101
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
102
|
Dynamic regulation of antigen receptor gene assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:103-15. [PMID: 19731805 DOI: 10.1007/978-1-4419-0296-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A hallmark feature of adaptive immunity is the production of lymphocytes bearing an enormous repertoire of receptors for foreign antigens. This repertoire is generated early in B and T-cell development by the process of V(D)J recombination, which randomly assembles functional immunoglobulin (Ig) and T-cell receptor (TCR) genes from large arrays of DNA segments. Precursor lymphocytes must target then retarget a single V(D)J recombinase enzyme to distinct regions within antigen receptor loci to guide lymphocyte development and to ensure that each mature B and T-cell expresses only a single antigen receptor specificity. Proper targeting of V(D)J recombinase is also essential to avoid chromosomal aberrations that result in lymphoid malignancies. Early studies suggested that changes in the specificity of V(D)J recombination are achieved by differentially opening or closing chromatin associated with Ig and TCR gene segments at the proper developmental time point. This accessibility model has been extended significantly in recent years and it has become clear that control mechanisms governing antigen receptor gene assembly are multifaceted and vary from locus to locus. In this chapter we review how genetic and epigenetic mechanisms as well as widespread changes in chromosomal conformation synergize to orchestrate the diversification of genes encoding B and T-cell antigen receptors.
Collapse
|
103
|
Bolland DJ, Wood AL, Corcoran AE. Large-Scale Chromatin Remodeling at the Immunoglobulin Heavy Chain Locus: A Paradigm for Multigene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:59-72. [DOI: 10.1007/978-1-4419-0296-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
104
|
Li F, Eckhardt LA. A role for the IgH intronic enhancer E mu in enforcing allelic exclusion. ACTA ACUST UNITED AC 2008; 206:153-67. [PMID: 19114667 PMCID: PMC2626684 DOI: 10.1084/jem.20081202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intronic enhancer (Eμ) of the immunoglobulin heavy chain (IgH) locus is critical for V region gene assembly. To determine Eμ's subsequent functions, we created an Igh allele with assembled VH gene but with Eμ removed. In mice homozygous for this Eμ-deficient allele, B cell development was normal and indistinguishable from that of mice with the same VH knockin and Eμ intact. In mice heterozygous for the Eμ-deficient allele, however, allelic exclusion was severely compromised. Surprisingly, this was not a result of reduced suppression of V-DJ assembly on the second allele. Rather, the striking breakdown in allelic exclusion took place at the pre-B to immature B cell transition. These findings reveal both an important role for Eμ in influencing the fate of newly arising B cells and a second checkpoint for allelic exclusion.
Collapse
Affiliation(s)
- Fubin Li
- Hunter College and Graduate Center of the City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
105
|
Pax5 and linker histone H1 coordinate DNA methylation and histone modifications in the 3' regulatory region of the immunoglobulin heavy chain locus. Mol Cell Biol 2008; 28:6123-33. [PMID: 18644860 DOI: 10.1128/mcb.00233-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3' regulatory region (3' RR) of the murine immunoglobulin heavy chain (IgH) locus contains multiple DNase I-hypersensitive (hs) sites. Proximal sites hs3A, hs1.2, and hs3B are located in an extensive palindromic region and together with hs4 are associated with enhancers involved in the expression and class switch recombination of IgH genes. Distal hs5, -6, and -7 sites located downstream of hs4 comprise a potential insulator for the IgH locus. In pro-B cells, hs4 to -7 are associated with marks of active chromatin, while hs3A, hs1.2, and hs3B are not. Our analysis of DNA methylation-sensitive restriction sites of the 3' RR has revealed a similar modular pattern in pro-B cells; hs4 to -7 sites are unmethylated, while the palindromic region is methylated. This modular pattern of DNA methylation and histone modifications appears to be determined by at least two factors: the B-cell-specific transcription factor Pax5 and linker histone H1. In pre-B cells, a region beginning downstream of hs4 and extending into hs5 showed evidence of allele-specific demethylation associated with the expressed heavy chain allele. Palindromic enhancers become demethylated later in B-cell differentiation, in B and plasma cells.
Collapse
|
106
|
Kuzin II, Bagaeva L, Young FM, Bottaro A. Requirement for enhancer specificity in immunoglobulin heavy chain locus regulation. THE JOURNAL OF IMMUNOLOGY 2008; 180:7443-50. [PMID: 18490744 DOI: 10.4049/jimmunol.180.11.7443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intronic Emicro enhancer has been implicated in IgH locus transcription, VDJ recombination, class switch recombination, and somatic hypermutation. How Emicro controls these diverse mechanisms is still largely unclear, but transcriptional enhancer activity is thought to play a central role. In this study we compare the phenotype of mice lacking the Emicro element (DeltaEmicro) with that of mice in which Emu was replaced with the ubiquitous SV40 transcriptional enhancer (SV40eR mutation) and show that SV40e cannot functionally complement Emu loss in pro-B cells. Surprisingly, in fact, the SV40eR mutation yields a more profound defect than DeltaEmicro, with an almost complete block in micro0 germline transcription in pro-B cells. This active transcriptional suppression caused by enhancer replacement appears to be specific to the early stages of B cell development, as mature SV40eR B cells express micro0 transcripts at higher levels than DeltaEmicro mice and undergo complete DNA demethylation at the IgH locus. These results indicate an unexpectedly stringent, developmentally restricted requirement for enhancer specificity in regulating IgH function during the early phases of B cell differentiation, consistent with the view that coordination of multiple independent regulatory mechanisms and elements is essential for locus activation and VDJ recombination.
Collapse
Affiliation(s)
- Igor I Kuzin
- Department of Medicine, J.P Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
107
|
Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, Malin S, Busslinger M. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 2008; 28:751-62. [PMID: 18538592 DOI: 10.1016/j.immuni.2008.04.014] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 03/12/2008] [Accepted: 04/01/2008] [Indexed: 02/06/2023]
Abstract
The transcription factor E2A controls the initiation of B lymphopoiesis, which is arrested at the pre-pro-B cell stage in E2A-deficient mice. Here, we demonstrate by conditional mutagenesis that E2A is essential for the development of pro-B, pre-B, and immature B cells in the bone marrow. E2A is, however, dispensable for the generation of mature B cells and plasma cells in peripheral lymphoid organs. In contrast, germinal center B cell development is impaired in the absence of E2A despite normal AID expression and class-switch recombination. Molecular analysis revealed that E2A is required not only for initiating but also for maintaining the expression of Ebf1, Pax5, and the B cell gene program in pro-B cells. Notably, precocious Pax5 transcription from the Ikzf1 locus promotes pro-B cell development in E2A-deficient mice, demonstrating that ectopic Pax5 expression is sufficient to activate the B lymphoid transcription program in vivo in the absence of E2A.
Collapse
Affiliation(s)
- Kyongrim Kwon
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
108
|
Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD. The biochemistry of somatic hypermutation. Annu Rev Immunol 2008; 26:481-511. [PMID: 18304001 DOI: 10.1146/annurev.immunol.26.021607.090236] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Affinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.
Collapse
Affiliation(s)
- Jonathan U Peled
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
109
|
Cedar H, Bergman Y. Choreography of Ig allelic exclusion. Curr Opin Immunol 2008; 20:308-17. [PMID: 18400481 DOI: 10.1016/j.coi.2008.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 12/24/2022]
Abstract
Allelic exclusion guarantees that each B or T cell only produces a single antigen receptor, and in this way contributes to immune diversity. This process is actually initiated in the early embryo when the immune receptor loci become asynchronously replicating in a stochastic manner with one early and one late allele in each cell. This distinct differential replication timing feature then serves an instructive mark that directs a series of allele-specific epigenetic events in the immune system, including programmed histone modification, nuclear localization and DNA demethylation that ultimately bring about preferred rearrangement on a single allele, and this decision is temporally stabilized by feedback mechanisms that inhibit recombination on the second allele. In principle, these same molecular components are also used for controlling monoallelic expression at other genomic loci, such as those carrying interleukins and olfactory receptor genes that require the choice of one gene out of a large array. Thus, allelic exclusion appears to represent a general epigenetic phenomenon that is modeled on the same basis as X chromosome inactivation.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Cellular Biochemistry and Human Genetics, Hebrew University Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
110
|
Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc Natl Acad Sci U S A 2008; 105:3843-8. [PMID: 18292225 DOI: 10.1073/pnas.0712291105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation-induced cytosine deaminase (AID) is essential for both somatic hypermutation (SHM) and class switch recombination (CSR), two processes involved in antibody diversification. Previously, various groups showed both in vitro and in vivo that AID initiates SHM and CSR by deaminating cytosines in DNA in a transcription-dependent manner. Although in vivo both DNA strands are equally targeted by AID, many in vitro and bacterial experiments found that AID almost exclusively targets the nontemplate strand of a transcribed substrate. Here, we report the detection of antisense transcripts in assembled Ig heavy chain (IgH) variable region exons and their immediate downstream region, as well as in switch regions, sequences that, respectively, are targets for SHM and CSR in vivo. In contrast, we did not detect antisense transcripts from the Cmu constant region exons, which lie between the IgH variable region exons and downstream S regions and which are not normally an AID target. Expression of the antisense variable region/flanking region and the S-region transcripts were found in all lymphocytes that transcribe these sequences in the sense direction. Steady-state levels of antisense transcripts appeared very low, and start sites potentially appeared heterogeneous. We discuss the potential implications of antisense IgH locus transcription for AID targeting or other processes.
Collapse
|
111
|
Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, Shi Y. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2008; 21:1179-89. [PMID: 17504937 PMCID: PMC1865490 DOI: 10.1101/gad.1529307] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of the transcription factor Yin Yang 1 (YY1) in development is largely unknown. Here we show that specific ablation of YY1 in mouse B cells caused a defect in somatic rearrangement in the immunoglobulin heavy-chain (IgH) locus and a block in the progenitor-B-to-precursor-B-cell transition, which was partially rescued by a prerearranged IgH transgene. Three-dimensional DNA fluorescence in situ hybridization analysis revealed an important function for YY1 in IgH locus contraction, a process indispensable for distal V(H) to D(H)J(H) recombination. We provide evidence that YY1 binds the intronic Ei mu enhancer within the IgH locus, consistent with a direct role for YY1 in V(H)D(H)J(H) recombination. These findings identified YY1 as a critical regulator of early B-cell development.
Collapse
Affiliation(s)
- Huifei Liu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Schmidt-Supprian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yujiang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elias Hobeika
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Natasha Barteneva
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Flow cytometry core facility, CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Hassan Jumaa
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Roberta Pelanda
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Michael Reth
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Jane Skok
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Klaus Rajewsky
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Corresponding author.E-MAIL ; FAX (617) 432-6687
| |
Collapse
|
112
|
Truffinet V, Pinaud E, Cogné N, Petit B, Guglielmi L, Cogné M, Denizot Y. The 3' IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. THE JOURNAL OF IMMUNOLOGY 2007; 179:6033-42. [PMID: 17947677 DOI: 10.4049/jimmunol.179.9.6033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Burkitt lymphoma (BL) features translocations linking c-myc to an Ig locus. Breakpoints in the H chain locus (IgH) stand either close to J(H) or within switch regions and always link c-myc to the 3' IgH locus control region (3' LCR). To test the hypothesis that the 3' LCR alone was sufficient to deregulate c-myc, we generated mice carrying a 3' LCR-driven c-myc transgene and specifically up-regulating c-myc in B cells. Splenic B cells from mice proliferated exaggeratedly in response to various signals had an elevated apoptosis rate but normal B220/IgM/IgD expression. Although all Ig levels were lowered in vivo, class switching and Ig secretion proved normal in vitro. Beginning at the age of 12 wk, transgenic mice developed clonal lymphoblastic lymphomas or diffuse anaplastic plasmacytomas with an overall incidence of 80% by 40 wk. Lymphoblastic lymphomas were B220(+)IgM(+)IgD(+) with the BL "starry sky" appearance. Gene expression profiles revealed broad alterations in the proliferation program and the Ras-p21 pathway. Our study demonstrates that 3' IgH enhancers alone can deregulate c-myc and initiate the development of BL-like lymphomas. The rapid and constant occurrence of lymphoma in this model makes it valuable for the understanding and the potential therapeutic manipulation of c-myc oncogenicity in vivo.
Collapse
Affiliation(s)
- Véronique Truffinet
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6101, Université de Limoges, Limoges, France
| | | | | | | | | | | | | |
Collapse
|
113
|
Wuerffel R, Wang L, Grigera F, Manis J, Selsing E, Perlot T, Alt FW, Cogne M, Pinaud E, Kenter AL. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007; 27:711-22. [PMID: 17980632 DOI: 10.1016/j.immuni.2007.09.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/26/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Molecular mechanisms underlying synapsis of activation-induced deaminase (AID)-targeted S regions during class switch recombination (CSR) are poorly understood. By using chromosome conformation capture techniques, we found that in B cells, the Emicro and 3'Ealpha enhancers were in close spatial proximity, forming a unique chromosomal loop configuration. B cell activation led to recruitment of the germline transcript (GLT) promoters to the Emicro:3'Ealpha complex in a cytokine-dependent fashion. This structure facilitated S-S synapsis because Smicro was proximal to Emicro and a downstream S region was corecruited with the targeted GLT promoter to Emicro:3'Ealpha. We propose that GLT promoter association with the Emicro:3'Ealpha complex creates an architectural scaffolding that promotes S-S synapsis during CSR and that these interactions are stabilized by AID. Thus, the S-S synaptosome is formed as a result of the self-organizing transcription system that regulates GLT expression and may serve to guard against spurious chromosomal translocations.
Collapse
Affiliation(s)
- Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Yan Y, Park SS, Janz S, Eckhardt LA. In a model of immunoglobulin heavy-chain (IGH)/MYC translocation, the Igh 3' regulatory region induces MYC expression at the immature stage of B cell development. Genes Chromosomes Cancer 2007; 46:950-9. [PMID: 17639584 PMCID: PMC2742353 DOI: 10.1002/gcc.20480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reciprocal translocations involving the immunoglobulin loci and the cellular oncogene MYC are hallmark mutations of the human postgerminal center B cell neoplasm, Burkitt's lymphoma. They are occasionally found in other B cell lymphomas, as well. Translocations involving the heavy chain locus (IGH) place the MYC gene either in cis with both the intronic enhancer Emu and the IGH 3' regulatory region (3'RR) or in cis with only the 3'RR. The result is deregulated MYC expression. Recent studies have led to some controversy as to when, during B lymphocyte development, IGH/MYC chromosome translocations take place. A related issue, relevant not only to lymphoma development but also to normal controls on IGH gene expression, is the stage, during B lymphocyte development, at which the 3'RR is capable of activating MYC expression. We have developed mice transgenic for a human MYC (hMYC) gene under control of the four core enhancers from the mouse Igh 3'RR. Unlike other transgenic mouse models where premature and inappropriate MYC expression disrupts normal B cell development, the hMYC transgene in these studies carries a mutation that prohibits MYC protein synthesis. As a result, hMYC expression can be analyzed in all of the normal B cell compartments. Our data show that hMYC is expressed almost exclusively in B-lineage cells and is induced to high levels as soon as bone marrow cells reach the immature B cell stage.
Collapse
Affiliation(s)
- Yi Yan
- Department of Biological Sciences, Hunter College and Graduate Center of the City University of New York, New York, NY, USA
| | | | | | | |
Collapse
|
115
|
Ruminy P, Jardin F, Penther D, Picquenot JM, Parmentier F, Buchonnet G, Bertrand P, Tilly H, Bastard C. Recurrent disruption of the Imu splice donor site in t(14;18) positive lymphomas: a potential molecular basis for aberrant downstream class switch recombination. Genes Chromosomes Cancer 2007; 46:735-44. [PMID: 17455255 DOI: 10.1002/gcc.20453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
t(14;18) positive lymphomas are mature germinal center B-cell neoplasms. In agreement with this cellular origin, most have somatically mutated immunoglobulin variable genes and the IGH@ locus has almost always been reorganized by class switch recombination (CSR). However, contrasting with normal B-cells, a majority of cases still express an IgM while the constant genes are normally rearranged only on the non-productive allele. Concurrently, aberrant intra-allelic junctions involving downstream switch regions, with a lack of engagement of the switch mu (Smu), often accumulate on the functional alleles, suggesting some recurrent CSR perturbation during the onset of the disease. To clarify these surprising observations, we addressed the accessibility of the Smu to the CSR machinery in a large series of patients by characterizing the mutations that are expected to accumulate at this place upon CSR activation. Our data indicate that the Smu is mutated in a large majority of cases, often on both alleles, indicating that these cells usually reach a differentiation stage where CSR is activated and where this region remains accessible. Interestingly, we also identified a significant cluster of mutations at the splicing donor site of the first exon of the Smu germline transcripts, on the functional allele. This location suggests a possible relation with CSR perturbations in lymphoma and the clustering points to a probable mechanism of selection. In conclusion, our data suggest that an acquired mutation at the splicing donor site of the Smu transcripts may participate in the selection of lymphoma cells and play a significant role during the onset of the disease.
Collapse
MESH Headings
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Humans
- Immunoglobulin Class Switching/genetics
- Immunoglobulin Switch Region
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Mutation
- RNA Splice Sites/genetics
- Sequence Analysis, DNA
- Translocation, Genetic
Collapse
Affiliation(s)
- Philippe Ruminy
- Groupe d'Etude des Proliférations Lymphoïdes, Centre Henri Becquerel, INSERM U614, IFR23, 76000 Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Zhang B, Alaie-Petrillo A, Kon M, Li F, Eckhardt LA. Transcription of a productively rearranged Ig VDJC alpha does not require the presence of HS4 in the IgH 3' regulatory region. THE JOURNAL OF IMMUNOLOGY 2007; 178:6297-306. [PMID: 17475858 PMCID: PMC2724394 DOI: 10.4049/jimmunol.178.10.6297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
V gene assembly, class switch recombination, and somatic hypermutation are gene-modifying processes essential to the development of an effective Ab response. If inappropriately applied, however, these processes can mediate genetic changes that lead to disease (e.g., lymphoma). A series of control elements within the Ig H chain (Igh) locus has been implicated in regulating these processes as well as in regulating IgH gene transcription. These include the intronic enhancer (Emu) and several elements at the 3' end of the locus (hs1,2, hs3a, hs3b, and hs4) known collectively as the 3' regulatory region. Although it is clear that the Emu plays a unique role in V gene assembly, it has not been established whether there are unique functions for each element within the 3' regulatory region. In earlier studies in mice and in mouse cell lines, pairwise deletion of hs3b and hs4 had a dramatic effect on both class switch recombination and IgH gene transcription; deletion of an element almost identical with hs3b (hs3a), however, yielded no discernible phenotype. To test the resulting hypothesis that hs4 is uniquely required for these processes, we induced the deletion of hs4 within a bacterial artificial chromosome transgene designed to closely approximate the 3' end of the natural Igh locus. When introduced into an Ig-secreting cell line, an Igalpha transcription unit within the bacterial artificial chromosome was expressed efficiently and the subsequent deletion of hs4 only moderately affected Igalpha expression. Thus, hs4 does not play a uniquely essential role in the transcription of a productively rearranged Ig VDJCalpha transcription unit.
Collapse
Affiliation(s)
| | | | | | | | - Laurel A. Eckhardt
- Address correspondence and reprint requests to Dr. Laurel Eckhardt, Hunter College, 695 Park Avenue, New York, NY 10021. E-mail address:
| |
Collapse
|
117
|
Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27:5523-33. [PMID: 17526723 PMCID: PMC1952079 DOI: 10.1128/mcb.02407-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.
Collapse
Affiliation(s)
- Daniel J Bolland
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Kathryn Calame
- Department of Microbiology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
119
|
Lin D, Ippolito GC, Zong RT, Bryant J, Koslovsky J, Tucker P. Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Mol Cancer 2007; 6:23. [PMID: 17386101 PMCID: PMC1852116 DOI: 10.1186/1476-4598-6-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/26/2007] [Indexed: 01/27/2023] Open
Abstract
Bright/ARID3A is a nuclear matrix-associated transcription factor that stimulates immunoglobulin heavy chain (IgH) expression and Cyclin E1/E2F-dependent cell cycle progression. Bright positively activates IgH transcriptional initiation by binding to ATC-rich P sites within nuclear matrix attachment regions (MARs) flanking the IgH intronic enhancer (Eμ). Over-expression of Bright in cultured B cells was shown to correlate with DNase hypersensitivity of Eμ. We report here further efforts to analyze Bright-mediated Eμ enhancer activation within the physiological constraints of chromatin. A system was established in which VH promoter-driven in vitro transcription on chromatin- reconstituted templates was responsive to Eμ. Bright assisted in blocking the general repression caused by nucleosome assembly but was incapable of stimulating transcription from prebound nucleosome arrays. In vitro transcriptional derepression by Bright was enhanced on templates in which Eμ is flanked by MARs and was inhibited by competition with high affinity Bright binding (P2) sites. DNase hypersensitivity of chromatin-reconstituted Eμ was increased when prepackaged with B cell nuclear extract supplemented with Bright. These results identify Bright as a contributor to accessibility of the IgH enhancer.
Collapse
Affiliation(s)
- Danjuan Lin
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gregory C Ippolito
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Rui-Ting Zong
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - James Bryant
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Janet Koslovsky
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Philip Tucker
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
120
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Parsa JY, Basit W, Wang CL, Gommerman JL, Carlyle JR, Martin A. AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol Immunol 2007; 44:567-75. [PMID: 16542725 DOI: 10.1016/j.molimm.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 01/31/2023]
Abstract
It is unknown how activation-induced cytidine deaminase (AID) targets immunoglobulin (Ig) genes during somatic hypermutation. Results to date are difficult to interpret: while some results argue that Ig genes have special sequences that mobilize AID, other work shows that non-Ig transgenes mutate. In this report, we have examined the effects of the intronic mu enhancer on the somatic hypermutation rates of a retroviral vector. For this analysis, we used centroblast-like Ramos cells to capture as much of the natural process as possible, used AIDhi and AIDlow Ramos variants to ensure that mutations are AID induced, and measured mutation of a GFP-provirus to achieve greater sensitivity. We found that mutation rates of the non-Ig provirus were AID-dependent, were similar at different genomic loci, but were approximately 10-fold lower than the V-region suggesting that AID can mutate non-Ig genes at low rates. However, the intronic mu enhancer did not increase the mutation rates of the provirus. Interestingly, exogenous over-expression of AID revealed that the V-region mutation rate can be saturated by lower levels of AID than the provirus, suggesting that selective mutation of Ig sequences is compromised in cells that over-express AID.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Medical Sciences Bldg., Toronto, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
122
|
Li Z, Luo Z, Ronai D, Kuang FL, Peled JU, Iglesias-Ussel MD, Scharff MD. Targeting AID to the Ig genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:93-109. [PMID: 17338179 DOI: 10.1007/0-387-46530-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ziqiang Li
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Yang SY, Fugmann SD, Schatz DG. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. ACTA ACUST UNITED AC 2006; 203:2919-28. [PMID: 17178919 PMCID: PMC2118177 DOI: 10.1084/jem.20061835] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is thought that gene conversion (GCV) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes occur in two steps: the generation of uracils in DNA by activation-induced cytidine deaminase, followed by their subsequent repair by various DNA repair pathways to generate sequence-diversified products. It is not known how either of the two steps is targeted specifically to Ig loci. Because of the tight link between transcription and SHM, we have investigated the role of endogenous Ig light chain (IgL) transcriptional control elements in GCV/SHM in the chicken B cell line DT40. Promoter substitution experiments led to identification of a strong RNA polymerase II promoter incapable of supporting efficient GCV/SHM. This surprising finding indicates that high levels of transcription are not sufficient for robust GCV/SHM in Ig loci. Deletion of the IgL enhancer in a context in which high-level transcription was not compromised showed that the enhancer is not necessary for GCV/SHM. Our results indicate that cis-acting elements are important for Ig gene diversification, and we propose that targeting specificity is achieved through the combined action of several Ig locus elements that include the promoter.
Collapse
Affiliation(s)
- Shu Yuan Yang
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
124
|
Schweitzer BL, Huang KJ, Kamath MB, Emelyanov AV, Birshtein BK, DeKoter RP. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2195-207. [PMID: 16887979 DOI: 10.4049/jimmunol.177.4.2195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.
Collapse
Affiliation(s)
- Brock L Schweitzer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
126
|
Pawlitzky I, Angeles CV, Siegel AM, Stanton ML, Riblet R, Brodeur PH. Identification of a candidate regulatory element within the 5' flanking region of the mouse Igh locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A. THE JOURNAL OF IMMUNOLOGY 2006; 176:6839-51. [PMID: 16709844 DOI: 10.4049/jimmunol.176.11.6839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Igh locus is controlled by cis-acting elements, including Emu and the 3' IgH regulatory region which flank the C region genes within the well-studied 3' part of the locus. Although the presence of additional control elements has been postulated to regulate rearrangements of the VH gene array that extends to the 5' end of the locus, the 5' border of Igh and its flanking region have not been characterized. To facilitate the analysis of this unexplored region and to identify potential novel control elements, we physically mapped the most D-distal VH segments and scanned 46 kb of the immediate 5' flanking region for DNase I hypersensitive sites. Our studies revealed a cluster of hypersensitive sites 30 kb upstream of the most 5' VH gene. Detection of one site, HS1, is restricted to pro-B cell lines and HS1 is accessible to restriction enzyme digestion exclusively in normal pro-B cells, the stage defined by actively rearranging Igh-V loci. Sequence motifs within HS1 for PU.1, Pax5, and E2A bind these proteins in vitro and these factors are recruited to HS1 sequence only in pro-B cells. Transient transfection assays indicate that the Pax5 binding site is required for the repression of transcriptional activity of HS1-containing constructs. Thus, our characterization of the region 5' of the VH gene cluster demonstrated the presence of a single cluster of DNase I hypersensitive sites within the 5' flanking region, and identified a candidate Igh regulatory region defined by pro-B cell-specific hypersensitivity and interaction with factors implicated in regulating VDJ recombination.
Collapse
Affiliation(s)
- Inka Pawlitzky
- Immunology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
127
|
Inlay MA, Gao HH, Odegard VH, Lin T, Schatz DG, Xu Y. Roles of the Ig κ Light Chain Intronic and 3′ Enhancers in Igk Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1146-51. [DOI: 10.4049/jimmunol.177.2.1146] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
128
|
Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006; 24:541-70. [PMID: 16551259 DOI: 10.1146/annurev.immunol.23.021704.115830] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
V(D)J recombination assembles antigen receptor variable region genes from component germline variable (V), diversity (D), and joining (J) gene segments. For B cells, such rearrangements lead to the production of immunoglobulin (Ig) proteins composed of heavy and light chains. V(D)J is tightly controlled at the Ig heavy chain locus (IgH) at several different levels, including cell-type specificity, intra- and interlocus ordering, and allelic exclusion. Such controls are mediated at the level of gene segment accessibility to V(D)J recombinase activity. Although much has been learned, many long-standing questions regarding the regulation of IgH locus rearrangements remain to be elucidated. In this review, we summarize advances that have been made in understanding how V(D)J recombination at the IgH locus is controlled and discuss important areas for future investigation.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
129
|
Inlay MA, Lin T, Gao HH, Xu Y. Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. ACTA ACUST UNITED AC 2006; 203:1721-32. [PMID: 16785310 PMCID: PMC2118354 DOI: 10.1084/jem.20052310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase.
Collapse
Affiliation(s)
- Matthew A Inlay
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
130
|
Sen R, Oltz E. Genetic and epigenetic regulation of IgH gene assembly. Curr Opin Immunol 2006; 18:237-42. [PMID: 16616470 DOI: 10.1016/j.coi.2006.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/27/2006] [Indexed: 12/19/2022]
Abstract
Precursor B cells assemble a diverse repertoire of immunoglobulin (Ig) genes by the process of V(D)J recombination. Assembly of IgH genes is regulated in a tissue- and stage-specific manner via the activation and then the inactivation of distinct regions within the one megabase IgH locus. Recent studies have shown that regional control is achieved using a combination of genetic and epigenetic strategies, which modulate chromatin accessibility to V(D)J recombinase, relocate IgH loci within the nucleus, and promote changes in locus conformation that alter the spatial proximity of target gene segments. Orchestration of these regulatory processes is crucial for the generation of a functional B cell repertoire.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
131
|
Bransteitter R, Sneeden JL, Allen S, Pham P, Goodman MF. First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. J Biol Chem 2006; 281:16833-16836. [PMID: 16624806 DOI: 10.1074/jbc.r600006200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ronda Bransteitter
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Jessica L Sneeden
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Sariah Allen
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Phuong Pham
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Myron F Goodman
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910.
| |
Collapse
|
132
|
Selsing E. Ig class switching: targeting the recombinational mechanism. Curr Opin Immunol 2006; 18:249-54. [PMID: 16616473 DOI: 10.1016/j.coi.2006.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/28/2006] [Indexed: 11/18/2022]
Abstract
Recent studies have provided insights into the mechanisms involved in targeting antibody gene class switch recombination (CSR) to various switch DNA regions located upstream of constant region genes. Targeting appears to involve sequence motifs that are favored for deoxycytosine deamination by the activation-induced deaminase enzyme that is required for CSR, together with transcription (and in some cases R-loop formation) to provide the single-stranded DNA needed for activation-induced deaminase activity. There is also another poorly understood mechanism that limits CSR to a specific length of DNA downstream of the switch-region transcriptional promoter.
Collapse
Affiliation(s)
- Erik Selsing
- Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
133
|
Franklin A. Hypothesis: a biological role for germline transcription in the mechanism of V(D)J recombination--implications for initiation of allelic exclusion. Immunol Cell Biol 2006; 84:396-403. [PMID: 16594898 DOI: 10.1111/j.1440-1711.2006.01437.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequences that encode the antigen-binding sites of IgH and IgL chains - variable (V), diversity (D, H chain loci only) and joining (J) sequences - are configured as separate DNA segments at the germline level. Expression of an Ig molecule requires V(D)J assembly. Productive V(D)J recombination is monoallelic. How rearrangement is initiated differentially at maternal and paternal alleles is unclear. The products of recombination activating gene (RAG)1 and RAG2 mediate rearrangement by cleaving the DNA between an unrearranged gene segment and adjacent recombination signal sequences (RSS). It is proposed that supercoiling generated during germline transcription at Ig loci (which occurs concomitantly with rearrangement) is required at RSS for RAG1/2 recognition. Rearrangement might hence initiate sequentially at maternal and paternal alleles where deregulated germline transcription causes RAG1/2 recognition of RSS to become stochastic.
Collapse
Affiliation(s)
- Andrew Franklin
- Biocontrol Group, School of Botany and Zoology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
134
|
Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM. Regulation of IgH gene assembly: role of the intronic enhancer and 5'DQ52 region in targeting DHJH recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:2439-47. [PMID: 16456003 DOI: 10.4049/jimmunol.176.4.2439] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.
Collapse
Affiliation(s)
- Roshi Afshar
- Department of Microbiology/Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
135
|
Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 2006; 18:164-74. [PMID: 16464563 DOI: 10.1016/j.coi.2006.01.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/27/2006] [Indexed: 01/15/2023]
Abstract
Somatic hypermutation and class-switch-recombination are initiated by the deamination of deoxycytosine in DNA by activation-induced-deaminase, AID. Recently, there has been much research into how AID targets double-stranded DNA in sub-regions of Ig genes, the involvement of co-factors and posttranslational modifications in this process, the co-option of DNA 'repair' mechanisms and AID evolution.
Collapse
Affiliation(s)
- Simonne Longerich
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58(th) Street, Chicago, IL 60615, USA
| | | | | | | |
Collapse
|
136
|
Spicuglia S, Franchini DM, Ferrier P. Regulation of V(D)J recombination. Curr Opin Immunol 2006; 18:158-63. [PMID: 16459067 DOI: 10.1016/j.coi.2006.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/24/2006] [Indexed: 12/15/2022]
Abstract
Adaptive immunity is intimately linked to the expression of antigen-specific immunoglobulin and T cell receptor genes and their recombination assembly from germline V, D and J gene segments. This developmentally regulated process relies on the activity of the Rag1-Rag2 recombinase, on accessibility of target gene segments and on monoallelic gene activation. Recent studies have revealed new mechanisms that, along with recombinase activity and locus accessibility, are likely to contribute to the control of V(D)J recombination, including target-site bias by the recombinase, RNA processing and chromosome positioning.
Collapse
Affiliation(s)
- Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
137
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|