101
|
Gkika D, Lemonnier L, Shapovalov G, Gordienko D, Poux C, Bernardini M, Bokhobza A, Bidaux G, Degerny C, Verreman K, Guarmit B, Benahmed M, de Launoit Y, Bindels RJM, Fiorio Pla A, Prevarskaya N. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. ACTA ACUST UNITED AC 2015; 208:89-107. [PMID: 25559186 PMCID: PMC4284226 DOI: 10.1083/jcb.201402076] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TCAF1 and TCAF2 bind to TRPM8 and promote its cell surface trafficking but differentially regulate its gating properties, leading to opposing effects on prostate cancer cell migration. TRPM8 is a cold sensor that is highly expressed in the prostate as well as in other non-temperature-sensing organs, and is regulated by downstream receptor–activated signaling pathways. However, little is known about the intracellular proteins necessary for channel function. Here, we identify two previously unknown proteins, which we have named “TRP channel–associated factors” (TCAFs), as new TRPM8 partner proteins, and we demonstrate that they are necessary for channel function. TCAF1 and TCAF2 both bind to the TRPM8 channel and promote its trafficking to the cell surface. However, they exert opposing effects on TRPM8 gating properties. Functional interaction of TCAF1/TRPM8 also leads to a reduction in both the speed and directionality of migration of prostate cancer cells, which is consistent with an observed loss of expression of TCAF1 in metastatic human specimens, whereas TCAF2 promotes migration. The identification of TCAFs introduces a novel mechanism for modulation of TRPM8 channel activity.
Collapse
Affiliation(s)
- Dimitra Gkika
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - Loic Lemonnier
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - George Shapovalov
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - Dmitri Gordienko
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - Céline Poux
- Centre national de la Recherche Scientifique (CNRS) UMR 8198 and Laboratoire de Génétique & Evolution des Populations Végétales (GEPV), Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - Michela Bernardini
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France Department of Life Science and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Alexandre Bokhobza
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| | - Gabriel Bidaux
- Laboratoire Biophotonique Cellulaire Fonctionnelle, Institut de Recherche Interdisciplinaire, USR3078 Centre National de la Recherche Scientifique, Parc scientifique de la Haute Borne, Villeneuve d'Ascq, F-59655 France
| | - Cindy Degerny
- CNRS UMR 8161, Institut de Biologie de Lille, Université de Lille-Nord de France, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Kathye Verreman
- CNRS UMR 8161, Institut de Biologie de Lille, Université de Lille-Nord de France, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Basma Guarmit
- Inserm, Institut National de la Santé et de la Recherche Médicale U895, Centre Méditerranéen de Médecine Moléculaire, Hôpitall'Archet, 06204 Nice, France
| | - Mohamed Benahmed
- Inserm, Institut National de la Santé et de la Recherche Médicale U895, Centre Méditerranéen de Médecine Moléculaire, Hôpitall'Archet, 06204 Nice, France
| | - Yvan de Launoit
- CNRS UMR 8161, Institut de Biologie de Lille, Université de Lille-Nord de France, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Rene J M Bindels
- Department of Physiology, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, Netherlands
| | - Alessandra Fiorio Pla
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France Department of Life Science and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Natalia Prevarskaya
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
102
|
Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temperature (Austin) 2015; 2:201-13. [PMID: 27227024 PMCID: PMC4844244 DOI: 10.4161/23328940.2014.988524] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
TRPM3, also known as melastatin 2 (MLSN2), LTRPC3 (long TRPC3) and KIAA1616, is a member of the TRPM subfamily of transient receptor potential (TRP) ion channels. The channel was originally identified as a volume-regulated ion channel that can be activated upon reduction of the extracellular osmolality. Later, the channel was proposed to be involved in the modulation of insulin release in pancreatic islets. However, new evidence has uncovered a role of TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat. The channel is functionally expressed in a subset of neurons of the somatosensory system and can be activated by heat. The purpose of the present review is to summarize existing knowledge of the expression, biophysics and pharmacology of TRPM3 and to serve as a guide for future studies aimed at improving the understanding of the mechanism of thermosensation and proposed physiological functions of TRPM3.
Collapse
Key Words
- Clt, Clotrimazole
- DHEA, Dehydroepiandrosterone
- DRG, Dorsal root ganglion
- DeSPH, D-erythro-sphingosine
- PCR, Polymerase chain reaction
- PPAR-γ, Peroxisome proliferator-activator receptor - γ
- PS, Pregnenolone sulfate
- Q10, 10-degree temperature coefficient
- RT, Room temperature
- TG, Trigeminal ganglion
- TRP channel
- TRP, Transient receptor potential
- TRPM, Transient receptor potential melastatin
- TRPM3
- TRPV, Transient receptor potential vanilloid
- nociceptor
- sensory system
- temperature sensing
- ΔG, Gibbs free energy
- ΔH, Enthalpy
- ΔS, Entropy
Collapse
Affiliation(s)
- Katharina Held
- Laboratory of Experimental Gynecology; KU Leuven; Leuven, Belgium; Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven; Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven ; Leuven, Belgium
| | - Joris Vriens
- Laboratory of Experimental Gynecology; KU Leuven ; Leuven, Belgium
| |
Collapse
|
103
|
Ito E, Ikemoto Y, Yoshioka T. Thermodynamic implications of high Q 10 of thermo-TRP channels in living cells. Biophysics (Nagoya-shi) 2015; 11:33-8. [PMID: 27493512 PMCID: PMC4736789 DOI: 10.2142/biophysics.11.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/24/2014] [Indexed: 12/19/2022] Open
Abstract
The activity of thermo-transient receptor potential (TRP) channels is highly dependent on temperature, and thus thermo-TRP reactions have a high temperature coefficient Q 10. In thermodynamics, a high value of Q 10 indicates the existence of a large activation energy (i.e., a large enthalpy) over a short period during the transition process between the closed and open states of the channels. The Gibbs free energy equation shows that a large entropy is required to compensate for this large enthalpy and permit activation of the channels, suggesting a large conformational change of the channels. These large values of enthalpy and entropy seem to be a match for the values of the unfolding process of globular proteins. We outline these thermodynamic issues in thermo-TRPs.
Collapse
Affiliation(s)
- Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193,
Japan
| | - Yusuke Ikemoto
- Faculty of Engineering, University of Toyama, Toyama 930-8555,
Japan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| |
Collapse
|
104
|
Islas LD, De-la-Rosa V, Rodríguez-Cortés B, Rangel-Yescas GE, Elias-Viñas D. A simple method for fast temperature changes and its application to thermal activation of TRPV1 ion channels. J Neurosci Methods 2015; 243:120-5. [PMID: 25680323 DOI: 10.1016/j.jneumeth.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Thermally activated ion channels function as molecular thermometers and participate in other physiological important functions. The mechanism by which they acquire their exquisite temperature sensitivity is unknown and is currently an area of intense research. For this reason, there is a need for diverse methods to deliver controlled temperature stimuli. NEW METHOD We have developed a simple, inexpensive and reliable method to deliver temperature pulses to small volumes surrounding the recording area, which can be either a patch-clamp pipette containing a cell-free membrane with thermally activated channels or a whole cell attached to a pipette. RESULTS Here we developed a micro-heater based on resistive heating of a copper filament enclosed in a glass capillary that is capable of delivering fast and localized temperature changes. We validated the performance of the micro-heaters by analyzing the heat-induced activation of TRPV1 thermoTRP channels recorded in inside-out patches and demonstrate the use of the micro-heaters. COMPARISON WITH EXISTING METHOD(S) The micro-heaters we introduce here are compact, easy to fabricate and to operate. In contrast with bulk solution heaters commercially available, our method is extremely affordable and simple to operate. To the best of our knowledge there are no other similar, commercially available heating methods. CONCLUSIONS The micro-heater method is simple and should provide a straightforward and rapid experimental tool to study mechanisms in thermally activated ion channels.
Collapse
Affiliation(s)
- León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico.
| | - Victor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Beatriz Rodríguez-Cortés
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | | |
Collapse
|
105
|
Laursen WJ, Anderson EO, Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2015; 2:214-26. [PMID: 27227025 PMCID: PMC4843866 DOI: 10.1080/23328940.2014.1000702] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| | - Evan O Anderson
- Department of Cellular and Molecular Physiology; Yale University School of Medicine ; New Haven, CT, USA
| | - Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology; Yale University School of Medicine ; New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| |
Collapse
|
106
|
Abstract
The ability of the body to perceive noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors. The molecular receptors of noxious mechanical, temperature, or chemical stimuli are expressed in these neurons and have drawn considerable attention as possible targets for analgesic development to improve treatment for the millions who suffer from chronic pain conditions. A number of thermoTRPs, a subset of the transient receptor potential family of ion channels, are activated by a wide range on noxious stimuli. In this review, we review the function of these channels and examine the evidence that thermoTRPs play a vital role in acute, inflammatory and neuropathic nociception.
Collapse
Affiliation(s)
- Robyn J Laing
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| |
Collapse
|
107
|
Filiou RP, Lepore F, Bryant B, Lundstrom JN, Frasnelli J. Perception of Trigeminal Mixtures. Chem Senses 2014; 40:61-9. [DOI: 10.1093/chemse/bju064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
108
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
109
|
Poblete H, Oyarzún I, Olivero P, Comer J, Zuñiga M, Sepulveda RV, Báez-Nieto D, González Leon C, González-Nilo F, Latorre R. Molecular determinants of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels. J Biol Chem 2014; 290:2086-98. [PMID: 25425643 DOI: 10.1074/jbc.m114.613620] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate.
Collapse
Affiliation(s)
- Horacio Poblete
- From the Center for Bioinformatics and Molecular Simulation, Universidad de Talca, 2 Norte 685, Talca-Chile
| | - Ingrid Oyarzún
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Pablo Olivero
- Escuela de Medicina, Universidad de Valparaíso, Hontaneda 2664, Valparaíso, Chile
| | - Jeffrey Comer
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, P-200 Mosier Hall, Manhattan, Kansas 66506-5802
| | - Matías Zuñiga
- Doctorado Fisicoquímica Molecular, Universidad Andrés Bello, Ave, Republica 275, Santiago, Chile
| | - Romina V Sepulveda
- Doctorado en Biotecnología, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile, and Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. República 239, Santiago, Chile
| | - David Báez-Nieto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Carlos González Leon
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Fernando González-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. República 239, Santiago, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile,
| |
Collapse
|
110
|
Gregorio-Teruel L, Valente P, González-Ros JM, Fernández-Ballester G, Ferrer-Montiel A. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation. ACTA ACUST UNITED AC 2014; 143:361-75. [PMID: 24567510 PMCID: PMC3933934 DOI: 10.1085/jgp.201311070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Residues I696 and W697 are crucial to coupling between the TRPV1 ligand- and voltage-sensing domains and the channel pore. The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues—I696 and W697—with Ala markedly affects TRPV1’s response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.
Collapse
Affiliation(s)
- Lucia Gregorio-Teruel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Spain
| | | | | | | | | |
Collapse
|
111
|
Raddatz N, Castillo JP, Gonzalez C, Alvarez O, Latorre R. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8). J Biol Chem 2014; 289:35438-54. [PMID: 25352597 DOI: 10.1074/jbc.m114.612713] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.
Collapse
Affiliation(s)
- Natalia Raddatz
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Juan P Castillo
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Carlos Gonzalez
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Osvaldo Alvarez
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and the Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Ramon Latorre
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| |
Collapse
|
112
|
Taberner FJ, López-Córdoba A, Fernández-Ballester G, Korchev Y, Ferrer-Montiel A. The region adjacent to the C-end of the inner gate in transient receptor potential melastatin 8 (TRPM8) channels plays a central role in allosteric channel activation. J Biol Chem 2014; 289:28579-94. [PMID: 25157108 DOI: 10.1074/jbc.m114.577478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of transient receptor potential (TRP) channels to sense and respond to environmental and endogenous cues is crucial in animal sensory physiology. The molecular mechanism of channel gating is yet elusive. The TRP box, a conserved region in the N-end of the C terminus domain, has been signaled as pivotal for allosteric activation in TRP channels. Here, we have examined the role of the linker region between the TRPM8 inner gate and the TRP box (referred to as the S6-TRP box linker) to identify structural determinants of channel gating. Stepwise substitutions of segments in the S6-TRP box linker of TRPM8 channel with the cognate TRPV1 channel sequences produced functional chimeric channels, and identified Tyr(981) as a central molecular determinant of channel function. Additionally, mutations in the 986-990 region had a profound impact on channel gating by voltage and menthol, as evidenced by the modulation of the conductance-to-voltage (G-V) relationships. Simulation of G-V curves using an allosteric model for channel activation revealed that these mutations altered the allosteric constants that couple stimuli sensing to pore opening. A molecular model of TRPM8, based on the recently reported TRPV1 structural model, showed that Tyr(981) may lie in a hydrophobic pocket at the end of the S6 transmembrane segment and is involved in inter-subunit interactions with residues from neighbor subunits. The 986-990 region holds intrasubunit interactions between the TRP domain and the S4-S5 linker. These findings substantiate a gating mechanism whereby the TRP domain acts as a coupling domain for efficient channel opening. Furthermore, they imply that protein-protein interactions of the TRP domain may be targets for channel modulation and drug intervention.
Collapse
Affiliation(s)
- Francisco José Taberner
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Ainara López-Córdoba
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Spain
| | | | - Yuri Korchev
- the Imperial College School of Medicine, SW7 2AZ London, United Kingdom, and
| | - Antonio Ferrer-Montiel
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Spain, the Unidad de Biofísica, UPV/EHU, CSIC, 48940 Leioa, Spain
| |
Collapse
|
113
|
Chowdhury S, Jarecki BW, Chanda B. A molecular framework for temperature-dependent gating of ion channels. Cell 2014; 158:1148-1158. [PMID: 25156949 DOI: 10.1016/j.cell.2014.07.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Abstract
Perception of heat or cold in higher organisms is mediated by specialized ion channels whose gating is exquisitely sensitive to temperature. The physicochemical underpinnings of this temperature-sensitive gating have proven difficult to parse. Here, we took a bottom-up protein design approach and rationally engineered ion channels to activate in response to thermal stimuli. By varying amino acid polarities at sites undergoing state-dependent changes in solvation, we were able to systematically confer temperature sensitivity to a canonical voltage-gated ion channel. Our results imply that the specific heat capacity change during channel gating is a major determinant of thermosensitive gating. We also show that reduction of gating charges amplifies temperature sensitivity of designer channels, which accounts for low-voltage sensitivity in all known temperature-gated ion channels. These emerging principles suggest a plausible molecular mechanism for temperature-dependent gating that reconcile how ion channels with an overall conserved transmembrane architecture may exhibit a wide range of temperature-sensing phenotypes. :
Collapse
Affiliation(s)
- Sandipan Chowdhury
- Graduate Program in Biophysics, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA; Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA
| | - Brian W Jarecki
- Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA
| | - Baron Chanda
- Graduate Program in Biophysics, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA; Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA.
| |
Collapse
|
114
|
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A. Trafficking of ThermoTRP Channels. MEMBRANES 2014; 4:525-64. [PMID: 25257900 PMCID: PMC4194048 DOI: 10.3390/membranes4030525] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
ThermoTRP channels (thermoTRPs) define a subfamily of the transient receptor potential (TRP) channels that are activated by changes in the environmental temperature, from noxious cold to injurious heat. Acting as integrators of several stimuli and signalling pathways, dysfunction of these channels contributes to several pathological states. The surface expression of thermoTRPs is controlled by both, the constitutive and regulated vesicular trafficking. Modulation of receptor surface density during pathological processes is nowadays considered as an interesting therapeutic approach for management of diseases, such as chronic pain, in which an increased trafficking is associated with the pathological state. This review will focus on the recent advances trafficking of the thermoTRP channels, TRPV1, TRPV2, TRPV4, TRPM3, TRPM8 and TRPA1, into/from the plasma membrane. Particularly, regulated membrane insertion of thermoTRPs channels contributes to a fine tuning of final channel activity, and indeed, it has resulted in the development of novel therapeutic approaches with successful clinical results such as disruption of SNARE-dependent exocytosis by botulinum toxin or botulinomimetic peptides.
Collapse
Affiliation(s)
| | - Sakthikumar Mathivanan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Christoph Jakob Wolf
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| |
Collapse
|
115
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
116
|
Abstract
Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI:http://dx.doi.org/10.7554/eLife.03255.001 If you touch something too hot, it can cause you pain and damage your skin. Sensing the heat given off by an object or the temperature of the environment is possible, at least in part, because of proteins called temperature-sensitive TRP ion channels. These proteins are found in the cell membranes of nerve endings that are underneath the skin; and they open in response to heat, allowing ions to flow into the nerve cell. This in turn triggers a nerve impulse that is sent to our central nervous system and is perceived as heat and/or pain. The ability to sense heat was thought to be unique to these TRP ion channels, and it was believed that these ion channels contained an as-yet unidentified temperature-sensing domain. However, Yang and Zheng now report that similar ion channels, which open in response to changes in the voltage that exists across a cell's membrane, are also sensitive to changes in temperature. The temperature response of these ‘voltage-gated channels’ had largely eluded the attention of researchers in the past. This is because parts of the ion channel—which act like a ‘voltage sensor’ and only shift when the membrane voltage changes—normally keep the channel closed and directly open the channel when they move. Like all other proteins, ion channels are made from smaller building blocks called amino acids; and by changing some of the amino acids in the voltage-gated channel Yang and Zheng could decouple these normally linked actions. The changes to the channel meant that it did not immediately open when the voltage sensor moved; and decreasing the concentration of calcium ions inside the cell had the same effect as changing these amino acids. Both approaches revealed that, after a change in membrane voltage caused the voltage sensor to move, the ion channel remained closed until a high temperature caused it to open. Yang and Zheng revealed that the response of the modified voltage-gated channel to temperature was comparable to that of a typical heat-sensitive TRP ion channel. Further experiments showed that replacing some of the amino acids in the voltage-gated potassium ion channel with different amino acids could cause the channel to be either opened or closed by heat. The findings of Yang and Zheng indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain. Instead, as these TRP ion channels do not require other parts of the protein to move in order to open the channel, they can be activated by their own inherent sensitivity to heat. DOI:http://dx.doi.org/10.7554/eLife.03255.002
Collapse
Affiliation(s)
- Fan Yang
- Department of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
117
|
Abstract
Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule.
Collapse
|
118
|
Pertusa M, González A, Hardy P, Madrid R, Viana F. Bidirectional modulation of thermal and chemical sensitivity of TRPM8 channels by the initial region of the N-terminal domain. J Biol Chem 2014; 289:21828-43. [PMID: 24917670 DOI: 10.1074/jbc.m114.565994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TRPM8, a nonselective cation channel activated by cold, voltage, and cooling compounds such as menthol, is the principal molecular detector of cold temperatures in primary sensory neurons of the somatosensory system. The N-terminal domain of TRPM8 consists of 693 amino acids, but little is known about its contribution to channel function. Here, we identified two distinct regions within the initial N terminus of TRPM8 that contribute differentially to channel activity and proper folding and assembly. Deletion or substitution of the first 40 residues yielded channels with augmented responses to cold and menthol. The thermal threshold of activation of these mutants was shifted 2 °C to higher temperatures, and the menthol dose-response curve was displaced to lower concentrations. Site-directed mutagenesis screening revealed that single point mutations at positions Ser-26 or Ser-27 by proline caused a comparable increase in the responses to cold and menthol. Electrophysiological analysis of the S27P mutant revealed that the enhanced sensitivity to agonists is related to a leftward shift in the voltage dependence of activation, increasing the probability of channel openings at physiological membrane potentials. In addition, we found that the region encompassing positions 40-60 is a key element in the proper folding and assembly of TRPM8. Different deletions and mutations within this region rendered channels with an impaired function that are retained within the endoplasmic reticulum. Our results suggest a critical contribution of the initial region of the N-terminal domain of TRPM8 to thermal and chemical sensitivity and the proper biogenesis of this polymodal ion channel.
Collapse
Affiliation(s)
- María Pertusa
- From the Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9160000 Santiago, Chile and the Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Alejandro González
- From the Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9160000 Santiago, Chile and
| | - Paulina Hardy
- From the Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9160000 Santiago, Chile and
| | - Rodolfo Madrid
- From the Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9160000 Santiago, Chile and
| | - Félix Viana
- the Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| |
Collapse
|
119
|
Jabba S, Goyal R, Sosa-Pagán JO, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 2014; 82:1017-31. [PMID: 24814535 DOI: 10.1016/j.neuron.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 01/24/2023]
Abstract
Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutations that are individually sufficient to make mouse TRPA1 warm activated, while leaving sensitivity to chemicals unaffected. Mutant channels have high temperature sensitivity of voltage activation, specifically of channel opening, but not channel closing, which is reminiscent of other heat-activated TRP channels. All mutations are located in ankyrin repeat six, which identifies this domain as a sensitive modulator of thermal activation. We propose that a change in the coupling of temperature sensing to channel gating generates this sensitivity to warm temperatures. Our results demonstrate that minimal changes in protein sequence are sufficient to generate a wide diversity of thermal sensitivities in TRPA1.
Collapse
Affiliation(s)
- Sairam Jabba
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raman Goyal
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason O Sosa-Pagán
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2349400, Chile
| | - Jason Wu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Breanna Kalmeta
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Bandell
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Institute of the Novartis Research Foundation, La Jolla, CA 92037, USA
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2349400, Chile
| | - Ardem Patapoutian
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Institute of the Novartis Research Foundation, La Jolla, CA 92037, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
120
|
Abstract
Several TRP channels exhibit highly temperature-dependent gating properties, which leads to steep changes in depolarising current upon either cooling or heating. Based on this characteristic feature, these so-called "thermoTRPs" have been widely studied with the aim to elucidate their potential key role as thermosensors in the somatosensory system and to understand the basis of their high thermal sensitivity. In this chapter, I provide a brief critical overview of current knowledge on the role of TRP channels in thermosensing and on the thermodynamic and molecular basis of their steep temperature dependence.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 bus 802, 3000, Leuven, Belgium,
| |
Collapse
|
121
|
Feng Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. CURRENT TOPICS IN MEMBRANES 2014; 74:19-50. [PMID: 25366232 DOI: 10.1016/b978-0-12-800181-3.00002-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
All organisms need to sense temperature in order to survive and adapt. But how they detect and perceive temperature remains poorly understood. Recent discoveries of thermal Transient Receptor Potential (TRP) ion channels have shed light on the problem and unravel molecular entities for temperature detection and transduction in mammals. Thermal TRP channels belong to the large family of transient receptor potential channels. They are directly activated by heat or cold in physiologically relevant temperature ranges, and the activation is exquisitely sensitive to temperature changes. Thermodynamically, this strong temperature dependence of thermal channels occurs due to large enthalpy and entropy changes associated with channel opening. Thus understanding how the channel proteins obtain their exceptionally large energetics is central toward determining functional mechanisms of thermal TRP channels. The purpose of this chapter is to provide a comprehensive review on critical issues and challenges facing the problem, with emphases on underlying biophysical and molecular mechanisms.
Collapse
Affiliation(s)
- Qin Feng
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA
| |
Collapse
|
122
|
Madrid R, Pertusa M. Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. CURRENT TOPICS IN MEMBRANES 2014; 74:293-324. [PMID: 25366241 DOI: 10.1016/b978-0-12-800181-3.00011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detection of environmental temperature is critical for the survival of the most diverse organisms. Thermosensitive transient receptor potential (thermoTRP) channels have evolved as a class of ion channels activated by a wide range of temperatures. These molecular thermal sensors are spread through the different TRP channel subfamilies. Among the Melastatin subfamily of TRP channels, the eighth member, TRPM8, is a calcium-permeable cationic ion channel activated by cold, by substances that evoke cold sensation such as menthol, and by voltage. This channel is considered the main molecular entity responsible for the sensitivity to cold of primary sensory neurons of the somatosensory system. Here we present to the readers a summary of some the most relevant biophysical properties, physiological role, and molecular intimacies of this polymodal thermoTRP channel.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
123
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel. Finally, we examine the physiological role of TRPM8 and its emerging link to various human diseases, including pain, prostate cancer, dry eye disease, and metabolic disorders.
Collapse
Affiliation(s)
- Laura Almaraz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avenida S. Ramón y Cajal s.n., San Juan de Alicante, 03550, Spain
| | | | | | | |
Collapse
|
124
|
Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R. Gating of thermally activated channels. CURRENT TOPICS IN MEMBRANES 2014; 74:51-87. [PMID: 25366233 DOI: 10.1016/b978-0-12-800181-3.00003-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A class of ion channels that belongs to the transient receptor potential (TRP) superfamily and is present in specialized neurons that project to the skin has evolved as temperature detectors. These channels are classified into subfamilies, namely canonical (TRPC), melastatin (TRPM), ankyrin (TRPA), and vanilloid (TRPV). Some of these channels are activated by heat (TRPM2/4/5, TRPV1-4), while others by cold (TRPA1, TRPC5, and TRPM8). The general structure of these channels is closely related to that of the voltage-dependent K(+) channels, with their subunits containing six transmembrane segments that form tetramers. Thermal TRP channels are polymodal receptors. That is, they can be activated by temperature, voltage, pH, lipids, and agonists. The high temperature sensitivity in these thermal TRP channels is due to a large enthalpy change (∼100 kcal/mol), which is about five times the enthalpy change in voltage-dependent gating. The characterization of the macroscopic currents and single-channel analysis demonstrated that gating by temperature is complex and best described by branched or allosteric models containing several closed and open states. The identification of molecular determinants of temperature sensitivity in TRPV1, TRPA1, and TRPV3 strongly suggest that thermal sensitivity arises from a specific protein domain.
Collapse
Affiliation(s)
- David Baez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Natalia Raddatz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
125
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|
126
|
Jara-Oseguera A, Islas LD. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys J 2013; 104:2160-9. [PMID: 23708356 DOI: 10.1016/j.bpj.2013.03.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/23/2013] [Accepted: 03/27/2013] [Indexed: 11/29/2022] Open
Abstract
Thermo-transient receptor potential channels display outstanding temperature sensitivity and can be directly gated by low or high temperature, giving rise to cold- and heat-activated currents. These constitute the molecular basis for the detection of changes in ambient temperature by sensory neurons in animals. The mechanism that underlies the temperature sensitivity in thermo-transient receptor potential channels remains unknown, but has been associated with large changes in standard-state enthalpy (ΔH(o)) and entropy (ΔS(o)) upon channel gating. The magnitude, sign, and temperature dependence of ΔH(o) and ΔS(o), the last given by an associated change in heat capacity (ΔCp), can determine a channel's temperature sensitivity and whether it is activated by cooling, heating, or both, if ΔCp makes an important contribution. We show that in the presence of allosteric gating, other parameters, besides ΔH(o) and ΔS(o), including the gating equilibrium constant, the strength- and temperature dependence of the coupling between gating and the temperature-sensitive transitions, as well as the ΔH(o)/ΔS(o) ratio associated with them, can also determine a channel's temperature-dependent activity, and even give rise to channels that respond to both cooling and heating in a ΔCp-independent manner.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
127
|
Qin F. Demystifying thermal channels: driving a channel both forwards and backwards with a single gear? Biophys J 2013; 104:2118-20. [PMID: 23708350 DOI: 10.1016/j.bpj.2013.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- Feng Qin
- State University of New York at Buffalo, NY, USA. .
| |
Collapse
|
128
|
Abstract
Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.
Collapse
Affiliation(s)
- David Julius
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
129
|
Cao X, Ma L, Yang F, Wang K, Zheng J. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold. ACTA ACUST UNITED AC 2013; 143:75-90. [PMID: 24344247 PMCID: PMC3874569 DOI: 10.1085/jgp.201311025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes.
Collapse
Affiliation(s)
- Xu Cao
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | | | | | | | | |
Collapse
|
130
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
131
|
Grigoryan G. Absolute free energies of biomolecules from unperturbed ensembles. J Comput Chem 2013; 34:2726-41. [PMID: 24132787 DOI: 10.1002/jcc.23448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/11/2013] [Accepted: 08/31/2013] [Indexed: 01/31/2023]
Abstract
Computing the absolute free energy of a macromolecule's structural state, F, is a challenging problem of high relevance. This study presents a method that computes F using only information from an unperturbed simulation of the macromolecule in the relevant conformational state, ensemble, and environment. Absolute free energies produced by this method, dubbed Valuation of Local Configuration Integral with Dynamics (VALOCIDY), enable comparison of alternative states. For example, comparing explicitly solvated and vaporous states of amino acid side-chain analogs produces solvation free energies in good agreement with experiments. Also, comparisons between alternative conformational states of model heptapeptides (including the unfolded state) produce free energy differences in agreement with data from μs molecular-dynamics simulations and experimental propensities. The potential of using VALOCIDY in computational protein design is explored via a small design problem of stabilizing a β-turn structure. When VALOCIDY-based estimation of folding free energy is used as the design metric, the resulting sequence folds into the desired structure within the atomistic force field used in design. The VALOCIDY-based approach also recognizes the distinct status of the native sequence regardless of minor details of the starting template structure, in stark contrast with a traditional fixed-backbone approach.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Computer Science and Department of Biology, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
132
|
Jin K, Klima JC, Deane G, Dale Stokes M, Latz MI. Pharmacological investigation of the bioluminescence signaling pathway of the dinoflagellate Lingulodinium polyedrum: evidence for the role of stretch-activated ion channels. JOURNAL OF PHYCOLOGY 2013; 49:733-745. [PMID: 27007206 DOI: 10.1111/jpy.12084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/20/2013] [Indexed: 06/05/2023]
Abstract
Dinoflagellate bioluminescence serves as a whole-cell reporter of mechanical stress, which activates a signaling pathway that appears to involve the opening of voltage-sensitive ion channels and release of calcium from intracellular stores. However, little else is known about the initial signaling events that facilitate the transduction of mechanical stimuli. In the present study using the red tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge, two forms of dinoflagellate bioluminescence, mechanically stimulated and spontaneous flashes, were used as reporter systems to pharmacological treatments that targeted various predicted signaling events at the plasma membrane level of the signaling pathway. Pretreatment with 200 μM Gadolinium III (Gd(3+) ), a nonspecific blocker of stretch-activated and some voltage-gated ion channels, resulted in strong inhibition of both forms of bioluminescence. Pretreatment with 50 μM nifedipine, an inhibitor of L-type voltage-gated Ca(2+) channels that inhibits mechanically stimulated bioluminescence, did not inhibit spontaneous bioluminescence. Treatment with 1 mM benzyl alcohol, a membrane fluidizer, was very effective in stimulating bioluminescence. Benzyl alcohol-stimulated bioluminescence was inhibited by Gd(3+) but not by nifedipine, suggesting that its role is through stretch activation via a change in plasma membrane fluidity. These results are consistent with the presence of stretch-activated and voltage-gated ion channels in the bioluminescence mechanotransduction signaling pathway, with spontaneous flashing associated with a stretch-activated component at the plasma membrane.
Collapse
Affiliation(s)
- Kelly Jin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Jason C Klima
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Grant Deane
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Malcolm Dale Stokes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
133
|
Cao C, Yudin Y, Bikard Y, Chen W, Liu T, Li H, Jendrossek D, Cohen A, Pavlov E, Rohacs T, Zakharian E. Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep 2013; 4:302-315. [PMID: 23850286 DOI: 10.1016/j.celrep.2013.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022] Open
Abstract
The TRPM8 ion channel is expressed in sensory neurons and is responsible for sensing environmental cues, such as cold temperatures and chemical compounds, including menthol and icilin. The channel functional activity is regulated by various physical and chemical factors and is likely to be preconditioned by its molecular composition. Our studies indicate that the TRPM8 channel forms a structural-functional complex with the polyester poly-(R)-3-hydroxybutyrate (PHB). We identified by mass spectrometry a number of PHB-modified peptides in the N terminus of the TRPM8 protein and in its extracellular S3-S4 linker. Removal of PHB by enzymatic hydrolysis and site-directed mutagenesis of both the serine residues that serve as covalent anchors for PHB and adjacent hydrophobic residues that interact with the methyl groups of the polymer resulted in significant inhibition of TRPM8 channel activity. We conclude that the TRPM8 channel undergoes posttranslational modification by PHB and that this modification is required for its normal function.
Collapse
Affiliation(s)
- Chike Cao
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Yevgen Yudin
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Yann Bikard
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Wei Chen
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Tong Liu
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Hong Li
- New Jersey Medical School Cancer Center - UMDNJ, Center for Advanced Proteomics Research, Building F1105, 205 South Orange Avenue, Newark, NJ 07103 USA
| | - Dieter Jendrossek
- Universität Stuttgart Zentrum für Bioverfahrenstechnik Institut für Mikrobiologie, Allmandring 31, 70569 Stuttgart, Germany
| | - Alejandro Cohen
- Dalhousie University, Proteomics Core Facility, Clinical Research Centre, Room C-304 5849 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2 Canada
| | - Evgeny Pavlov
- Dalhousie University, Department of Physiology and Biophysics Faculty of Medicine, Sir Charles Tupper Medical Building, Halifax, Room 5G, 5850 College St., Halifax, NS, B3H 4R2 Canada
| | - Tibor Rohacs
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
| | - Eleonora Zakharian
- New Jersey Medical School, UMDNJ, Department of Pharmacology and Physiology, 185 South Orange Avenue, MSB H626, Newark NJ 07103, USA
- University of Illinois College of Medicine, Department of Cancer Biology and Pharmacology, 1 Illini Drive, Peoria, IL 61605, USA
| |
Collapse
|
134
|
Cunningham P, Naftalin RJ. Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models. J Membr Biol 2013; 246:495-511. [PMID: 23740044 DOI: 10.1007/s00232-013-9564-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022]
Abstract
In silico glucose docking to the transporter GLUT1 templated to the crystal structure of Escherichia coli XylE, a bacterial homolog of GLUT1-4 (4GBZ.pdb), reveals multiple docking sites. One site in the external vestibule in the exofacial linker between TM7 and -8 is adjacent to a missense T295M and a 4-mer insertion mutation. Glucose docking to the adjacent site is occluded in these mutants. These mutants cause an atypical form of glucose transport deficiency syndrome (GLUT1DS), where transport into the brain is deficient, although unusually transport into erythrocytes at 4 °C appears normal. A model in which glucose traverses the transporter via a network of saturable fixed sites simulates the temperature sensitivity of normal and mutant glucose influx and the mutation-dependent alterations of influx and efflux asymmetry when expressed in Xenopus oocytes at 37 °C. The explanation for the temperature sensitivity is that at 4 °C glucose influx between the external and internal vestibules is slow and causes glucose to accumulate in the external vestibule. This retards net glucose uptake from the external solution via two parallel sites into the external vestibule, consequently masking any transport defect at either one of these sites. At 37 °C glucose transit between the external and internal vestibules is rapid, with no significant glucose buildup in the external vestibule, and thereby unmasks any transport defect at one of the parallel input sites. Monitoring glucose transport in patients' erythrocytes at higher temperatures may improve the diagnostic accuracy of the functional test of GLUT1DS.
Collapse
Affiliation(s)
- Philip Cunningham
- Bioinformatics Division, School of Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London SE1 9HN, UK
| | | |
Collapse
|
135
|
Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2013; 33:6154-9. [PMID: 23554496 DOI: 10.1523/jneurosci.5672-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cold sensation is an important and fundamental sense for animals and it is known to be affected by ambient temperature. Transient Receptor Potential Melastatin 8 (TRPM8), a nonselective cation channel expressed in a subset of peripheral afferent fibers, acts as a cold sensor, having an activation threshold of ∼28°C. Although the cold temperature threshold of TRPM8 is affected by menthol or pH, ambient temperature has not been reported to affect it. Because the cold temperature threshold was thought to be unchanged by alterations in ambient temperature, the relativity of temperature sensing in different ambient temperatures could not be understood at the level of molecular function of thermosensitive TRP channels. Here, we show that ambient temperature changed the temperature threshold for activation of human and rat TRPM8 in a heterologous expression system and cold responses in mouse DRG neurons. Moreover, reducing the level of cellular phosphatidylinositol 4,5-bisphosphate (PIP2) attenuated changes in the cold temperature threshold after alterations in ambient temperature. A single amino acid mutation at position 1008 in the C terminus of TRPM8 (arginine to glutamine) also attenuated changes in the cold temperature threshold induced by ambient temperature. These findings suggest that ambient temperature does affect the temperature threshold for TRPM8 activation through interaction of PIP2.
Collapse
|
136
|
Abstract
A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca(2+)-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the "work function," or the free energy required to activate the principal component. The second are "lever operations" activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy W(H)([g]), which is a "local" work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy W(C)([q]), representing "global" gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (V(M)) of normalized capacitance (slope of Q-V curve). Plots of W(H)([g]) and W(C)([q]) versus voltage and Ca(2+) potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca(2+)-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%.
Collapse
|
137
|
Orio P, Parra A, Madrid R, González O, Belmonte C, Viana F. Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 2012; 108:3009-23. [DOI: 10.1152/jn.01033.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian peripheral cold thermoreceptors respond to cooling of their sensory endings with an increase in firing rate and modification of their discharge pattern. We recently showed that cultured trigeminal cold-sensitive (CS) neurons express a prominent hyperpolarization-activated current ( Ih), mainly carried by HCN1 channels, supporting subthreshold resonance in the soma without participating in the response to acute cooling. However, peripheral pharmacological blockade of Ih, or characterization of HCN1−/− mice, reveals a deficit in acute cold detection. Here we investigated the role of Ih in CS nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. Ih blockers ZD7288 and ivabradine alter firing patterns of CS nerve endings, lengthening interspike intervals and inducing bursts at neutral skin temperature. We characterized the CS nerve endings from HCN1−/− mouse corneas and found that they behave similar to wild type, although with a lower slope in the firing frequency vs. temperature relationship, thus explaining the deficit in cold perception of HCN1−/− mice. The firing pattern of nerve endings from HCN1−/− mice was also affected by ZD7288, which we attribute to the presence of HCN2 channels in the place of HCN1. Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1−/− mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing Ih. We propose that Ih carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation.
Collapse
Affiliation(s)
- Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV) and Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés Parra
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; and
| | - Omar González
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- Fundación de Investigación Oftalmológica, Instituto Fernandez-Vega, Oviedo, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
138
|
Journigan VB, Zaveri NT. TRPM8 ion channel ligands for new therapeutic applications and as probes to study menthol pharmacology. Life Sci 2012; 92:425-37. [PMID: 23159643 DOI: 10.1016/j.lfs.2012.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/24/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery of the TRPM8 gene in 2001, the TRPM8 ion channel, better known as the 'cold receptor' has been the target of a significant effort from the pharmaceutical industry to produce small-molecule agonists and antagonists of this receptor for various therapeutic applications ranging from cancer and urological disorders to the treatment of cold hypersensitivity and pain. Recently, a number of clinical studies have implicated menthol, the natural ligand of TRPM8, in facilitating and maintaining cigarette smoking behavior, possibly through its counter-irritant effects. However, a pharmacological link between menthol's action via TRPM8 and nicotine addiction has not been yet been investigated. This review gives an overview of reported small-molecule TRPM8 agonists and antagonists and discusses their efficacy in models of various disease states. These compounds may be useful pharmacological tools to investigate the effect of menthol on nicotine addiction.
Collapse
Affiliation(s)
- V Blair Journigan
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, CA 94043, United States
| | | |
Collapse
|
139
|
Wang H, Schupp M, Zurborg S, Heppenstall PA. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J Physiol 2012; 591:185-201. [PMID: 23027824 DOI: 10.1113/jphysiol.2012.242842] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The capacity to sense temperature is essential for the survival of all animals. At the molecular level, ion channels belonging to the transient receptor potential (TRP) family of channels function as temperature sensors in animals across several phyla. TRP channels are opened directly by changes in temperature and show pronounced sensitivity at their activation range. To determine how temperature activates these channels, we analysed channels belonging to the TRPA family, which detect heat in insects and cold in mammals. By constructing chimeric proteins consisting of human and Drosophila TRPA1 channels, we mapped regions that regulate thermal activation and identified residues in the pore helix that invert temperature sensitivity of TRPA1. From analysis of individual channels we defined the gating reaction of Drosophila TRPA1 and determined how mutagenesis alters the energy landscape for channel opening. Our results reveal specific molecular requirements for thermal activation of TRPA1 and provide mechanistic insight into this process.
Collapse
Affiliation(s)
- Hong Wang
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | | | | | | |
Collapse
|
140
|
Corry JJ. Use of hypothermia in the intensive care unit. World J Crit Care Med 2012; 1:106-22. [PMID: 24701408 PMCID: PMC3953868 DOI: 10.5492/wjccm.v1.i4.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 02/06/2023] Open
Abstract
Used for over 3600 years, hypothermia, or targeted temperature management (TTM), remains an ill defined medical therapy. Currently, the strongest evidence for TTM in adults are for out-of-hospital ventricular tachycardia/ventricular fibrillation cardiac arrest, intracerebral pressure control, and normothermia in the neurocritical care population. Even in these disease processes, a number of questions exist. Data on disease specific therapeutic markers, therapeutic depth and duration, and prognostication are limited. Despite ample experimental data, clinical evidence for stroke, refractory status epilepticus, hepatic encephalopathy, and intensive care unit is only at the safety and proof-of-concept stage. This review explores the deleterious nature of fever, the theoretical role of TTM in the critically ill, and summarizes the clinical evidence for TTM in adults.
Collapse
Affiliation(s)
- Jesse J Corry
- Jesse J Corry, Department of Neurology, Marshfield Clinic, Marshfield, WI 54449-5777, United States
| |
Collapse
|
141
|
El-Arabi AM, Salazar CS, Schmidt JJ. Ion channel drug potency assay with an artificial bilayer chip. LAB ON A CHIP 2012; 12:2409-2413. [PMID: 22549308 DOI: 10.1039/c2lc40087a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The potency of pharmaceutical compounds acting on ion channels can be determined through measurements of ion channel conductance as a function of compound concentration. We have developed an artificial lipid bilayer chip for simple, fast, and high-yield measurement of ion channel conductance with simultaneous solution perfusion. Here we show the application of this chip to the measurement of the mammalian cold and menthol receptor TRPM8. Ensemble measurements of TRPM8 as a function of concentration of menthol and 2-aminoethoxydiphenyl borate (2-APB) enabled efficient determination of menthol's EC(50) (111.8 μM ± 2.4 μM) and 2-APB's IC(50) (4.9 μM ± 0.2 μM) in agreement with published values. This validation, coupled with the compatibility of this platform with automation and parallelization, indicates significant potential for large-scale pharmaceutical ion channel screening.
Collapse
Affiliation(s)
- Ahmad M El-Arabi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
142
|
Motter AL, Ahern GP. TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS One 2012; 7:e38439. [PMID: 22723860 PMCID: PMC3378573 DOI: 10.1371/journal.pone.0038439] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/07/2012] [Indexed: 01/22/2023] Open
Abstract
Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1), a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs) in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human) TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions.
Collapse
Affiliation(s)
- Arianne L. Motter
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America
| | - Gerard P. Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
143
|
Are TRP channels involved in sperm development and function? Cell Tissue Res 2012; 349:749-64. [DOI: 10.1007/s00441-012-1397-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
|
144
|
Yudin Y, Rohacs T. Regulation of TRPM8 channel activity. Mol Cell Endocrinol 2012; 353:68-74. [PMID: 22061619 PMCID: PMC3295897 DOI: 10.1016/j.mce.2011.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/28/2022]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) is a Ca(2+) permeable non-selective cation channel directly activated by cold temperatures and chemical agonists such as menthol. It is a well established sensor of environmental cold temperatures, found in peripheral sensory neurons, where its activation evokes depolarization and action potentials. The activity of TRPM8 is regulated by a number of cellular signaling pathways, most notably by phosphoinositides and the activation of phospholipase C. This review will summarize current knowledge on the physiological and pathophysiological roles of TRPM8 and its regulation by various intracellular messenger molecules and signaling pathways.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, UMDNJ - New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
145
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
146
|
Pertusa M, Madrid R, Morenilla-Palao C, Belmonte C, Viana F. N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J Biol Chem 2012; 287:18218-29. [PMID: 22493431 DOI: 10.1074/jbc.m111.312645] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TRPM8 is a member of the transient receptor potential ion channel superfamily, which is expressed in sensory neurons and is activated by cold and cooling compounds, such as menthol. Activation of TRPM8 by agonists takes place through shifts in its voltage activation curve, allowing channel opening at physiological membrane potentials. Here, we studied the role of the N-glycosylation occurring at the pore loop of TRPM8 on the function of the channel. Using heterologous expression of recombinant channels in HEK293 cells we found that the unglycosylated TRPM8 mutant (N934Q) displays marked functional differences compared with the wild type channel. These differences include a shift in the threshold of temperature activation and a reduced response to menthol and cold stimuli. Biophysical analysis indicated that these modifications are due to a shift in the voltage dependence of TRPM8 activation toward more positive potentials. By using tunicamycin, a drug that prevents N-glycosylation of proteins, we also evaluated the effect of the N-glycosylation on the responses of trigeminal sensory neurons expressing TRPM8. These experiments showed that the lack of N-glycosylation affects the function of native TRPM8 ion channels in a similar way to heterologously expressed ones, causing an important shift of the temperature threshold of cold-sensitive thermoreceptor neurons. Altogether, these results indicate that post-translational modification of TRPM8 is an important mechanism modulating cold thermoreceptor function, explaining the marked differences in temperature sensitivity observed between recombinant and native TRPM8 ion channels.
Collapse
Affiliation(s)
- María Pertusa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | | | | | | | | |
Collapse
|
147
|
Cui Y, Yang F, Cao X, Yarov-Yarovoy V, Wang K, Zheng J. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. ACTA ACUST UNITED AC 2012; 139:273-83. [PMID: 22412190 PMCID: PMC3315147 DOI: 10.1085/jgp.201110724] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
148
|
Latorre R, Brauchi S, Madrid R, Orio P. A cool channel in cold transduction. Physiology (Bethesda) 2012; 26:273-85. [PMID: 21841075 DOI: 10.1152/physiol.00004.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8), a calcium-permeable cation channel activated by cold, cooling compounds and voltage, is the main molecular entity responsible for detection of cold temperatures in the somatosensory system. Here, we review the biophysical properties, physiological role, and near-membrane trafficking of this exciting polymodal ion channel.
Collapse
Affiliation(s)
- Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
149
|
Quantifying and modeling the temperature-dependent gating of TRP channels. Rev Physiol Biochem Pharmacol 2012; 162:91-119. [PMID: 22298025 DOI: 10.1007/112_2011_5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to sense environmental temperatures and to avoid noxious heat or cold is crucial for the survival of all organisms. In mammals, sensory neurons from dorsal root and trigeminal ganglia convey thermal information from the skin, mouth and nose to the central nervous system. Recent evidence has established that thermo TRPs, a subset of the TRP superfamily of cation channels, act as primary temperature sensors in cold-and-heat-sensitive neurons. The gating of these thermoTRPs exhibit strong temperature dependence, leading to steep changes in inward current upon heating or cooling. The origin of this striking temperature sensitivity remains incompletely understood. In this review, I propose criteria that define a thermoTRP, analyse the usefulness and limitations of the commonly used parameters thermal threshold and Q(10), provide an overview of possible thermodynamic principles and gating schemes for thermosensitive TRP channels, and perform a meta-analysis of publlished work on the molecular basis of heat sensitivity in TRPV1. This review may form a useful reference for the analysis and interpretation of further biophysical and structure-function studies dissecting the molecular basis of thermosensitivity in TRP channels.
Collapse
|
150
|
New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel) 2011; 5:16-48. [PMID: 24288041 PMCID: PMC3763626 DOI: 10.3390/ph5010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.
Collapse
|