mib.2005.06.002] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/09/2005] [Indexed: 11/27/2022]
Abstract
Endolysins are phage-encoded enzymes that break down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle. Their action is tightly regulated by holins, by membrane arrest, and by conversion from their inactive to active state. Recent research has not only revealed the unexpected diversity of these highly specific hydrolases but has also yielded insights into their modular organization and their three-dimensional structures. Their N-terminal catalytic domains are able to target almost every possible bond in the peptidoglycan network, and their corresponding C-terminal cell wall binding domains target the enzymes to their substrate. Owing to their specificity and high activity, endolysins have been employed for various in vitro and in vivo aims, in food science, in microbial diagnostics, and for treatment of experimental infections. Clearly, phage endolysins represent great tools for use in molecular biology, biotechnology and in medicine, and we are just beginning to tap this potential.
Collapse
Affiliation(s)
- Martin J Loessner
- Institute of Food Science and Nutrition, Swiss Federal Institute of Technology (ETH), Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland.
| |
Collapse
|
129
|
Xu M, Arulandu A, Struck DK, Swanson S, Sacchettini JC, Young R. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 2005; 307:113-7. [PMID: 15637279 DOI: 10.1126/science.1105143] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The P1 lysozyme Lyz is secreted to the periplasm of Escherichia coli and accumulates in an inactive membrane-tethered form. Genetic and biochemical experiments show that, when released from the bilayer, Lyz is activated by an intramolecular thiol-disulfide isomerization, which requires a cysteine in its N-terminal SAR (signal-arrest-release) domain. Crystal structures confirm the alternative disulfide linkages in the two forms of Lyz and reveal dramatic conformational differences in the catalytic domain. Thus, the exported P1 endolysin is kept inactive by three levels of control-topological, conformational, and covalent-until its release from the membrane is triggered by the P1 holin.
Collapse
Affiliation(s)
- Min Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
130
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma J, Young R. Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 2004; 340:49-65. [PMID: 15184022 DOI: 10.1016/j.jmb.2004.04.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/05/2004] [Accepted: 04/06/2004] [Indexed: 01/08/2023]
Abstract
We have isolated BcepMu, a Mu-like bacteriophage whose host range includes human pathogenic Burkholderia cenocepacia (formally B. cepacia genomovar III) isolates, and determined its complete 36748 bp genomic sequence. Like enteric bacteriophage Mu, the BcepMu genomic DNA is flanked by variable host sequences, a result of transposon-mediated replication. The BcepMu genome encodes 53 proteins, including capsid assembly components related to those of Mu, and tail sheath and tube proteins related to those of bacteriophage P2. Seventeen of the BcepMu genes were demonstrated to encode homotypic interacting domains by using a cI fusion system. Most BcepMu genes have close homologs to prophage elements present in the two published Salmonella typhi genomes, and in the database sequences of Photorhabdus luminescens, and Chromobacterium violaceum. These prophage elements, designated SalMu, PhotoMu and ChromoMu, respectively, are collinear with BcepMu through nearly their entire lengths and show only limited mosaicism, despite the divergent characters of their hosts. The BcepMu family of Mu-like phages has a number of notable differences from Mu. Most significantly, the critical left end region of BcepMu is inverted with respect to Mu, and the BcepMu family of transposases is clearly of a distinct lineage with different molecular requirements at the transposon ends. Interestingly, a survey of 33 B.cepacia complex strains indicated that the BcepMu prophage is widespread in human pathogenic B.cenocepacia ET12 lineage isolates, but not in isolates from the PHDC or Midwest lineages. Identified members of the BcepMu family all contain a gene possibly involved in bacterial pathogenicity, a homolog of the type-two-secretion component exeA, but only BcepMu also carries a lipopolysaccharide modification acyltransferase which may also contribute a pathogenicity factor.
Collapse
Affiliation(s)
- Elizabeth J Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | |
Collapse
|