101
|
Abstract
Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii, also known as Spotted wing drosophila. Our study results demonstrate that the abundance and structure of microbiota in D. suzukii are strongly affected by the environment, where microbes have variable roles depending on the nutritional situation. For instance, we found that the presence of microbes is deleterious for flies growing on a protein-rich diet and yet is beneficial for flies growing on a diet of protein-poor fruits. Additionally, germ-free flies must feed on microbes to obtain the necessary protein for larval development on strawberries and blueberries. Our report validates the complexity seen in host-microbe interactions and may provide information useful for D. suzukii pest control.
Collapse
|
102
|
Obata F, Fons CO, Gould AP. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat Commun 2018; 9:975. [PMID: 29515102 PMCID: PMC5841413 DOI: 10.1038/s41467-018-03070-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses experienced during development exert many long-term effects upon health and disease. For example, chemical oxidants or genetic perturbations that induce low levels of reactive oxygen species can extend lifespan in several species. In some cases, the beneficial effects of low-dose oxidants are attributed to adaptive protective mechanisms such as mitohormesis, which involve long-term increases in the expression of stress response genes. Here we show in Drosophila that transient exposure to low concentrations of oxidants during development leads to an extension of adult lifespan. Surprisingly, this depends upon oxidants acting in an antibiotic-like manner to selectively deplete the microbiome of Acetobacter proteobacteria. We demonstrate that the presence of Acetobacter species, such as A. aceti, in the indigenous microbiota increases age-related gut dysfunction and shortens lifespan. This study demonstrates that low-dose oxidant exposure during early life can extend lifespan via microbiome remodelling rather than mitohormesis.
Collapse
Affiliation(s)
- Fumiaki Obata
- Physiology and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Clara O Fons
- Physiology and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alex P Gould
- Physiology and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
103
|
Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S, Lindvall JM, Engström Y. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 2018; 14:e1006936. [PMID: 29499056 PMCID: PMC5851638 DOI: 10.1371/journal.ppat.1006936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.
Collapse
Affiliation(s)
- Bo G. Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Widad Dantoft
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
104
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
105
|
Wang Y, Staubach F. Individual variation of natural D.melanogaster-associated bacterial communities. FEMS Microbiol Lett 2018; 365:4828325. [DOI: 10.1093/femsle/fny017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yun Wang
- Department of Evolutionary Biology and Ecology, Institute of Biology I, Albert Ludwigs University Freiburg, Hauptstrasse 1, Freiburg 79104, Germany
| | - Fabian Staubach
- Department of Evolutionary Biology and Ecology, Institute of Biology I, Albert Ludwigs University Freiburg, Hauptstrasse 1, Freiburg 79104, Germany
| |
Collapse
|
106
|
Fan X, Gaur U, Yang M. Intestinal Homeostasis and Longevity: Drosophila Gut Feeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:157-168. [PMID: 30232758 DOI: 10.1007/978-981-13-1117-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The association between intestinal homeostasis and life span has caught the attention of the research community worldwide. There have been multiple evidences which support the role of gut homeostasis in aging. The Drosophila gastrointestinal tract is very similar to the mammalian gut, and therefore it can directly be used as a model to understand the association between gut microbiota, immune system, and aging in humans. In current review we have discussed the importance of gut microbiota in aging. Also we have highlighted the importance of host immune system and gut aging. Since the increased microbial load in the gut activates the host immune system, the dysregulated microbiota can have direct implications in gut aging. The proliferation and renewal of intestinal stem cells can also affect gut aging. Another important aspect that we have discussed is the communication between the gut and the other organ systems which affect the overall aging process. Altogether we propose that the Drosophila gut can be a good model to improve our understanding of human gut aging.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Beijing, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
107
|
Clark RI, Walker DW. Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cell Mol Life Sci 2018; 75:93-101. [PMID: 29026921 PMCID: PMC5754256 DOI: 10.1007/s00018-017-2671-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Studies in mammals, including humans, have reported age-related changes in microbiota dynamics. A major challenge, however, is to dissect the cause and effect relationships involved. Invertebrate model organisms such as the fruit fly Drosophila and the nematode Caenorhabditis elegans have been invaluable in studies of the biological mechanisms of aging. Indeed, studies in flies and worms have resulted in the identification of a number of interventions that can slow aging and prolong life span. In this review, we discuss recent work using invertebrate models to provide insight into the interplay between microbiota dynamics, intestinal homeostasis during aging and life span determination. An emerging theme from these studies is that the microbiota contributes to cellular and physiological changes in the aging intestine and, in some cases, age-related shifts in microbiota dynamics can drive health decline in aged animals.
Collapse
Affiliation(s)
- Rebecca I Clark
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
108
|
Abstract
The human gut microbiota is a huge ecosystem that provides lots of functions for host development, immune system, and metabolism. Gut microbiota is linked to lots of diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), irritable bowel syndrome, and cardiovascular disease (CVD). Few studies, however, have noted the relationship between aging and microbiota; the connection between aging and microbiota remains largely to be researched. In this review, recent research findings are summarized on the role of gut microbiota in aging processes with emphasis on therapeutic potential of microbiome-targeted interventions in antiaging medicine.
Collapse
Affiliation(s)
- Maoyang Lu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
109
|
A Distinctive and Host-Restricted Gut Microbiota in Populations of a Cactophilic Drosophila Species. Appl Environ Microbiol 2017; 83:AEM.01551-17. [PMID: 28939605 DOI: 10.1128/aem.01551-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
Almost all animals possess gut microbial communities, but the nature of these communities varies immensely. For example, in social bees and mammals, the composition is relatively constant within species and is dominated by specialist bacteria that do not live elsewhere; in laboratory studies and field surveys of Drosophila melanogaster, however, gut communities consist of bacteria that are ingested with food and that vary widely among individuals and localities. We addressed whether an ecological specialist in its natural habitat has a microbiota dominated by gut specialists or by environmental bacteria. Drosophila nigrospiracula is a species that is endemic to the Sonoran Desert and is restricted to decaying tissues of two giant columnar cacti, Pachycereus pringlei (cardón cactus) and Carnegiea gigantea (saguaro cactus). We found that the D. nigrospiracula microbiota differs strikingly from that of the cactus tissue on which the flies feed. The most abundant bacteria in the flies are rare or completely absent in the cactus tissue and are consistently abundant in flies from different cacti and localities. Several of these fly-associated bacterial groups, such as the bacterial order Orbales and the genera Serpens and Dysgonomonas, have been identified in prior surveys of insects from the orders Hymenoptera, Coleoptera, Lepidoptera, and Diptera, including several Drosophila species. Although the functions of these bacterial groups are mostly unexplored, Orbales species studied in bees are known to break down plant polysaccharides and use the resulting sugars. Thus, these bacterial groups appear to be specialized to the insect gut environment, where they may colonize through direct host-to-host transmission in natural settings.IMPORTANCE Flies in the genus Drosophila have become laboratory models for microbiota research, yet the bacteria commonly used in these experiments are rarely found in wild-caught flies and instead represent bacteria also present in the food. This study shows that an ecologically specialized Drosophila species possesses a distinctive microbiome, composed of bacterial types absent from the flies' natural food but widespread in other wild-caught insects. This study highlights the importance of fieldwork-informed microbiota research.
Collapse
|
110
|
Depetris-Chauvin A, Galagovsky D, Chevalier C, Maniere G, Grosjean Y. Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci Rep 2017; 7:14230. [PMID: 29079812 PMCID: PMC5660182 DOI: 10.1038/s41598-017-14589-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/13/2017] [Indexed: 11/09/2022] Open
Abstract
Microorganisms inhabiting fermenting fruit produce chemicals that elicit strong behavioral responses in flies. Depending on their ecological niche, individuals confer a positive or a negative valence to a chemical and, accordingly, they trigger either attractive or repulsive behaviors. We studied the case of bacterial short-chain fatty acids (SCFA) that trigger opposite behaviors in adult and larvae of Drosophila melanogaster. We determined that SCFA-attractive responses depend on two larval exclusive chemoreceptors, Or30a and Or94b. Of those SCFA, propionic acid improves larval survival in suboptimal rearing conditions and supports growth. Olfactory detection of propionic acid specifically is sufficient to trigger feeding behaviors, and this effect requires the correct activity of Or30a+ and Or94b+ olfactory sensory neurons. Additionally, we studied the case of the invasive pest Drosophila suzukii that lives on undamaged ripe fruit with less SCFA production. Contrary to D. melanogaster, D. suzukii larvae show reduced attraction towards propionic acid, which does not trigger feeding behavior in this invasive species. Our results demonstrate the relevance of propionic acid as an orexigenic signal in D. melanogaster larvae. Moreover, this study underlines that the changes on ecological niche are accompanied with alterations of olfactory preferences and vital olfactory driven behaviors.
Collapse
Affiliation(s)
- Ana Depetris-Chauvin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.,Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Diego Galagovsky
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Charlene Chevalier
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Gerard Maniere
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Yael Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
111
|
The Gut Commensal Microbiome of Drosophila melanogaster Is Modified by the Endosymbiont Wolbachia. mSphere 2017; 2:mSphere00287-17. [PMID: 28932814 PMCID: PMC5597968 DOI: 10.1128/msphere.00287-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies. Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria—Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia-induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCEWolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies.
Collapse
|
112
|
Panchenko PL, Kornilova MB, Perfilieva KS, Markov AV. Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017040100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Microbial influence on Drosophila biology. Curr Opin Microbiol 2017; 38:165-170. [PMID: 28668769 DOI: 10.1016/j.mib.2017.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/16/2017] [Indexed: 01/20/2023]
Abstract
Commensal bacteria profoundly affect the biology of their animal partners. Drosophila melanogaster has been broadly used to study microbiota effects on invertebrates, whose findings are frequently applicable to translational studies. The beneficial role of commensal microbes on Drosophila biology is extensively described, ranging from growth to metabolism, immunity and even behaviour. However, the mechanisms underlying these effects are not well understood. Studies continue to discover new layers of complexity in the host-bacteria partnership that constantly changes depending on a plethora of different variables. This review discusses the latest advances in understanding the molecular bases of microbiota impact on Drosophila physiology and behaviour, emphasizing its broad influence and the intricate interdependence of the two partners in shaping their biology.
Collapse
|
114
|
Daisley BA, Trinder M, McDowell TW, Welle H, Dube JS, Ali SN, Leong HS, Sumarah MW, Reid G. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep 2017; 7:2703. [PMID: 28578396 PMCID: PMC5457429 DOI: 10.1038/s41598-017-02806-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 01/14/2023] Open
Abstract
Pesticides are used extensively in food production to maximize crop yields. However, neonicotinoid insecticides exert unintentional toxicity to honey bees (Apis mellifera) that may partially be associated with massive population declines referred to as colony collapse disorder. We hypothesized that imidacloprid (common neonicotinoid; IMI) exposure would make Drosophila melanogaster (an insect model for the honey bee) more susceptible to bacterial pathogens, heat stress, and intestinal dysbiosis. Our results suggested that the immune deficiency (Imd) pathway is necessary for D. melanogaster survival in response to IMI toxicity. IMI exposure induced alterations in the host-microbiota as noted by increased indigenous Acetobacter and Lactobacillus spp. Furthermore, sub-lethal exposure to IMI resulted in decreased D. melanogaster survival when simultaneously exposed to bacterial infection and heat stress (37 °C). This coincided with exacerbated increases in TotA and Dpt (Imd downstream pro-survival and antimicrobial genes, respectively) expression compared to controls. Supplementation of IMI-exposed D. melanogaster with Lactobacillus plantarum ATCC 14917 mitigated survival deficits following Serratia marcescens (bacterial pathogen) septic infection. These findings support the insidious toxicity of neonicotinoid pesticides and potential for probiotic lactobacilli to reduce IMI-induced susceptibility to infection.
Collapse
Affiliation(s)
- Brendan A Daisley
- Canadian R&D Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, N6A 4V2, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Mark Trinder
- Canadian R&D Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, N6A 4V2, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Tim W McDowell
- London Research and Development Center, Agriculture and Agri-Food Canada, London, N5V 3V3, Canada
| | - Hylke Welle
- Canadian R&D Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, N6A 4V2, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada.,Vrije Universiteit Amsterdam, Faculty Earth and Life Sciences, Institute of Molecular Cell Biology, Amsterdam, 1081, Netherlands
| | - Josh S Dube
- Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Sohrab N Ali
- Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Surgery, Division of Urology, University of Ottawa, Ottawa, K1Y 4E9, Canada
| | - Hon S Leong
- Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Surgery, The University of Western Ontario, London, N6A 4V2, Canada
| | - Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, N5V 3V3, Canada
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, N6A 4V2, Ontario, Canada. .,Department of Microbiology and Immunology, The University of Western Ontario, London, N6A 5C1, Canada. .,Department of Surgery, The University of Western Ontario, London, N6A 4V2, Canada.
| |
Collapse
|
115
|
High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila. Biochem Biophys Res Commun 2017; 487:910-916. [DOI: 10.1016/j.bbrc.2017.04.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/06/2023]
|
116
|
Antimicrobial peptides extend lifespan in Drosophila. PLoS One 2017; 12:e0176689. [PMID: 28520752 PMCID: PMC5435158 DOI: 10.1371/journal.pone.0176689] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing.
Collapse
|
117
|
Trinder M, Daisley BA, Dube JS, Reid G. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions. Front Microbiol 2017; 8:751. [PMID: 28503170 PMCID: PMC5408076 DOI: 10.3389/fmicb.2017.00751] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host–microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host–microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host–microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Josh S Dube
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Surgery, University of Western Ontario, LondonON, Canada
| |
Collapse
|
118
|
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 2017; 15:e2000862. [PMID: 28441450 PMCID: PMC5404834 DOI: 10.1371/journal.pbio.2000862] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Collapse
Affiliation(s)
- Ricardo Leitão-Gonçalves
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Gabriela Tondolo Fioreze
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pavel M. Itskov
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
119
|
Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F, Chouaia B, Callegari M, Mapelli F, Mandrioli M, Alma A, Daffonchio D. Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:91-103. [PMID: 27886661 DOI: 10.1111/1758-2229.12505] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The pivotal role of diet in shaping gut microbiota has been evaluated in different animal models, including insects. Drosophila flies harbour an inconstant microbiota among which acetic acid bacteria (AAB) are important components. Here, we investigated the bacterial and AAB components of the invasive pest Drosophila suzukii microbiota, by studying the same insect population separately grown on fruit-based or non-fruit artificial diet. AAB were highly prevalent in the gut under both diets (90 and 92% infection rates with fruits and artificial diet respectively). Fluorescent in situ hybridization and recolonization experiments with green fluorescent protein (Gfp)-labelled strains showed AAB capability to massively colonize insect gut. High-throughput sequencing on 16S rRNA gene indicated that the bacterial microbiota of guts fed with the two diets clustered separately. By excluding AAB-related OTUs from the analysis, insect bacterial communities did not cluster separately according to the diet, suggesting that diet-based diversification of the community is primarily reflected on the AAB component of the community. Diet influenced also AAB alpha-diversity, with separate OTU distributions based on diets. High prevalence, localization and massive recolonization, together with AAB clustering behaviour in relation to diet, suggest an AAB role in the D. suzukii gut response to diet modification.
Collapse
Affiliation(s)
- Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Erica M Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Fabio Mazzetto
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Bessem Chouaia
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Mauro Mandrioli
- Dipartimento di Scienze della Vita (DSV), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
120
|
Martinson VG, Douglas AE, Jaenike J. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett 2017; 20:629-639. [PMID: 28371064 DOI: 10.1111/ele.12761] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 12/21/2022]
Abstract
Many aspects of animal ecology and physiology are influenced by the microbial communities within them. The underlying forces contributing to the assembly and diversity of gut microbiotas include chance events, host-based selection and interactions among microorganisms within these communities. We surveyed 215 wild individuals from four sympatric species of Drosophila that share a common diet of decaying mushrooms. Their microbiotas consistently contained abundant bacteria that were undetectable or at low abundance in their diet. Despite their deep phylogenetic divergence, all species had similar microbiotas, thus failing to support predictions of the phylosymbiosis hypothesis. Communities within flies were not random assemblages drawn from a common pool; instead, many bacterial operational taxonomic units (OTUs) were overrepresented or underrepresented relative to the neutral expectations, and OTUs exhibited checkerboard distributions among flies. These results suggest that selective factors play an important role in shaping the gut community structure of these flies.
Collapse
Affiliation(s)
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14627, USA
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
121
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
122
|
Drosophila Genotype Influences Commensal Bacterial Levels. PLoS One 2017; 12:e0170332. [PMID: 28095502 PMCID: PMC5240971 DOI: 10.1371/journal.pone.0170332] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023] Open
Abstract
Host genotype can influence the composition of the commensal bacterial community in some organisms. Composition, however, is only one parameter describing a microbial community. Here, we test whether a second parameter—abundance of bacteria—is a heritable trait by quantifying the presence of four commensal bacterial strains within 36 gnotobiotic inbred lines of Drosophila melanogaster. We find that D. melanogaster genotype exerts a significant effect on microbial levels within the fly. When introduced as monocultures into axenic flies, three of the four bacterial strains were reliably detected within the fly. The amounts of these different strains are strongly correlated, suggesting that the host regulates commensal bacteria through general, not bacteria-specific, means. While the correlation does not appear to be driven by simple variation in overall gut dimensions, a genetic association study suggests that variation in commensal bacterial load may largely be attributed to physical aspects of host cell growth and development.
Collapse
|
123
|
Téfit MA, Leulier F. Lactobacillus plantarum favors the early emergence of fit and fertile adult Drosophila upon chronic undernutrition. ACTA ACUST UNITED AC 2017; 220:900-907. [PMID: 28062579 PMCID: PMC5358326 DOI: 10.1242/jeb.151522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022]
Abstract
Animals are naturally surrounded by a variety of microorganisms with which they constantly interact. Among these microbes, some live in close association with a host and form its microbiota. These communities are being extensively studied, owing to their contributions to shaping various aspects of animal physiology. One of these commensal species, Lactobacillus plantarum, and in particular the L.p.WJL strain, has been shown to promote the growth of Drosophila larvae upon nutrient scarcity, allowing earlier metamorphosis and adult emergence compared with axenic individuals. As for many insects, conditions surrounding the post-embryonic development dictate key adult life history traits in Drosophila, and adjusting developmental timing according to the environment is essential for adult fitness. Thus, we wondered whether the growth acceleration induced by L.p.WJL in a context of poor nutrition could adversely impact the fitness of Drosophila adults. Here, we show that the L.p.WJL-mediated acceleration of growth is not deleterious; adults emerging after an accelerated development are as fit as their axenic siblings. Additionally, the presence of L.p.WJL even leads to a lifespan extension in nutritionally challenged males. These results demonstrate that L.p.WJL is a beneficial partner for Drosophila melanogaster through its entire life cycle. Thus, commensal bacteria allow the earlier emergence and longer survival of fit and fertile individuals and might represent one of the factors contributing to the ecological success of Drosophila. Summary:Lactobacillus plantarumWJL is beneficial to Drosophila physiology across its entire life cycle, triggering the early emergence and longer survival of fit and fertile adults.
Collapse
Affiliation(s)
- Mélisandre A Téfit
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, Cedex 07 69364, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, Cedex 07 69364, France
| |
Collapse
|
124
|
McGinnis JP, Jiang H, Agha MA, Sanchez CP, Lange J, Yu Z, Marion-Poll F, Si K. Immediate perception of a reward is distinct from the reward's long-term salience. eLife 2016; 5. [PMID: 28005005 PMCID: PMC5243026 DOI: 10.7554/elife.22283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 01/30/2023] Open
Abstract
Reward perception guides all aspects of animal behavior. However, the relationship between the perceived value of a reward, the latent value of a reward, and the behavioral response remains unclear. Here we report that, given a choice between two sweet and chemically similar sugars—L- and D-arabinose—Drosophila melanogaster prefers D- over L- arabinose, but forms long-term memories of L-arabinose more reliably. Behavioral assays indicate that L-arabinose-generated memories require sugar receptor Gr43a, and calcium imaging and electrophysiological recordings indicate that L- and D-arabinose differentially activate Gr43a-expressing neurons. We posit that the immediate valence of a reward is not always predictive of the long-term reinforcement value of that reward, and that a subset of sugar-sensing neurons may generate distinct representations of similar sugars, allowing for rapid assessment of the salient features of various sugar rewards and generation of reward-specific behaviors. However, how sensory neurons communicate information about L-arabinose quality and concentration—features relevant for long-term memory—remains unknown. DOI:http://dx.doi.org/10.7554/eLife.22283.001 We often remember experiences that are rewarding in some way. However, not every rewarding experience is stored in memory, and the particular experiences we remember are not always those we would expect to remember. Why is it that some experiences generate long-term memories whereas others do not? Fruit flies feed on a variety of different sugars present in rotting fruits. Although the flies find all of these sugars attractive, they form memories of some sugars more readily than others. This distinction is particularly striking in the case of two sugars with similar structures: D-arabinose and L-arabinose. Flies typically prefer D-arabinose over L-arabinose, but are more likely to remember an encounter with L-arabinose than D-arabinose. McGinnis et al. have used fruit flies to explore how the rewarding properties of an experience affect how likely it is to be stored in memory. The experiments show that D-arabinose and L-arabinose generate different patterns of activity in the fly brain, and identify a subset of taste neurons that support the formation of memories specifically about L-arabinose. These neurons enable flies to associate features of their environment – such as odors – with the presence of this one particular sugar. Such memories may help the flies to find a similar food source again in the future. Artificially activating these neurons is also sufficient to trigger the formation of a memory, even in the absence of L-arabinose itself. Taken as a whole, this work demonstrates that the immediate appeal of a reward can be separated from its ability to generate a long-term memory. The fact that activation of taste neurons can trigger memory formation explains how flies can quickly form long-term memories about desirable food sources. Looking ahead, further work will be required to understand the mechanisms that determine what animals like at any given moment, and what they remember over time. DOI:http://dx.doi.org/10.7554/eLife.22283.002
Collapse
Affiliation(s)
- John P McGinnis
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| | - Huoqing Jiang
- Stowers Institute for Medical Research, Kansas City, United States
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Paris, France.,AgroParisTech, Paris, France
| | | | - Jeff Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Frederic Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Paris, France.,AgroParisTech, Paris, France
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Integrative and Molecular Physiology, University of Kansas School of Medicine, Kansas City, United States
| |
Collapse
|
125
|
Chaplinska M, Gerritsma S, Dini-Andreote F, Falcao Salles J, Wertheim B. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids. PLoS One 2016; 11:e0167726. [PMID: 27973604 PMCID: PMC5156416 DOI: 10.1371/journal.pone.0167726] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/19/2016] [Indexed: 01/02/2023] Open
Abstract
In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance against natural parasites.
Collapse
Affiliation(s)
- Mariia Chaplinska
- Evolutionary Genetics, Development & Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sylvia Gerritsma
- Evolutionary Genetics, Development & Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Francisco Dini-Andreote
- Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joana Falcao Salles
- Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Bregje Wertheim
- Evolutionary Genetics, Development & Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
126
|
Mukhopadhyay P, Chatterjee S. Characterization and control of symbiotic Bacillus cereus isolated from the mid gut of Anopheles subpictus Grassi. J Parasit Dis 2016; 40:1414-1421. [PMID: 27876960 DOI: 10.1007/s12639-015-0704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/18/2015] [Indexed: 11/25/2022] Open
Abstract
An investigation was done to find out the role of gut bacterium on the larval development and survival of Anopheles subpictus, the vector responsible for the transmission of malaria. An. subpictus mosquitoes breed exclusively in stagnant water, including shrimp/fish ponds with high nutrient level. One bacterial strain (CX2) was isolated from the midgut of late third instar of mosquito larvae. The bacterial isolate was sensitive to recommended doses of tetracyclin (30 µg/disc), doxycycline (30 µg/disc), kanamycin (30 µg/disc), gentamycin (10 µg/disc), streptomycin (10 µg/disc), vancomycin (30 µg/disc), ofloxacin (5 µg/disc), levofloxacin (5 µg/disc), gatifloxacin (10 µg/disc), but resistant to ampicillin (10 µg/disc).The larvae which were fed with the mixture of two antibiotics tetracylin (30 µg/disc) and doxycyclin (30 µg/disc) (1:1) could not survive in rice-field water. In the control experiments without any antibiotic treatment, 95-100 % survival and 95 % adult emergence were observed. The study indicates that the elimination of gut bacteria suppressed larval growth. Phylogenetic analysis of the 16S rRNA gene sequence was also done. Based on the morphological, biochemical, FAME analysis and phylogenetic analysis, the bacterial isolate CX2 was identified as Bacillus cereus. Poly acrylamide gel electrophoresis analysis revealed that the isolate showed discrete bands ranging from 24.272 to 60.049 kDa proteins. Water extract and methanol extract of Tamarindus indica showed inhibitory effect against B. cereus.
Collapse
Affiliation(s)
- Priyanka Mukhopadhyay
- Microbiology and Parasitology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104 India
| | - Soumendranath Chatterjee
- Microbiology and Parasitology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104 India
| |
Collapse
|
127
|
Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection. J Invertebr Pathol 2016; 143:18-25. [PMID: 27871813 DOI: 10.1016/j.jip.2016.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/06/2016] [Accepted: 11/17/2016] [Indexed: 11/22/2022]
Abstract
Animals experience near constant infection with microorganisms. A significant proportion of these microbiota reside in the alimentary tract. There is a growing appreciation for the roles gut microbiota play in host biology. The gut microbiota of insects, for example, have been shown to help the host overcome pathogen infection either through direct competition or indirectly by stimulating host immunity. These defenses may also be supplemented by coinfecting maternally inherited microbes such as Wolbachia. The presence of Wolbachia in a host can delay and/or reduce death caused by RNA viruses. Whether the gut microbiota of the host interacts with Wolbachia, or vice versa, the precise role of Wolbachia in antiviral protection is not known. In this study, we used 16S rDNA sequencing to characterise changes in gut microbiota composition in Drosophila melanogaster associated with Wolbachia infection and antibiotic treatment. We subsequently tested whether changes in gut composition via antibiotic treatment altered Wolbachia-mediated antiviral properties. We found that both antibiotics and Wolbachia significantly reduced the biodiversity of the gut microbiota without changing the total microbial load. We also showed that changing the gut microbiota composition with antibiotic treatment enhanced Wolbachia density but did not confer greater antiviral protection against Drosophila C virus to the host. We concluded there are significant interactions between Wolbachia and gut microbiota, but changing gut microbiota composition is not likely to be a means through which Wolbachia conveys antiviral protection to its host.
Collapse
|
128
|
Li H, Qi Y, Jasper H. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host Microbe 2016; 19:240-53. [PMID: 26867182 DOI: 10.1016/j.chom.2016.01.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/26/2015] [Accepted: 01/22/2016] [Indexed: 12/16/2022]
Abstract
Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Yanyan Qi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA.
| |
Collapse
|
129
|
Beneficial microorganisms for honey bees: problems and progresses. Appl Microbiol Biotechnol 2016; 100:9469-9482. [PMID: 27717968 DOI: 10.1007/s00253-016-7870-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/21/2016] [Accepted: 09/16/2016] [Indexed: 01/02/2023]
Abstract
Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may compromise to some extent the pollination service and the hive productivity. The EU ban of antibiotics as therapeutic agents against bee pathogens has stimulated the search for natural alternatives. The increasing knowledge on the composition and functions of the bee gut microbiota and the link between a balanced gut microbiota and health status have encouraged the research on the use of gut microorganisms to improve bee health. Somehow, we are assisting to the transfer of the "probiotic concept" into the bee science. In this review, we examine the role of the honey bee gut microbiota in bee health and critically describe the available applications of beneficial microorganisms as pest control agents and health support. Most of the strains, mainly belonging to the genera Lactobacillus, Bifidobacterium and Bacillus, are isolated from honey bee crop or gut, but some applications involve environmental strains or formulation for animal and human consumption. Overall, the obtained results show the favourable effect of applied microbial strains on bee health and productivity, in particular if strains of bee origin are used. However, it is actually not yet possible to conclude whether this strategy will ever work. In particular, many aspects regarding the overall setup of the experiments, the dose, the timing and the duration of the treatment need to be optimized, also considering the microbiological safety of the hive products (i.e. pollen and honey). In addition, a deep investigation about the effect on host immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. beekeepers, should be taken into account for the achievement of high-quality, cost-effective and easy-to-use products.
Collapse
|
130
|
Koyle ML, Veloz M, Judd AM, Wong ACN, Newell PD, Douglas AE, Chaston JM. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. J Vis Exp 2016:54219. [PMID: 27500374 PMCID: PMC5091700 DOI: 10.3791/54219] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.
Collapse
Affiliation(s)
- Melinda L Koyle
- Department of Plant and Wildlife Sciences, Brigham Young University
| | - Madeline Veloz
- Department of Plant and Wildlife Sciences, Brigham Young University
| | - Alec M Judd
- Department of Plant and Wildlife Sciences, Brigham Young University
| | - Adam C-N Wong
- Department of Entomology, Cornell University; Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School
| | - Peter D Newell
- Department of Entomology, Cornell University; Biological Sciences, SUNY Oswego
| | - Angela E Douglas
- Department of Entomology, Cornell University; Department of Molecular Biology and Genetics, Cornell University
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University; Department of Entomology, Cornell University;
| |
Collapse
|
131
|
Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology 2016; 17:785-803. [DOI: 10.1007/s10522-016-9653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
|
132
|
Sebald J, Willi M, Schoberleitner I, Krogsdam A, Orth-Höller D, Trajanoski Z, Lusser A. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster. PLoS One 2016; 11:e0153476. [PMID: 27093431 PMCID: PMC4836739 DOI: 10.1371/journal.pone.0153476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.
Collapse
Affiliation(s)
- Johanna Sebald
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Willi
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ines Schoberleitner
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Krogsdam
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- I-Med GenomeSeq Core, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
133
|
Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly's germ line. Nat Commun 2016; 7:11280. [PMID: 27080728 PMCID: PMC4835552 DOI: 10.1038/ncomms11280] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. The gut microbiota can play various roles in the host's physiology, but is not known to influence the germ line. Here, Elgart et al. show that certain extracellular gut bacteria can affect oogenesis and embryo development in the fruit fly.
Collapse
Affiliation(s)
- Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Stern
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orit Salton
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gnainsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Heifetz
- Department of Entomology, The Hebrew University, Rehovot 76100, Israel
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
134
|
Galenza A, Hutchinson J, Campbell SD, Hazes B, Foley E. Glucose modulates Drosophila longevity and immunity independent of the microbiota. Biol Open 2016; 5:165-73. [PMID: 26794610 PMCID: PMC4823985 DOI: 10.1242/bio.015016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acquisition of nutrients is essential for maintenance of metabolic processes in all organisms. Nutritional imbalance contributes to myriad metabolic disorders that include malnutrition, diabetes and even cancer. Recently, the importance of macronutrient ratio of food has emerged as a critical factor to determine health outcomes. Here we show that individual modifications to a completely defined diet markedly impact multiple aspects of organism wellbeing in Drosophila melanogaster. Through a longitudinal survey of several diets we demonstrate that increased levels of dietary glucose significantly improve longevity and immunity in adult Drosophila. Our metagenomic studies show that relative macronutrient levels not only influence the host, but also have a profound impact on microbiota composition. However, we found that elevated dietary glucose extended the lifespan of adult flies even when raised in a germ-free environment. Furthermore, when challenged with a chronic enteric infection, flies fed a diet with added glucose had increased survival times even in the absence of an intact microbiota. Thus, in contrast to known links between the microbiota and animal health, our findings uncover a novel microbiota-independent response to diet that impacts host wellbeing. As dietary responses are highly conserved in animals, we believe our results offer a general understanding of the association between glucose metabolism and animal health.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Jaclyn Hutchinson
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Shelagh D Campbell
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
135
|
Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria. PLoS One 2016; 11:e0146313. [PMID: 26745627 PMCID: PMC4706323 DOI: 10.1371/journal.pone.0146313] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm.
Collapse
|
136
|
Deshpande SA, Yamada R, Mak CM, Hunter B, Obando AS, Hoxha S, Ja WW. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan. J Nutr 2015; 145:2789-96. [PMID: 26491123 PMCID: PMC4656910 DOI: 10.3945/jn.115.222380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. OBJECTIVES We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. METHODS We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. RESULTS An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. CONCLUSIONS Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Christine M Mak
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Brooke Hunter
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Alina Soto Obando
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Sany Hoxha
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
137
|
Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. Appl Environ Microbiol 2015; 82:671-9. [PMID: 26567306 DOI: 10.1128/aem.03301-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
A wealth of studies has demonstrated that resident microorganisms (microbiota) influence the pattern of nutrient allocation to animal protein and energy stores, but it is unclear how the effects of the microbiota interact with other determinants of animal nutrition, including animal genetic factors and diet. Here, we demonstrate that members of the gut microbiota in Drosophila melanogaster mediate the effect of certain animal genetic determinants on an important nutritional trait, triglyceride (lipid) content. Parallel analysis of the taxonomic composition of the associated bacterial community and host nutritional indices (glucose, glycogen, triglyceride, and protein contents) in multiple Drosophila genotypes revealed significant associations between the abundance of certain microbial taxa, especially Acetobacteraceae and Xanthamonadaceae, and host nutritional phenotype. By a genome-wide association study of Drosophila lines colonized with a defined microbiota, multiple host genes were statistically associated with the abundance of one bacterium, Acetobacter tropicalis. Experiments using mutant Drosophila validated the genetic association evidence and reveal that host genetic control of microbiota abundance affects the nutritional status of the flies. These data indicate that the abundance of the resident microbiota is influenced by host genotype, with consequent effects on nutrient allocation patterns, demonstrating that host genetic control of the microbiome contributes to the genotype-phenotype relationship of the animal host.
Collapse
|
138
|
Erkosar B, Storelli G, Mitchell M, Bozonnet L, Bozonnet N, Leulier F. Pathogen Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via Inhibition of Protein Digestion. Cell Host Microbe 2015; 18:445-55. [PMID: 26439865 PMCID: PMC4617634 DOI: 10.1016/j.chom.2015.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
The microbial environment impacts many aspects of metazoan physiology through largely undefined molecular mechanisms. The commensal strain Lactobacillus plantarumWJL (LpWJL) sustains Drosophila hormonal signals that coordinate systemic growth and maturation of the fly. Here we examine the underlying mechanisms driving these processes and show that LpWJL promotes intestinal peptidase expression, leading to increased intestinal proteolytic activity, enhanced dietary protein digestion, and increased host amino acid levels. LpWJL-mediated peptidase upregulation is partly driven by the peptidoglycan recognition and signaling cascade PGRP-LE/Imd/Relish. Additionally, this mutualist-mediated physiological benefit is antagonized upon pathogen infection. Pathogen virulence selectively impedes LpWJL-mediated intestinal peptidase activity enhancement and juvenile growth promotion but does not alter growth of germ-free animals. Our study reveals the adaptability of host physiology to the microbial environment, whereby upon acute infection the host switches to pathogen-mediated host immune defense at the expense of mutualist-mediated growth promotion. Lactobacillus plantarumWJL sustains gut peptidase expression in Drosophila LpWJL association enhances dietary protein digestion and host amino acid levels Foodborne infection impedes LpWJL-mediated intestinal peptidase activity Pathogen virulence impedes LpWJL-mediated promotion of juvenile growth
Collapse
Affiliation(s)
- Berra Erkosar
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
| | - Gilles Storelli
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
| | - Mélanie Mitchell
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
| | - Loan Bozonnet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
| | - Noémie Bozonnet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France.
| |
Collapse
|
139
|
Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, Rana A, Rera M, Pellegrini M, Ja WW, Walker DW. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. Cell Rep 2015; 12:1656-67. [PMID: 26321641 DOI: 10.1016/j.celrep.2015.08.004] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.
Collapse
Affiliation(s)
- Rebecca I Clark
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anna Salazar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeanette Alcaraz
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anil Rana
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Rera
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
140
|
Hoang D, Kopp A, Chandler JA. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 2015; 3:e1116. [PMID: 26336636 PMCID: PMC4556146 DOI: 10.7717/peerj.1116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D. melanogaster when given the choice between a naturally associated yeast and S. cerevisiae. We do not find a correlation between preferred yeasts and those that persist in the intestine. Notably, in no instances is S. cerevisiae preferred over the naturally associated strains. Overall, our results show that D. melanogaster-yeast interactions are more complex than might be revealed in experiments that use only S. cerevisiae. We propose that future research utilize other yeasts, and especially those that are naturally associated with Drosophila, to more fully understand the role of yeasts in Drosophila biology. Since the genetic basis of host-microbe interactions is shared across taxa and since many of these genes are initially discovered in D. melanogaster, a more realistic fly-yeast model system will benefit our understanding of host-microbe interactions throughout the animal kingdom.
Collapse
Affiliation(s)
- Don Hoang
- Department of Evolution and Ecology and Center for Population Biology, University of California , Davis, CA , USA ; Current affiliation: Program in Genomics of Differentiation, NIH/NICHD , Bethesda, MD , USA
| | - Artyom Kopp
- Department of Evolution and Ecology and Center for Population Biology, University of California , Davis, CA , USA
| | - James Angus Chandler
- Department of Evolution and Ecology and Center for Population Biology, University of California , Davis, CA , USA ; Current affiliation: Department of Molecular and Cellular Biology, University of California , Berkeley, CA , USA
| |
Collapse
|
141
|
Mariadassou M, Pichon S, Ebert D. Microbial ecosystems are dominated by specialist taxa. Ecol Lett 2015; 18:974-82. [DOI: 10.1111/ele.12478] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/14/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Affiliation(s)
| | - Samuel Pichon
- Universität Basel, Zoologisches Institut; Vesalgasse 1 4051 Basel Switzerland
| | - Dieter Ebert
- Universität Basel, Zoologisches Institut; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
142
|
Gorokhova E, Rivetti C, Furuhagen S, Edlund A, Ek K, Breitholtz M. Bacteria-mediated effects of antibiotics on Daphnia nutrition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5779-87. [PMID: 25850437 DOI: 10.1021/acs.est.5b00833] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In polluted environments, contaminant effects may be manifested via both direct toxicity to the host and changes in its microbiota, affecting bacteria-host interactions. In this context, particularly relevant is exposure to antibiotics released into environment. We examined effects of the antibiotic trimethoprim on microbiota of Daphnia magna and concomitant changes in the host feeding. In daphnids exposed to 0.25 mg L(-1) trimethoprim for 24 h, the microbiota was strongly affected, with (1) up to 21-fold decrease in 16S rRNA gene abundance and (2) a shift from balanced communities dominated by Curvibacter, Aquabacterium, and Limnohabitans in controls to significantly lower diversity under dominance of Pelomonas in the exposed animals. Moreover, decreased feeding and digestion was observed in the animals exposed to 0.25-2 mg L(-1) trimethoprim for 48 h and then fed 14C-labeled algae. Whereas the proportion of intact algal cells in the guts increased with increased trimethoprim concentration, ingestion and incorporation rates as well as digestion and incorporation efficiencies decreased significantly. Thus, antibiotics may impact nontarget species via changes in their microbiota leading to compromised nutrition and, ultimately, growth. These bacteria-mediated effects in nontarget organisms may not be unique for antibiotics, but also relevant for environmental pollutants of various nature.
Collapse
Affiliation(s)
- Elena Gorokhova
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Claudia Rivetti
- ‡Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Sara Furuhagen
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Anna Edlund
- §Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, United States
| | - Karin Ek
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Magnus Breitholtz
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| |
Collapse
|
143
|
Chen H, Zheng X, Zheng Y. Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia. Cell 2015; 159:829-43. [PMID: 25417159 DOI: 10.1016/j.cell.2014.10.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/29/2014] [Accepted: 09/10/2014] [Indexed: 01/19/2023]
Abstract
Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging. PAPERFLICK:
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
144
|
Bansal S, Mangal M, Sharma SK, Gupta RK. Non-dairy Based Probiotics: A Healthy Treat for Intestine. Crit Rev Food Sci Nutr 2015; 56:1856-67. [DOI: 10.1080/10408398.2013.790780] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
145
|
Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila. Cell Rep 2015; 10:865-872. [PMID: 25683709 DOI: 10.1016/j.celrep.2015.01.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/23/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose) to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.
Collapse
Affiliation(s)
- Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sonali A Deshpande
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kimberley D Bruce
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Elizabeth M Mak
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
146
|
Venu I, Durisko Z, Xu J, Dukas R. Social attraction mediated by fruit flies' microbiome. ACTA ACUST UNITED AC 2015; 217:1346-52. [PMID: 24744425 DOI: 10.1242/jeb.099648] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Collapse
Affiliation(s)
- Isvarya Venu
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
147
|
Kopp EB, Medzhitov R. Infection and inflammation in somatic maintenance, growth and longevity. Evol Appl 2015; 2:132-41. [PMID: 25567853 PMCID: PMC3352410 DOI: 10.1111/j.1752-4571.2008.00062.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/04/2008] [Indexed: 01/06/2023] Open
Abstract
All organisms must display a certain degree of environmental adaptability to survive and reproduce. Growth and reproduction are metabolically expensive and carry other costs that contribute to aging. Therefore, animals have developed physiologic strategies to assess the harshness of the environment before devoting resources to reproduction. Presumably, these strategies maximize the possibility for offspring survival. Current views of aging reflect a trade-off between reproductive fitness and somatic maintenance whereby environmental stress induces an adaptive metabolic response aimed at preserving cellular integrity while inhibiting growth, whereas favorable environmental conditions (abundance of food and water, and optimal temperature, etc.) promote growth and reproductive maturity but simultaneously increase cellular damage and aging. Here we propose that the prevalence of infectious pathogens in a given niche represents an additional environmental factor that, via innate immune pathways, actively shifts this balance in favor of somatic maintenance at the expense of reproduction and growth. We additionally propose the construction of a genetic model system with which to test this hypothesis.
Collapse
Affiliation(s)
- Elizabeth B Kopp
- HHMI and Department of Immunobiology, Yale University School of Medicine New Haven, CT, USA
| | - Ruslan Medzhitov
- HHMI and Department of Immunobiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
148
|
Jasper H. Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster. INVERTEBR REPROD DEV 2014; 59:51-58. [PMID: 26136621 PMCID: PMC4463993 DOI: 10.1080/07924259.2014.963713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract, due to its role as a digestive organ and as a barrier between the exterior and interior milieus, is critically impacted by dietary, environmental, and inflammatory conditions that influence health and lifespan. Work in flies is now uncovering the multifaceted molecular mechanisms that control homeostasis in this tissue, and establishing its central role in health and lifespan of metazoans. The Drosophila intestine has thus emerged as a productive, genetically accessible model to study various aspects of the pathophysiology of aging. Studies in flies have characterized the maintenance of regenerative homeostasis, the development of immune senescence, the loss of epithelial barrier function, the decline in metabolic homeostasis, as well as the maintenance of epithelial diversity in this tissue. Due to its fundamental similarity to vertebrate intestines, it can be anticipated that findings obtained in this system will have important implications for our understanding of age-related changes in the human intestine. Here, I review recent studies exploring age-related changes in the fly intestine, and their insight into the regulation of health and lifespan of the animal.
Collapse
Affiliation(s)
- Heinrich Jasper
- Buck Institute for Research on Aging , 8001 Redwood Boulevard, Novato , CA 94945-1400 , USA
| |
Collapse
|
149
|
Kubrak OI, Kučerová L, Theopold U, Nässel DR. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One 2014; 9:e113051. [PMID: 25393614 PMCID: PMC4231144 DOI: 10.1371/journal.pone.0113051] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 12/28/2022] Open
Abstract
Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy.
Collapse
Affiliation(s)
- Olga I. Kubrak
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Lucie Kučerová
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
- * E-mail:
| |
Collapse
|
150
|
Petkau K, Parsons BD, Duggal A, Foley E. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila. J Biol Chem 2014; 289:28719-29. [PMID: 25170078 DOI: 10.1074/jbc.m114.578708] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function.
Collapse
Affiliation(s)
- Kristina Petkau
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Brendon D Parsons
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Aashna Duggal
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Edan Foley
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|