101
|
Abstract
Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain.
| | | |
Collapse
|
102
|
Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 2010; 28:355-60. [DOI: 10.1038/nbt.1617] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/19/2010] [Indexed: 02/07/2023]
|
103
|
|
104
|
Nistala GJ, Wu K, Rao CV, Bhalerao KD. A modular positive feedback-based gene amplifier. J Biol Eng 2010; 4:4. [PMID: 20187959 PMCID: PMC2845093 DOI: 10.1186/1754-1611-4-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 02/26/2010] [Indexed: 11/13/2022] Open
Abstract
Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.
Collapse
Affiliation(s)
- Goutam J Nistala
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Ave, Urbana, IL, 61801, USA
| | - Kang Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, USA
| | - Kaustubh D Bhalerao
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Ave, Urbana, IL, 61801, USA
| |
Collapse
|
105
|
Abstract
Synthetic biology can be defined as the "repurposing and redesign of biological systems for novel purposes or applications, " and the field lies at the interface of several biological research areas. This broad definition can be taken to include a variety of investigative endeavors, and successful design of new biological paradigms requires integration of many scientific disciplines including (but not limited to) protein engineering, metabolic engineering, genomics, structural biology, chemical biology, systems biology, and bioinformatics. This review focuses on recent applications of synthetic biology principles in three areas: (i) the construction of artificial biomolecules and biomaterials; (ii) the synthesis of both fine and bulk chemicals (including biofuels); and (iii) the construction of "smart" biological systems that respond to the surrounding environment.
Collapse
Affiliation(s)
- Wesley D Marner
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
106
|
Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol 2009; 5:842-8. [PMID: 19801994 DOI: 10.1038/nchembio.218] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/10/2009] [Indexed: 12/11/2022]
Abstract
Synthetic gene circuits are often engineered by considering the host cell as an invariable 'chassis'. Circuit activation, however, may modulate host physiology, which in turn can substantially impact circuit behavior. We illustrate this point by a simple circuit consisting of mutant T7 RNA polymerase (T7 RNAP*) that activates its own expression in the bacterium Escherichia coli. Although activation by the T7 RNAP* is noncooperative, the circuit caused bistable gene expression. This counterintuitive observation can be explained by growth retardation caused by circuit activation, which resulted in nonlinear dilution of T7 RNAP* in individual bacteria. Predictions made by models accounting for such effects were verified by further experimental measurements. Our results reveal a new mechanism of generating bistability and underscore the need to account for host physiology modulation when engineering gene circuits.
Collapse
|
107
|
Tigges M, Fussenegger M. Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20:449-60. [PMID: 19762224 DOI: 10.1016/j.copbio.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Capitalizing on an era of functional genomic research, systems biology offers a systematic quantitative analysis of existing biological systems thereby providing the molecular inventory of biological parts that are currently being used for rational synthesis and engineering of complex biological systems with novel and potentially useful functions-an emerging discipline known as synthetic biology. During the past decade synthetic biology has rapidly developed from simple control devices fine-tuning the activity of single genes and proteins to multi-gene/protein-based transcription and signaling networks providing new insight into global control and molecular reaction dynamics, thereby enabling the design of novel drug-synthesis pathways as well as genetic devices with unmatched biological functions. While pioneering synthetic devices have first been designed as test, toy, and teaser systems for use in prokaryotes and lower eukaryotes, first examples of a systematic assembly of synthetic gene networks in mammalian cells has sketched the full potential of synthetic biology: foster novel therapeutic opportunities in gene and cell-based therapies. Here we provide a concise overview on the latest advances in mammalian synthetic biology.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | | |
Collapse
|
108
|
Coherent activation of a synthetic mammalian gene network. SYSTEMS AND SYNTHETIC BIOLOGY 2009; 4:15-23. [PMID: 19757189 PMCID: PMC2816225 DOI: 10.1007/s11693-009-9044-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/16/2009] [Accepted: 08/26/2009] [Indexed: 12/21/2022]
Abstract
A quantitative analysis of naturally-occurring regulatory networks, especially those present in mammalian cells, is difficult due to their high complexity. Much simpler gene networks can be engineered in model organisms and analyzed as isolated regulatory modules. Recently, several synthetic networks have been constructed in mammalian systems. However, most of these engineered mammalian networks have been characterized using steady-state population level measurements. Here, we use an integrated experimental-computational approach to analyze the dynamical response of a synthetic positive feedback network in individual mammalian cells. We observe a switch-like activation of the network with variable delay times in individual cells. In agreement with a stochastic model of the network, we find that increasing the strength of the positive feedback results in a decrease in the mean delay time and a more coherent activation of individual cells. Our results are important for gaining insight into biological processes which rely on positive feedback regulation.
Collapse
|
109
|
Abstract
Stem cell differentiation and the maintenance of self-renewal are intrinsically complex processes requiring the coordinated dynamic expression of hundreds of genes and proteins in precise response to external signalling cues. Numerous recent reports have used both experimental and computational techniques to dissect this complexity. These reports suggest that the control of cell fate has both deterministic and stochastic elements: complex underlying regulatory networks define stable molecular 'attractor' states towards which individual cells are drawn over time, whereas stochastic fluctuations in gene and protein expression levels drive transitions between coexisting attractors, ensuring robustness at the population level.
Collapse
|
110
|
Staneloni RJ, Rodriguez-Batiller MJ, Legisa D, Scarpin MR, Agalou A, Cerdán PD, Meijer AH, Ouwerkerk PBF, Casal JJ. Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A. Proc Natl Acad Sci U S A 2009; 106:13624-9. [PMID: 19666535 PMCID: PMC2726377 DOI: 10.1073/pnas.0906598106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Indexed: 11/18/2022] Open
Abstract
Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.
Collapse
Affiliation(s)
- Roberto J. Staneloni
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - María José Rodriguez-Batiller
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Danilo Legisa
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - María R. Scarpin
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Adamantia Agalou
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Annemarie H. Meijer
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Pieter B. F. Ouwerkerk
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Jorge J. Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Cientificas y Técnicas, Avenue San Martín 4453,1417 Buenos Aires, Argentina
| |
Collapse
|
111
|
Christen EH, Karlsson M, Kämpf MM, Weber CC, Fussenegger M, Weber W. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli. Protein Expr Purif 2009; 66:158-64. [DOI: 10.1016/j.pep.2009.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 01/14/2023]
|
112
|
Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD. A synthetic genetic edge detection program. Cell 2009; 137:1272-81. [PMID: 19563759 DOI: 10.1016/j.cell.2009.04.048] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/09/2009] [Accepted: 04/13/2009] [Indexed: 11/17/2022]
Abstract
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
Collapse
Affiliation(s)
- Jeffrey J Tabor
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Sellaro R, Hoecker U, Yanovsky M, Chory J, Casal JJ. Synergism of red and blue light in the control of Arabidopsis gene expression and development. Curr Biol 2009; 19:1216-20. [PMID: 19559617 DOI: 10.1016/j.cub.2009.05.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/12/2009] [Accepted: 05/18/2009] [Indexed: 12/30/2022]
Abstract
The synergism between red and blue light in the control of plant growth and development requires the coaction of the red light photoreceptor phytochrome B (phyB) and the blue light and UV-A receptor cryptochromes (cry). Here, we describe the mechanism of the coaction of these photoreceptors in controlling both development and physiology. In seedlings grown under red light, a transient supplement with blue light induced persistent changes in the transcriptome and growth patterns. Blue light enhanced the expression of the transcription factors LONG HYPOCOTYL 5 (HY5) and HOMOLOG OF HY5 (HYH) and of SUPPRESSOR OF PHYA 1 (SPA1) and SPA4. HY5 and HYH enhanced phyB signaling output beyond the duration of the blue light signal, and, contrary to their known role as repressors of phyA signaling, SPA1 and SPA4 also enhanced phyB signaling. These observations demonstrate that the mechanism of synergism involves the promotion by cry of positive regulators of phyB signaling. The persistence of the light-derived signal into the night commits the seedling to a morphogenetic and physiological program consistent with a photosynthetic lifestyle.
Collapse
Affiliation(s)
- Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, and CONICET, Av. San Martín 4453, 1417-Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
114
|
Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc Natl Acad Sci U S A 2009; 106:10638-43. [PMID: 19549857 DOI: 10.1073/pnas.0901501106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adjustable control of therapeutic transgenes in engineered cell implants after transdermal and topical delivery of nontoxic trigger molecules would increase convenience, patient compliance, and elimination of hepatic first-pass effect in future therapies. Pseudomonas putida DOT-T1E has evolved the flavonoid-triggered TtgR operon, which controls expression of a multisubstrate-specific efflux pump (TtgABC) to resist plant-derived defense metabolites in its rhizosphere habitat. Taking advantage of the TtgR operon, we have engineered a hybrid P. putida-mammalian genetic unit responsive to phloretin. This flavonoid is contained in apples, and, as such, or as dietary supplement, regularly consumed by humans. The engineered mammalian phloretin-adjustable control element (PEACE) enabled adjustable and reversible transgene expression in different mammalian cell lines and primary cells. Due to the short half-life of phloretin in culture, PEACE could also be used to program expression of difficult-to-produce protein therapeutics during standard bioreactor operation. When formulated in skin lotions and applied to the skin of mice harboring transgenic cell implants, phloretin was able to fine-tune target genes and adjust heterologous protein levels in the bloodstream of treated mice. PEACE-controlled target gene expression could foster advances in biopharmaceutical manufacturing as well as gene- and cell-based therapies.
Collapse
|
115
|
Agapakis CM, Silver PA. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. MOLECULAR BIOSYSTEMS 2009; 5:704-13. [PMID: 19562109 DOI: 10.1039/b901484e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.
Collapse
|
116
|
Weber W, Schuetz M, Dénervaud N, Fussenegger M. A synthetic metabolite-based mammalian inter-cell signaling system. MOLECULAR BIOSYSTEMS 2009; 5:757-63. [PMID: 19562115 DOI: 10.1039/b902070p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functionally well-characterized modular transcription units represent the genetic repertoire for the design of synthetic gene networks operating inside individual mammalian cells. Interconnection of specialized cells to multicellular assemblies that could execute complex computational functions requires synthetic signaling systems, which process and synchronize metabolic information between mammalian cells. In this study we have designed a metabolite-controlled inter-cellular signaling device consisting of a human sender cell line stably engineered for constitutive expression of the human liver-type arginase and a transgenic receiver cell line harboring a synthetic circuit, which produced a human glycoprotein in response to L-arginine levels in the culture medium. Quantitative characterization of the system components enabled precise prediction of l-arginine degradation and product gene expression kinetics and showed that two independent transgenic cell lines could functionally inter-operate to form a metabolite-controlled device which is able to precisely time desired target gene expression. Synthetic gene circuits modulating the transfer of metabolic information from a sender to a receiver cell line may enable the design of synthetic hormone systems supporting communication across multicellular assemblies.
Collapse
Affiliation(s)
- Wilfried Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
117
|
Weber W, Lienhart C, Daoud-El Baba M, Grass RN, Kohler T, Müller R, Stark WJ, Fussenegger M. Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles. J Biotechnol 2009; 141:118-22. [PMID: 19433214 DOI: 10.1016/j.jbiotec.2009.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/16/2009] [Accepted: 02/26/2009] [Indexed: 02/08/2023]
Abstract
Targeted delivery of therapeutic transgenes into specific cells remains a highly relevant challenge for tissue engineering and future gene-based therapies. We have designed streptavidin-pseudotyped lentiviral particles which upon coupling with biotinylated magnetic carbon-coated cobalt nanoparticles could be guided by magnetic fields to site-specifically transduce desired target cells in culture as well as in mice. Magnetic patterns projected onto monolayer cultures were replicated by fluorescent cells following targeted transduction by magnetic lentiviral particles engineered for constitutive expression of the green fluorescent protein (GFP). Even after intravenous injection into mice magnetic GFP-transgenic lentiviral particles could be guided to a preferred transduction site in the animal using a magnetic field. Magnet-guided transgene delivery producing desired patterns of transduced cell populations may enable the design of defined tissue topologies and provide site-specific transduction of therapeutic transgenes for cell-specific interventions in future gene and cancer therapies.
Collapse
Affiliation(s)
- Wilfried Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Weber W, Fussenegger M. Engineering of Synthetic Mammalian Gene Networks. ACTA ACUST UNITED AC 2009; 16:287-97. [DOI: 10.1016/j.chembiol.2009.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 12/15/2022]
|
119
|
|
120
|
Weber W, Luzi S, Karlsson M, Sanchez-Bustamante CD, Frey U, Hierlemann A, Fussenegger M. A synthetic mammalian electro-genetic transcription circuit. Nucleic Acids Res 2009; 37:e33. [PMID: 19190091 PMCID: PMC2651811 DOI: 10.1093/nar/gkp014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.
Collapse
Affiliation(s)
- Wilfried Weber
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Chickarmane V, Enver T, Peterson C. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol 2009; 5:e1000268. [PMID: 19165316 PMCID: PMC2613533 DOI: 10.1371/journal.pcbi.1000268] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1–GATA-1 switch also interacts with another mutually antagonistic pair, –FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes. An important question in developmental biology is how different lineage choices are regulated at the genetic level. Robust lineage decisions are implemented by genetic switches, whereby one set of master genes are ON and another set are OFF, leading to a specific expression pattern of genes for a particular lineage. We develop a computational model to illustrate these principles as applied to the hematopoietic erythroid-myeloid lineage choice, where two master regulator genes, PU.1 and GATA-1, function as a genetic switch. The model, which is based upon known interactions, suggests missing interactions between the master genes, which we hypothesize, so as to reproduce the desired dynamics. Furthermore, there exist feedback interactions between the master genes and their downstream targets. When these are included in the model, the dynamics imply that the feedback is responsible for irreversible commitment. Our results suggest the search for missing interactions between the master genes in terms of a coregulated cofactor. The second important result of the model is that reprogramming irreversible cell fate may be possible by perturbing feedback regulation between the master genes and their downstream targets. Hence, dynamical modeling provides prediction of novel mechanisms and also strategies for reprogramming the fates of cells.
Collapse
Affiliation(s)
- Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Tariq Enver
- MRC Molecular Biology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Carsten Peterson
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
122
|
|
123
|
Gitzinger M, Parsons J, Reski R, Fussenegger M. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:73-86. [PMID: 19021876 DOI: 10.1111/j.1467-7652.2008.00376.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants and mammals are separated by a huge evolutionary distance. Consequently, biotechnology and genetics have traditionally been divided into 'green' and 'red'. Here, we provide comprehensive evidence that key components of the mammalian transcription, translation and secretion machineries are functional in the model plant Physcomitrella patens. Cross-kingdom compatibility of different expression modalities originally designed for mammalian cells, such as native and synthetic promoters and polyadenylation sites, viral and cellular internal ribosome entry sites, secretion signal peptides and secreted product proteins, and synthetic transactivators and transrepressors, was established. This mammalian expression portfolio enabled constitutive, conditional and autoregulated expression of different product genes in a multicistronic expression format, optionally adjusted by various trigger molecules, such as butyrolactones, macrolide antibiotics and ethanol. Capitalizing on a cross-kingdom-compatible expression platform, we pioneered a prototype biopharmaceutical manufacturing scenario using microencapsulated transgenic P. patens protoplasts cultivated in a Wave Bioreactor. Vascular endothelial growth factor 121 (VEGF(121)) titres matched those typically achieved by standard protonema populations grown in stirred-tank bioreactors. The full compatibility of mammalian expression systems in P. patens further promotes the use of moss as a cost-effective alternative for the manufacture of complex biopharmaceuticals, and as a valuable host system to advance synthetic biology in plants.
Collapse
Affiliation(s)
- Marc Gitzinger
- Department for Biosystems Science and Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
124
|
Abstract
Gene expression is a fundamentally stochastic process, with randomness in transcription and translation leading to cell-to-cell variations in mRNA and protein levels. This variation appears in organisms ranging from microbes to metazoans, and its characteristics depend both on the biophysical parameters governing gene expression and on gene network structure. Stochastic gene expression has important consequences for cellular function, being beneficial in some contexts and harmful in others. These situations include the stress response, metabolism, development, the cell cycle, circadian rhythms, and aging.
Collapse
Affiliation(s)
- Arjun Raj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
125
|
Chatterjee A, Kaznessis YN, Hu WS. Tweaking biological switches through a better understanding of bistability behavior. Curr Opin Biotechnol 2008; 19:475-81. [PMID: 18804166 DOI: 10.1016/j.copbio.2008.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/21/2008] [Indexed: 12/22/2022]
Abstract
Many biological events are binary. The switch between mutually exclusive OFF to ON state in response to a stimulus is frequently mediated by a control circuit with a positive and/or a negative feedback. Such a system typically exhibits hysteresis with its switching ON and OFF stimulus levels dependent on the current state of the system. The system can be shown to be bistable both experimentally and mathematically. Work to synthesize such switches by combining natural or engineered components has begun to illustrate the potential of such control circuits in many areas of applications.
Collapse
Affiliation(s)
- Anushree Chatterjee
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | |
Collapse
|
126
|
Greber D, El-Baba MD, Fussenegger M. Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res 2008; 36:e101. [PMID: 18632760 PMCID: PMC2532736 DOI: 10.1093/nar/gkn443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Applications of conditional gene expression, whether for therapeutic or basic research purposes, are increasingly requiring mammalian gene control systems that exhibit far tighter control properties. While numerous approaches have been used to improve the widely used Tet-regulatory system, many applications, particularly with respect to the engineering of synthetic gene networks, will require a broader range of tightly performing gene control systems. Here, a generically applicable approach is described that utilizes intronically encoded siRNA on the relevant transregulator construct, and siRNA sequence-specific tags on the reporter construct, to minimize basal gene activity in the off-state of a range of common gene control systems. To demonstrate tight control of residual expression the approach was successfully used to conditionally express the toxic proteins RipDD and Linamarase. The intronic siRNA concept was also extended to create a new generation of compact, single-vector, autoinducible siRNA vectors. Finally, using improved regulation systems a mammalian epigenetic toggle switch was engineered that exhibited superior in vitro and in vivo induction characteristics in mice compared to the equivalent non-intronic system.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
127
|
A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc Natl Acad Sci U S A 2008; 105:9994-8. [PMID: 18621677 DOI: 10.1073/pnas.0800663105] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic biology provides insight into natural gene-network dynamics and enables assembly of engineered transcription circuitries for production of difficult-to-access therapeutic molecules. In Mycobacterium tuberculosis EthR binds to a specific operator (O(ethR)) thereby repressing ethA and preventing EthA-catalyzed conversion of the prodrug ethionamide, which increases the resistance of the pathogen to this last-line-of-defense treatment. We have designed a synthetic mammalian gene circuit that senses the EthR-O(ethR) interaction in human cells and produces a quantitative reporter gene expression readout. Challenging of the synthetic network with compounds of a rationally designed chemical library revealed 2-phenylethyl-butyrate as a nontoxic substance that abolished EthR's repressor function inside human cells, in mice, and within M. tuberculosis where it triggered derepression of ethA and increased the sensitivity of this pathogen to ethionamide. The discovery of antituberculosis compounds by using synthetic mammalian gene circuits may establish a new line of defense against multidrug-resistant M. tuberculosis.
Collapse
|
128
|
May T, Eccleston L, Herrmann S, Hauser H, Goncalves J, Wirth D. Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit. PLoS One 2008; 3:e2372. [PMID: 18523635 PMCID: PMC2394661 DOI: 10.1371/journal.pone.0002372] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022] Open
Abstract
In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with natural pathways. Alternatively, they may be interlinked with endogenous pathways to create artificial networks of higher complexity. While these approaches have been already successful in prokaryotes and lower eukaryotes, the implementation of such synthetic cassettes in mammalian systems and even animals is still a major obstacle. This is mainly due to the lack of methods that reliably and efficiently transduce synthetic modules without compromising their regulation properties. To pave the way for implementation of synthetic regulation modules in mammalian systems we utilized lentiviral transduction of synthetic modules. A synthetic positive feedback loop, based on the Tetracycline regulation system was implemented in a lentiviral vector system and stably integrated in mammalian cells. This gene regulation circuit yields a bimodal expression response. Based on experimental data a mathematical model based on stochasticity was developed which matched and described the experimental findings. Modelling predicted a hysteretic expression response which was verified experimentally. Thereby supporting the idea that the system is driven by stochasticity. The results presented here highlight that the combination of three independent tools/methodologies facilitate the reliable installation of synthetic gene circuits with predictable expression characteristics in mammalian cells and organisms.
Collapse
Affiliation(s)
- Tobias May
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lee Eccleston
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Sabrina Herrmann
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jorge Goncalves
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Dagmar Wirth
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
129
|
Abstract
This paper outlines prospects for applying the emerging techniques of synthetic biology to the field of anatomy, with the aim of programming cells to organize themselves into specific, novel arrangements, structures and tissues. There are two main reasons why developing this hybrid discipline--synthetic morphology--would be useful. The first is that having a way to engineer self-constructing assemblies of cells would provide a powerful means of tissue engineering for clinical use in surgery and regenerative medicine. The second is that construction of simple novel systems according to theories of morphogenesis gained from study of real embryos will provide a means of testing those theories rigorously, something that is very difficult to do by manipulation of complex embryos. This paper sets out the engineering requirements for synthetic morphology, which include the development of a library of sensor modules, regulatory modules and effector modules that can be connected functionally within cells. A substantial number of sensor and regulatory modules already exist and this paper argues that some potential effector modules have already been identified. The necessary library may therefore be within reach. The paper ends by suggesting a set of challenges, ranging from simple to complex, the achievement of which would provide valuable proofs of concept.
Collapse
Affiliation(s)
- Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, United Kingdom.
| |
Collapse
|
130
|
Igoshin OA, Alves R, Savageau MA. Hysteretic and graded responses in bacterial two-component signal transduction. Mol Microbiol 2008; 68:1196-215. [PMID: 18363790 DOI: 10.1111/j.1365-2958.2008.06221.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial two-component systems (TCS) are key signal transduction networks regulating global responses to environmental change. Environmental signals may modulate the phosphorylation state of sensor kinases (SK). The phosphorylated SK transfers the phosphate to its cognate response regulator (RR), which causes physiological response to the signal. Frequently, the SK is bifunctional and, when unphosphorylated, it is also capable of dephosphorylating the RR. The phosphatase activity may also be modulated by environmental signals. Using the EnvZ/OmpR system as an example, we constructed mathematical models to examine the steady-state and kinetic properties of the network. Mathematical modelling reveals that the TCS can show bistable behaviour for a given range of parameter values if unphosphorylated SK and RR form a dead-end complex that prevents SK autophosphorylation. Additionally, for bistability to exist the major dephosphorylation flux of the RR must not depend on the unphosphorylated SK. Structural modelling and published affinity studies suggest that the unphosphorylated SK EnvZ and the RR OmpR form a dead-end complex. However, bistability is not possible because the dephosphorylation of OmpR approximately P is mainly done by unphosphorylated EnvZ. The implications of this potential bistability in the design of the EnvZ/OmpR network and other TCS are discussed.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA.
| | | | | |
Collapse
|
131
|
Fluri DA, Kelm JM, Lesage G, Baba MDE, Fussenegger M. InXy and SeXy, compact heterologous reporter proteins for mammalian cells. Biotechnol Bioeng 2007; 98:655-67. [PMID: 17461419 DOI: 10.1002/bit.21461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream. InXy and SeXy are highly sensitive, compact and robust reporter proteins, fully compatible with pre-existing marker genes and can be assayed in high-throughput formats using very small sample volumes.
Collapse
Affiliation(s)
- David A Fluri
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
132
|
Sayut DJ, Kambam PKR, Sun L. Noise and kinetics of LuxR positive feedback loops. Biochem Biophys Res Commun 2007; 363:667-73. [PMID: 17905197 DOI: 10.1016/j.bbrc.2007.09.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/15/2022]
Abstract
We have previously reported the design and construction of positive feedback loops (PFLs) based on the LuxI-LuxR quorum-sensing system that can be used as modular transcriptional regulatory units for the construction of complex artificial genetic circuits. Here, we characterize these PFLs using single-cell and dynamic induction studies to fully understand their behavior and facilitate their incorporation into novel networks. The LuxR PFLs had graded responses to the OHHL signal molecule with inductions developing over time, causing a lag in response compared to a non-feedback control. The properties of the PFLs could be altered using LuxR mutants with altered sensitivities without changing the inherent properties of the systems. Because of their high sensitivity and ability to establish intercellular signaling, the LuxR PFLs described in this work could be used as well-defined modules for the construction of artificial genetic circuits.
Collapse
Affiliation(s)
- Daniel J Sayut
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| | | | | |
Collapse
|
133
|
Weber W, Kramer BP, Fussenegger M. A genetic time-delay circuitry in mammalian cells. Biotechnol Bioeng 2007; 98:894-902. [PMID: 17461420 DOI: 10.1002/bit.21463] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gene expression circuitries with time-delayed expression profiles regulate key events, such as oscillating systems, noise elimination, and coordinated multi-step processes, in all organisms from bacteria to mammalian cells. We present the rational synthesis of a genetic circuit displaying time-delayed expression in silico and in mammalian cells. The network is based on a time-delay circuit, where the tetracycline-responsive transactivator (tTA) induces expression of the pristinamycin-responsive repressor PIP-KRAB, which silences expression of the terminal human placental secreted alkaline phosphatase (SEAP). While the addition of pristinamycin I inactivates PIP-KRAB and results in the immediate resumption of SEAP expression, addition of tetracycline abolishes PIP-KRAB synthesis. Consequently, SEAP production remains repressed until the PIP-KRAB buffer in the cell is eliminated. We characterized in silico and in vivo the time-delayed expression properties and analyzed the impact of the size and stability of the PIP-KRAB buffer on fine-tuning of the response kinetics. This tunable time-delay circuitry represents a biologic building block for emulating a fundamental circuit topology in integrated artificial synthetic gene networks for the design of tailor-made cell types and organisms.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
134
|
Inducible product gene expression technology tailored to bioprocess engineering. Curr Opin Biotechnol 2007; 18:399-410. [PMID: 17933507 DOI: 10.1016/j.copbio.2007.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Bioprocess engineering has developed as a discipline to design optimal culture conditions and bioreactor operation protocols for production cell lines engineered for constitutive expression of desired protein pharmaceuticals. With the advent of heterologous gene regulation systems it has become possible to fine-tune expression of difficult-to-produce protein pharmaceuticals to optimal levels and to conditionally engineer cell metabolism for the best production performance. However, most of the small-molecules used to trigger expression of product or metabolic engineering product genes are incompatible with downstream processing regulations or process economics. Recent progress in product gene control design has resulted in the development of bioprocess-compatible regulation systems, which are responsive to physical parameters such as temperature or physiologic trigger molecules that are either an inherent part of host cell metabolism or intrinsic components of licensed protein-free cell culture media, such as redox status, vitamin H and gaseous acetaldehyde. While all of these systems have been shown to fine-tune product gene expression independent of the host cell metabolism some of them can be plugged into metabolic networks to capture critical physiologic parameters and convert them into an optimal production response. Assembly of individual product gene control modalities into synthetic networks has recently enabled construction of autonomously regulated time-delay or cell density-sensitive gene circuits, which trigger population-wide induction of product gene expression at a predefined time or culture density. We provide a comprehensive overview on the latest developments in the design of bioprocess-compatible product gene control systems.
Collapse
|
135
|
Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev 2007; 21:2271-6. [PMID: 17875664 PMCID: PMC1973140 DOI: 10.1101/gad.1586107] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 07/27/2007] [Indexed: 11/24/2022]
Abstract
The ability to logically engineer novel cellular functions promises a deeper understanding of biological systems. Here we demonstrate the rational design of cellular memory in yeast that employs autoregulatory transcriptional positive feedback. We built a set of transcriptional activators and quantitatively characterized their effects on gene expression in living cells. Modeling in conjunction with the quantitative characterization of the activator-promoter pairs accurately predicts the behavior of the memory network. This study demonstrates the power of taking advantage of components with measured quantitative parameters to specify eukaryotic regulatory networks with desired properties.
Collapse
Affiliation(s)
| | - David A. Drubin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Julian A. Eskin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elaine P.S. Gee
- Harvard University Program in Biophysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dirk Landgraf
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ira Phillips
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
136
|
Deans TL, Cantor CR, Collins JJ. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 2007; 130:363-72. [PMID: 17662949 DOI: 10.1016/j.cell.2007.05.045] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/11/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Here, we introduce an engineered, tunable genetic switch that couples repressor proteins and an RNAi target design to effectively turn any gene off. We used the switch to regulate the expression of EGFP in mouse and human cells and found that it offers >99% repression as well as the ability to tune gene expression. To demonstrate the system's modularity and level of gene silencing, we used the switch to tightly regulate the expression of diphtheria toxin and Cre recombinase, respectively. We also used the switch to tune the expression of a proapoptotic gene and show that a threshold expression level is required to induce apoptosis. This work establishes a system for tight, tunable control of mammalian gene expression that can be used to explore the functional role of various genes as well as to determine whether a phenotype is the result of a threshold response to changes in gene expression.
Collapse
Affiliation(s)
- Tara L Deans
- Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
137
|
Willadsen K, Wiles J. Robustness and state-space structure of Boolean gene regulatory models. J Theor Biol 2007; 249:749-65. [PMID: 17936309 DOI: 10.1016/j.jtbi.2007.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/03/2007] [Accepted: 09/04/2007] [Indexed: 11/17/2022]
Abstract
Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space.
Collapse
Affiliation(s)
- Kai Willadsen
- ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Qld. 4072, Australia.
| | | |
Collapse
|
138
|
Weber W, Bacchus W, Daoud-El Baba M, Fussenegger M. Vitamin H-regulated transgene expression in mammalian cells. Nucleic Acids Res 2007; 35:e116. [PMID: 17827215 PMCID: PMC2034481 DOI: 10.1093/nar/gkm466] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although adjustable transgene expression systems are considered essential for future therapeutic and biopharmaceutical manufacturing applications, the currently available transcription control modalities all require side-effect-prone inducers such as immunosupressants, hormones and antibiotics for fine-tuning. We have designed a novel mammalian transcription-control system, which is reversibly fine-tuned by non-toxic vitamin H (also referred to as biotin). Ligation of vitamin H, by engineered Escherichia coli biotin ligase (BirA), to a synthetic biotinylation signal fused to the tetracycline-dependent transactivator (tTA), enables heterodimerization of tTA to a streptavidin-linked transrepressor domain (KRAB), thereby abolishing tTA-mediated transactivation of specific target promoters. As heterodimerization of tTA to KRAB is ultimately conditional upon the presence of vitamin H, the system is vitamin H responsive. Transgenic Chinese hamster ovary cells, engineered for vitamin H-responsive gene expression, showed high-level, adjustable and reversible production of a human model glycoprotein in bench-scale culture systems, bioreactor-based biopharmaceutical manufacturing scenarios, and after implantation into mice. The vitamin H-responsive expression systems showed unique band pass filter-like regulation features characterized by high-level expression at low (0–2 nM biotin), maximum repression at intermediate (100–1000 nM biotin), and high-level expression at increased (>100 000 nM biotin) biotin concentrations. Sequential ON-to-OFF-to-ON, ON-to-OFF and OFF-to-ON expression profiles with graded expression transitions can all be achieved by simply increasing the level of a single inducer molecule without exchanging the culture medium. These novel expression characteristics mediated by an FDA-licensed inducer may foster advances in therapeutic cell engineering and manufacturing of difficult-to-produce protein therapeutics.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland and Institut Universitaire de Technologie, IUTA, Département Génie Biologique, F-69622 Villeurbanne Cedex, France
| | - William Bacchus
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland and Institut Universitaire de Technologie, IUTA, Département Génie Biologique, F-69622 Villeurbanne Cedex, France
| | - Marie Daoud-El Baba
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland and Institut Universitaire de Technologie, IUTA, Département Génie Biologique, F-69622 Villeurbanne Cedex, France
| | - Martin Fussenegger
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland and Institut Universitaire de Technologie, IUTA, Département Génie Biologique, F-69622 Villeurbanne Cedex, France
- *To whom correspondence should be addressed. +41 44 633 34 48+41 44 633 12 34
| |
Collapse
|
139
|
Marguet P, Balagadde F, Tan C, You L. Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 2007; 4:607-23. [PMID: 17251159 PMCID: PMC2373384 DOI: 10.1098/rsif.2006.0206] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biological research is experiencing an increasing focus on the application of knowledge rather than on its generation. Thanks to the increased understanding of cellular systems and technological advances, biologists are more frequently asking not only 'how can I understand the structure and behaviour of this biological system?', but also 'how can I apply that knowledge to generate novel functions in different biological systems or in other contexts?' Active pursuit of the latter has nurtured the emergence of synthetic biology. Here, we discuss the motivation behind, and foundational technologies enabling, the development of this nascent field. We examine some early successes and applications while highlighting the challenges involved. Finally, we consider future directions and mention non-scientific considerations that can influence the field's growth.
Collapse
Affiliation(s)
- Philippe Marguet
- Department of Biochemistry, Duke University Medical CenterDurham, NC 27710, USA
| | - Frederick Balagadde
- Department of Bioengineering, Stanford UniversityStanford, CA 94305-9505, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
- Institute for Genome Sciences and Policy, Duke University Medical CenterDurham, NC 27710, USA
- Author and address for correspondence: CIEMAS 2345, 101 Science Drive, Durham, NC 27708, USA ()
| |
Collapse
|
140
|
Yeo ZX, Wong ST, Arjunan SNV, Piras V, Tomita M, Selvarajoo K, Giuliani A, Tsuchiya M. Sequential logic model deciphers dynamic transcriptional control of gene expressions. PLoS One 2007; 2:e776. [PMID: 17712424 PMCID: PMC1945082 DOI: 10.1371/journal.pone.0000776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 08/02/2007] [Indexed: 01/13/2023] Open
Abstract
Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological insight. The demonstration of the efficacy of this approach in endo16 is a promising step for further application of the proposed method.
Collapse
Affiliation(s)
| | | | | | - Vincent Piras
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Alessandro Giuliani
- Department of Environment and Health, Instituto Superiore di Sanita', Roma, Italy
| | - Masa Tsuchiya
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
141
|
Murphy KF, Balázsi G, Collins JJ. Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 2007; 104:12726-31. [PMID: 17652177 PMCID: PMC1931564 DOI: 10.1073/pnas.0608451104] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Understanding the behavior of basic biomolecular components as parts of larger systems is one of the goals of the developing field of synthetic biology. A multidisciplinary approach, involving mathematical and computational modeling in parallel with experimentation, is often crucial for gaining such insights and improving the efficiency of artificial gene network design. Here we used such an approach and developed a combinatorial promoter design strategy to characterize how the position and multiplicity of tetO(2) operator sites within the GAL1 promoter affect gene expression levels and gene expression noise in Saccharomyces cerevisiae. We observed stronger transcriptional repression and higher gene expression noise as a single operator site was moved closer to the TATA box, whereas for multiple operator-containing promoters, we found that the position and number of operator sites together determined the dose-response curve and gene expression noise. We developed a generic computational model that captured the experimentally observed differences for each of the promoters, and more detailed models to successively predict the behavior of multiple operator-containing promoters from single operator-containing promoters. Our results suggest that the independent binding of single repressors is not sufficient to explain the more complex behavior of the multiple operator-containing promoters. Taken together, our findings highlight the importance of joint experimental-computational efforts and some of the challenges of using a bottom-up approach based on well characterized, isolated biomolecular components for predicting the behavior of complex, synthetic gene networks, e.g., the whole can be different from the sum of its parts.
Collapse
Affiliation(s)
- Kevin F Murphy
- Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
142
|
Greber D, Fussenegger M. Mammalian synthetic biology: Engineering of sophisticated gene networks. J Biotechnol 2007; 130:329-45. [PMID: 17602777 DOI: 10.1016/j.jbiotec.2007.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/05/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
With the recent development of a wide range of inducible mammalian transgene control systems it has now become possible to create functional synthetic gene networks by linking and connecting systems into various configurations. The past 5 years has thus seen the design and construction of the first synthetic mammalian gene regulatory networks. These networks have built upon pioneering advances in prokaryotic synthetic networks and possess an impressive range of functionalities that will some day enable the engineering of sophisticated inter- and intra-cellular functions to become a reality. At a relatively simple level, the modular linking of transcriptional components has enabled the creation of genetic networks that are strongly analogous to the architectural design and functionality of electronic circuits. Thus, by combining components in different serial or parallel configurations it is possible to produce networks that follow strict logic in integrating multiple independent signals (logic gates and transcriptional cascades) or which temporally modify input signals (time-delay circuits). Progressing in terms of sophistication, synthetic transcriptional networks have also been constructed which emulate naturally occurring genetic properties, such as bistability or dynamic instability. Toggle switches which possess "memory" so as to remember transient administered inputs, hysteric switches which are resistant to stochastic fluctuations in inputs, and oscillatory networks which produce regularly timed expression outputs, are all examples of networks that have been constructed using such properties. Initial steps have also been made in designing the above networks to respond not only to exogenous signals, but also endogenous signals that may be associated with aberrant cellular function or physiology thereby providing a means for tightly controlled gene therapy applications. Moving beyond pure transcriptional control, synthetic networks have also been created which utilize phenomena, such as post-transcriptional silencing, translational control, or inter-cellular signaling to produce novel network-based control both within and between cells. It is envisaged in the not-too-distant future that these networks will provide the basis for highly sophisticated genetic manipulations in biopharmaceutical manufacturing, gene therapy and tissue engineering applications.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
143
|
Abstract
Transcription regulation networks control the expression of genes. The transcription networks of well-studied microorganisms appear to be made up of a small set of recurring regulation patterns, called network motifs. The same network motifs have recently been found in diverse organisms from bacteria to humans, suggesting that they serve as basic building blocks of transcription networks. Here I review network motifs and their functions, with an emphasis on experimental studies. Network motifs in other biological networks are also mentioned, including signalling and neuronal networks.
Collapse
Affiliation(s)
- Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
144
|
Weber W, Bacchus W, Gruber F, Hamberger M, Fussenegger M. A novel vector platform for vitamin H-inducible transgene expression in mammalian cells. J Biotechnol 2007; 131:150-8. [PMID: 17669538 DOI: 10.1016/j.jbiotec.2007.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/30/2007] [Accepted: 06/14/2007] [Indexed: 11/26/2022]
Abstract
Inducible transgene control systems have been instrumental to gene therapy, biopharmaceutical manufacturing, drug discovery, synthetic biology and functional genomic research. The most widely used heterologous gene regulation systems are responsive to antibiotics of the tetracycline, streptogramin and macrolide classes. Although these antibiotics are clinically licensed, concerns about the emergence of resistant bacteria, side-effects in animal studies, and economic considerations associated with clearance of antibiotics in biopharmaceutical manufacturing, have limited the use of heterologous transgene control modalities to basic research activities. We have therefore designed a strategy to convert antibiotic-responsive transcription factors into gene regulation systems responsive to non-toxic biotin, also known as vitamin H. Constitutive ligation of biotin to the Avitag-containing VP16 transactivation domain by the Escherichia coli biotin ligase BirA enables heterodimerization with tetracycline- (TetR), streptogramin- (Pip), and macrolide- (E) dependent repressors fused to streptavidin, which creates synthetic transactivators able to activate specific promoters (P(hCMV-1), P(PIR), P(ETR)). We have demonstrated (i) that exogenous biotin (40nM) can induce heterologous transgene expression in a biotin- (serum-) free culture environment (biotin-dependent heterodimerization of transactivator); (ii) that excess biotin (above 200microM) gradually represses transgene expression in a biotin- (serum-) containing environment (saturation of streptavidin by excess biotin prevents heterodimerization of the transactivator); and (iii) that avidin can sequestrate endogenous biotin in serum-containing cultures and so repress transgene expression in a dose-dependent manner. In addition, by engineering all off the components required for biotin-controlled transgene expression (Avitag-VP16, repressor-streptavidin, BirA) into a tricistronic (lenti)vector configuration, it was possible to transfect (transduce) a variety of mammalian cell lines and primary cells and enable biotin-controlled transgene expression in a simple and straightforward manner. The conversion of generic antibiotic-responsive transcription control modalities into systems adjustable by non-toxic vitamin H may foster novel advances in reprogramming of mammalian cells and production of difficult-to-produce protein pharmaceuticals.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
145
|
Ingolia NT, Murray AW. Positive-feedback loops as a flexible biological module. Curr Biol 2007; 17:668-77. [PMID: 17398098 PMCID: PMC1914375 DOI: 10.1016/j.cub.2007.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/12/2007] [Accepted: 03/01/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bistability in genetic networks allows cells to remember past events and to make discrete decisions in response to graded signals. Bistable behavior can result from positive feedback, but feedback loops can have other roles in signal transduction as well. RESULTS We introduced positive feedback into the budding-yeast pheromone response to convert it into a bistable system. In the presence of feedback, transient induction with high pheromone levels caused persistent pathway activation, whereas at lower levels a fraction of cells became persistently active but the rest inactivated completely. We also generated mutations that quantitatively tuned the basal and induced expression levels of the feedback promoter and showed that they qualitatively changed the behavior of the system. Finally, we developed a simple stochastic model of our positive-feedback system and showed the agreement between our simulations and experimental results. CONCLUSIONS The positive-feedback loop can display several different behaviors, including bistability, and can switch between them as a result of simple mutations.
Collapse
Affiliation(s)
- Nicholas T. Ingolia
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
- *To whom correspondence should be addressed, E-mail: ; Phone: (617) 496-1350
| |
Collapse
|
146
|
Abstract
The design of artificial biological systems and the understanding of their natural counterparts are key objectives of the emerging discipline of synthetic biology. Toward both ends, research in synthetic biology has primarily focused on the construction of simple devices, such as transcription-based oscillators and switches. Construction of such devices should provide us with insight on the design of natural systems, indicating whether our understanding is complete or whether there are still gaps in our knowledge. Construction of simple biological systems may also lay the groundwork for the construction of more complex systems that have practical utility. To realize its full potential, biological systems design borrows from the allied fields of protein design and metabolic engineering. In this review, we describe the scientific accomplishments in this field, as well as its forays into biological part standardization and education of future biological designers.
Collapse
Affiliation(s)
- David A Drubin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
147
|
Tan C, Song H, Niemi J, You L. A synthetic biology challenge: making cells compute. MOLECULAR BIOSYSTEMS 2007; 3:343-53. [PMID: 17460793 DOI: 10.1039/b618473c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Advances in biology and engineering have enabled the reprogramming of cells with well-defined functions, leading to the emergence of synthetic biology. Early successes in this nascent field suggest its potential to impact diverse areas. Here, we examine the feasibility of engineering circuits for cell-based computation. We illustrate the basic concepts by describing the mapping of several computational problems to engineered gene circuits. Revolving around these examples and past studies, we discuss technologies and computational methods available to design, test, and optimize gene circuits. We conclude with discussion of challenges involved in a typical design cycle, as well as those specific to cellular computation.
Collapse
Affiliation(s)
- Cheemeng Tan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
148
|
Weber W, Stelling J, Rimann M, Keller B, Daoud-El Baba M, Weber CC, Aubel D, Fussenegger M. A synthetic time-delay circuit in mammalian cells and mice. Proc Natl Acad Sci U S A 2007; 104:2643-8. [PMID: 17296937 PMCID: PMC1796999 DOI: 10.1073/pnas.0606398104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-delay circuitries in which a transcription factor processes independent input parameters can modulate NF-kappaB activation, manage quorum-sensing cross-talk, and control the circadian clock. We have constructed a synthetic mammalian gene network that processes four different input signals to control either immediate or time-delayed transcription of specific target genes. BirA-mediated ligation of biotin to a biotinylation signal-containing VP16 transactivation domain triggers heterodimerization of chimeric VP16 to a streptavidin-linked tetracycline repressor (TetR). At increasing biotin concentrations up to 20 nM, TetR-specific promoters are gradually activated (off to on, input signal 1), are maximally induced at concentrations between 20 nM and 10 microM, and are adjustably shut off at biotin levels exceeding 10 microM (on to off, input signal 2). These specific expression characteristics with a discrete biotin concentration window emulate a biotin-triggered bandpass filter. Removal of biotin from the culture environment (input signal 3) results in time-delayed transgene expression until the intracellular biotinylated VP16 pool is degraded. Because the TetR component of the chimeric transactivator retains its tetracycline responsiveness, addition of this antibiotic (input signal 4) overrides biotin control and immediately shuts off target gene expression. Biotin-responsive immediate, bandpass filter, and time-delay transcription characteristics were predicted by a computational model and have been validated in standard cultivation settings or biopharmaceutical manufacturing scenarios using trangenic CHO-K1 cell derivatives and have been confirmed in mice. Synthetic gene circuitries provide insight into structure-function correlations of native signaling networks and foster advances in gene therapy and biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Jörg Stelling
- Institute of Computational Science and
- Swiss Institute of Bioinformatics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
| | - Markus Rimann
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Bettina Keller
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Marie Daoud-El Baba
- Département Génie Biologique, Institut Universitaire de Technologie A, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France; and
| | | | - Dominique Aubel
- Département Génie Biologique, Institut Universitaire de Technologie A, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France; and
| | - Martin Fussenegger
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ. Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 2007; 24:853-65. [PMID: 17189188 DOI: 10.1016/j.molcel.2006.11.003] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 08/07/2006] [Accepted: 11/01/2006] [Indexed: 01/26/2023]
Abstract
A more complete understanding of the causes and effects of cell-cell variability in gene expression is needed to elucidate whether the resulting phenotypes are disadvantageous or confer some adaptive advantage. Here we show that increased variability in gene expression, affected by the sequence of the TATA box, can be beneficial after an acute change in environmental conditions. We rationally introduce mutations within the TATA region of an engineered Saccharomyces cerevisiae GAL1 promoter and measure promoter responses that can be characterized as being either highly variable and rapid or steady and slow. We computationally illustrate how a stable transcription scaffold can result in "bursts" of gene expression, enabling rapid individual cell responses in the transient and increased cell-cell variability at steady state. We experimentally verify computational predictions that the rapid response and increased cell-cell variability enabled by TATA-containing promoters confer a clear benefit in the face of an acute environmental stress.
Collapse
|
150
|
Tyo KE, Alper HS, Stephanopoulos GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 2007; 25:132-7. [PMID: 17254656 DOI: 10.1016/j.tibtech.2007.01.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/07/2006] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
Metabolic engineering exploits an integrated, systems-level approach for optimizing a desired cellular property or phenotype; and great strides have been made within this scope and context during the past fifteen years. However, due to limitations in the concepts and techniques, these have relied on a focused, pathway-oriented view. Recent advances in 'omics' technologies and computational systems biology have brought the foundational systems approach of metabolic engineering into focus. At the same time, protein engineering and synthetic biology have expanded the breadth and precision of the methods available to metabolic engineers to improve strain properties. Examples are presented that illustrate this broader perspective of tools and concepts, including a recent approach for global transcriptional machinery engineering (gTME), which has demonstrated the ability to elicit multigenic transcriptional changes that have improved phenotypes compared with single-gene perturbations.
Collapse
Affiliation(s)
- Keith E Tyo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA
| | | | | |
Collapse
|