101
|
Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes. mBio 2017; 8:mBio.02022-17. [PMID: 29259088 PMCID: PMC5736913 DOI: 10.1128/mbio.02022-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marine Chloroflexi. Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenating Dehalococcoides.
Collapse
|
102
|
Heuer V, Inagaki F, Morono Y, Kubo Y, Maeda L, Bowden S, Cramm M, Henkel S, Hirose T, Homola K, Hoshino T, Ijiri A, Imachi H, Kamiya N, Kaneko M, Lagostina L, Manners H, McClelland HL, Metcalfe K, Okutsu N, Pan D, Raudsepp M, Sauvage J, Schubotz F, Spivack A, Tonai S, Treude T, Tsang MY, Viehweger B, Wang D, Whitaker E, Yamamoto Y, Yang K. Expedition 370 summary. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.370.101.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
103
|
Environmental factors shaping the archaeal community structure and ether lipid distribution in a subtropic river and estuary, China. Appl Microbiol Biotechnol 2017; 102:461-474. [PMID: 29103169 DOI: 10.1007/s00253-017-8595-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Archaea are widespread and abundant in aquatic and terrestrial habitats and play fundamental roles in global biogeochemical cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing changes in archaeal community structure and biogeochemical processes in nature. However, the linkage between the archaeal populations and the GDGT distribution in the natural environment is poorly examined, which hindered the application and interpretation of GDGT-based climate or environmental proxies. We addressed this question by investigating changes in archaeal lipid composition and community structure in the context of environmental variables along the subtropical Jiulong River Watershed (JRW) and Jiulong River Estuary (JRE) in southern China. The results showed that both the archaeal cells and the polar GDGTs (P-GDGTs) in the JRW and JRE were mostly autochthonous rather than exogenous input from surrounding soils. We further found that only five (Methanobacteriales, Ca. Bathyarchaeota, Marine Benthic Groups A (MBGA), Marine Benthic Groups B (MBGB), and Marine Benthic Groups D (MBGD)) out of sixteen lineages showed significant impacts on the composition of P-GDGTs, suggesting the significant contribution of those archaea to the changes of P-GDGT compositions. Salinity and total phosphorus (TP) showed significant impact on the distribution of both genetic and P-GDGTs compositions of archaea; whereas, sand and silt contents only had significant impact on the P-GDGTs. MBGD archaea, which occur widely in marine sediments, showed positive correlations with P-TEX86 in the JRW and JRE, suggesting that uncultivated MBGD might also contribute to the variations in TEX86 signals in marine sediments. This study provided insight into the sources of P-GDGTs and the factors controlling their distributions in river-dominated continental margins, which has relevance to applications of GDGT-based proxies in paleoclimate studies.
Collapse
|
104
|
Orsi WD, Richards TA, Francis WR. Predicted microbial secretomes and their target substrates in marine sediment. Nat Microbiol 2017; 3:32-37. [DOI: 10.1038/s41564-017-0047-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022]
|
105
|
Carr SA, Schubotz F, Dunbar RB, Mills CT, Dias R, Summons RE, Mandernack KW. Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments. ISME JOURNAL 2017; 12:330-342. [PMID: 29039843 PMCID: PMC5776447 DOI: 10.1038/ismej.2017.150] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 01/11/2023]
Abstract
Despite accounting for the majority of sedimentary methane, the physiology and relative abundance of subsurface methanogens remain poorly understood. We combined intact polar lipid and metagenome techniques to better constrain the presence and functions of methanogens within the highly reducing, organic-rich sediments of Antarctica's Adélie Basin. The assembly of metagenomic sequence data identified phylogenic and functional marker genes of methanogens and generated the first Methanosaeta sp. genome from a deep subsurface sedimentary environment. Based on structural and isotopic measurements, glycerol dialkyl glycerol tetraethers with diglycosyl phosphatidylglycerol head groups were classified as biomarkers for active methanogens. The stable carbon isotope (δ13C) values of these biomarkers and the Methanosaeta partial genome suggest that these organisms are acetoclastic methanogens and represent a relatively small (0.2%) but active population. Metagenomic and lipid analyses suggest that Thaumarchaeota and heterotrophic bacteria co-exist with Methanosaeta and together contribute to increasing concentrations and δ13C values of dissolved inorganic carbon with depth. This study presents the first functional insights of deep subsurface Methanosaeta organisms and highlights their role in methane production and overall carbon cycling within sedimentary environments.
Collapse
Affiliation(s)
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Robert B Dunbar
- Department of Environmental Earth Systems Science, Stanford University, Stanford, CA, USA
| | | | - Robert Dias
- US Geological Survey, Denver Federal Center, Denver, CO, USA
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin W Mandernack
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
106
|
Zinke LA, Mullis MM, Bird JT, Marshall IPG, Jørgensen BB, Lloyd KG, Amend JP, Kiel Reese B. Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:528-536. [PMID: 28836742 DOI: 10.1111/1758-2229.12578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Microbial life in the deep subsurface biosphere is taxonomically and metabolically diverse, but it is vigorously debated whether the resident organisms are thriving (metabolizing, maintaining cellular integrity and expressing division genes) or just surviving. As part of Integrated Ocean Drilling Program Expedition 347: Baltic Sea Paleoenvironment, we extracted and sequenced RNA from organic carbon-rich, nutrient-replete and permanently anoxic sediment. In stark contrast to the oligotrophic subsurface biosphere, Baltic Sea Basin samples provided a unique opportunity to understand the balance between metabolism and other cellular processes. Targeted sequencing of 16S rRNA transcripts showed Atribacteria (an uncultured phylum) and Chloroflexi to be among the dominant and the active members of the community. Metatranscriptomic analysis identified methane cycling, sulfur cycling and halogenated compound utilization as active in situ respiratory metabolisms. Genes for cellular maintenance, cellular division, motility and antimicrobial production were also transcribed. This indicates that microbial life in deep subsurface Baltic Sea Basin sediments was not only alive, but thriving.
Collapse
Affiliation(s)
- Laura A Zinke
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Megan M Mullis
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Jordan T Bird
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | | | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
107
|
Kouduka M, Tanabe AS, Yamamoto S, Yanagawa K, Nakamura Y, Akiba F, Tomaru H, Toju H, Suzuki Y. Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea. GEOBIOLOGY 2017; 15:715-727. [PMID: 28434198 DOI: 10.1111/gbi.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/25/2017] [Indexed: 06/07/2023]
Abstract
Marine sediments contain eukaryotic DNA deposited from overlying water columns. However, a large proportion of deposited eukaryotic DNA is aerobically biodegraded in shallow marine sediments. Cold seep sediments are often anaerobic near the sediment-water interface, so eukaryotic DNA in such sediments is expected to be preserved. We investigated deeply buried marine sediments in the Japan Sea, where a methane hydrate deposit is associated with cold seeps. Quantitative PCR analysis revealed the reproducible recovery of eukaryotic DNA in marine sediments at depths up to 31.0 m in the vicinity of the methane hydrate deposit. In contrast, the reproducible recovery of eukaryotic DNA was limited to a shallow depth (8.3 m) in marine sediments not adjacent to the methane hydrate deposit in the same area. Pyrosequencing of an 18S rRNA gene variable region generated 1,276-3,307 reads per sample, which was sufficient to cover the biodiversity based on rarefaction curves. Phylogenetic analysis revealed that most of the eukaryotic DNA originated from radiolarian genera of the class Chaunacanthida, which have SrSO4 skeletons, the sea grass genus Zostera, and the seaweed genus Sargassum. Eukaryotic DNA originating from other planktonic fauna and land plants was also detected. Diatom sequences closely related to Thalassiosira spp., indicative of cold climates, were obtained from sediments deposited during the last glacial period (MIS-2). Plant sequences of the genera Alnus, Micromonas, and Ulmus were found in sediments deposited during the warm interstadial period (MIS-3). These results suggest the long-term persistence of eukaryotic DNA from terrestrial and aquatic sources in marine sediments associated with cold seeps, and that the genetic information from eukaryotic DNA from deeply buried marine sediments associated with cold seeps can be used to reconstruct environments and ecosystems from the past.
Collapse
Affiliation(s)
- M Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - A S Tanabe
- Graduate School of Science, Kobe University, Kobe, Japan
| | - S Yamamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - K Yanagawa
- Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Y Nakamura
- Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - F Akiba
- Diatom Minilab Akiba Ltd., Saitama, Japan
| | - H Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - H Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Y Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
108
|
Han D, Nam SI, Kim JH, Stein R, Niessen F, Joe YJ, Park YH, Hur HG. Inference on Paleoclimate Change Using Microbial Habitat Preference in Arctic Holocene Sediments. Sci Rep 2017; 7:9652. [PMID: 28851886 PMCID: PMC5575242 DOI: 10.1038/s41598-017-08757-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The present study combines data of microbial assemblages with high-resolution paleoceanographic records from Core GC1 recovered in the Chukchi Sea. For the first time, we have demonstrated that microbial habitat preferences are closely linked to Holocene paleoclimate records, and found geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. In Core GC1, the layer of maximum crenarchaeol concentration was localized surrounding the SMTZ. The vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota (MG-II) were consistent with patterns of the known global SMTZs. MG-II was the most prominent archaeal group, even within the layer of elevated concentrations of crenarchaeol, an archaeal lipid biomarker most commonly used for Marine Group I Thaumarchaeota (MG-I). The distribution of MG-I and MG-II in Core GC1, as opposed to the potential contribution of MG-I to the marine tetraether lipid pool, suggests that the application of glycerol dibiphytanyl glycerol tetraethers (GDGT)-based proxies needs to be carefully considered in the subsurface sediments owing to the many unknowns of crenarchaeol. In conclusion, microbiological profiles integrated with geological records seem to be useful for tracking microbial habitat preference, which reflect climate-triggered changes from the paleodepositional environment.
Collapse
Affiliation(s)
- Dukki Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources, 124 Gwahang-no Yuseong-gu, Daejeon, 34131, Republic of Korea
| | - Ruediger Stein
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany.,Department of Geosciences (FB5), Klagenfurter Str. 4, University of Bremen, 28359, Bremen, Germany
| | - Frank Niessen
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany
| | - Young Jin Joe
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yu-Hyeon Park
- Division of Earth Environmental System, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
109
|
Labonté JM, Lever MA, Edwards KJ, Orcutt BN. Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Front Microbiol 2017; 8:1434. [PMID: 28824568 PMCID: PMC5539551 DOI: 10.3389/fmicb.2017.01434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.
Collapse
Affiliation(s)
- Jessica M Labonté
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Department of Marine Biology, Texas A&M University at Galveston, GalvestonTX, United States
| | - Mark A Lever
- Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark.,Environmental Systems Science, ETH ZürichZurich, Switzerland
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California, Los AngelesCA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
110
|
Yu T, Liang Q, Niu M, Wang F. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:374-382. [PMID: 28419783 DOI: 10.1111/1758-2229.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The archaeal phylum Bathyarchaeota, which is composed of a large number of diverse lineages, is widespread and abundant in marine sediments. Environmental factors that control the distribution, abundance and evolution of this largely diversified archaeal phylum are currently unclear. In this study, a new pair of specific primers that target the major marine subgroups of bathyarchaeotal 16S rRNA genes was designed and evaluated to investigate the distribution and abundance of Bathyarchaeota in marine sediments. The abundance of Bathyarchaeota along two sediment cores from the deep-sea sediments of South China Sea (SCS, each from the Dongsha and Shenhu area) was determined. A strong correlation was found between the bathyarchaeotal abundance and the content of total organic carbon (TOC), suggesting an important role of Bathyarchaeota in organic matter remineralisation in the sediments of SCS. Furthermore, diversity analysis revealed that subgroups Bathy-2, Bathy-8 and Bathy-10 were dominant bathyarchaeotal members of the deep-sea sediments in the SCS. Bathy-8 was found predominantly within the reducing and deeper sediment layers, while Bathy-10 occurred preferentially in the oxidizing and shallower sediment layers. Our study lays a foundation for the further understanding of the ecological functions and niche differentiation of the important but not well-understood sedimentary archaeal group.
Collapse
Affiliation(s)
- Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyong Liang
- Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510070, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
111
|
Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci Rep 2017; 7:6040. [PMID: 28729646 PMCID: PMC5519670 DOI: 10.1038/s41598-017-05590-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/13/2017] [Indexed: 11/08/2022] Open
Abstract
Selection of microorganisms in marine sediment is shaped by energy-yielding electron acceptors for respiration that are depleted in vertical succession. However, some taxa have been reported to reflect past depositional conditions suggesting they have experienced weak selection after burial. In sediments underlying the Arabian Sea oxygen minimum zone (OMZ), we performed the first metagenomic profiling of sedimentary DNA at centennial-scale resolution in the context of a multi-proxy paleoclimate reconstruction. While vertical distributions of sulfate reducing bacteria and methanogens indicate energy-based selection typical of anoxic marine sediments, 5-15% of taxa per sample exhibit depth-independent stratigraphies indicative of paleoenvironmental selection over relatively short geological timescales. Despite being vertically separated, indicator taxa deposited under OMZ conditions were more similar to one another than those deposited in bioturbated intervals under intervening higher oxygen. The genomic potential for denitrification also correlated with palaeo-OMZ proxies, independent of sediment depth and available nitrate and nitrite. However, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the same denitrifier groups. Fermentation thus may explain the subsistence of these facultatively anaerobic microbes whose stratigraphy follows changing paleoceanographic conditions. At least for certain taxa, our analysis provides evidence of their paleoenvironmental selection over the last glacial-interglacial cycle.
Collapse
|
112
|
Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes. Front Microbiol 2017; 8:1135. [PMID: 28676800 PMCID: PMC5476839 DOI: 10.3389/fmicb.2017.01135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Tomohiro Toki
- Faculty of Science, University of the RyukyusNishihara, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Hideaki Machiyama
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of TokyoTokyo, Japan
| | - Kei Okamura
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi UniversityNankoku, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science TechnologyYokohama, Japan
| |
Collapse
|
113
|
Rasigraf O, Schmitt J, Jetten MSM, Lüke C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiologyopen 2017; 6. [PMID: 28544522 PMCID: PMC5552932 DOI: 10.1002/mbo3.475] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022] Open
Abstract
The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)‐based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2, but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR‐based technique. The results reveal the importance of various N‐cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players.
Collapse
Affiliation(s)
- Olivia Rasigraf
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Julia Schmitt
- DVGW-Forschungsstelle TUHH, Hamburg University of Technology, Hamburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
114
|
Weber HS, Habicht KS, Thamdrup B. Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a Low-sulfate, Iron-rich Freshwater Sediment. Front Microbiol 2017; 8:619. [PMID: 28446901 PMCID: PMC5389135 DOI: 10.3389/fmicb.2017.00619] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/27/2017] [Indexed: 12/04/2022] Open
Abstract
ANaerobic MEthanotrophic (ANME) archaea remove the greenhouse gas methane from anoxic environments and diminish its flux to the atmosphere. High methane removal efficiencies are well documented in marine environments, whereas anaerobic oxidation of methane (AOM) was only recently indicated as an important methane sink in freshwater systems. Freshwater AOM-mediating microorganisms lack taxonomic identification and only little is known about metabolic adaptions to prevailing biogeochemical conditions. One of the first study sites providing information about AOM activity in freshwater sediment is Lake Ørn, a low-sulfate, iron-rich Danish lake. With the aim to identify freshwater AOM-mediating archaea, we incubated AOM-active anoxic, nitrate-free freshwater sediment from Lake Ørn with 13C-labeled methane (13CCH4) and 13C-labeled bicarbonate (13CDIC) and followed the assimilation of 13C into RNA by stable isotope probing. While AOM was active, 13CCH4 and probably also 13CDIC were incorporated into uncultured archaea of the Methanosarcinales-related cluster ANME-2d, whereas other known ANME lineages were not detected. This finding strongly suggests that ANME-2d archaea perform AOM coupled to sulfate and/or iron reduction and may have the capability of mixed assimilation of CH4 and DIC. ANME-2d archaea may thus play an important role in controlling methane emissions from nitrate-depleted and low-sulfate freshwater systems.
Collapse
Affiliation(s)
- Hannah S Weber
- Nordic Center for Earth Evolution and Department of Biology, University of Southern DenmarkOdense, Denmark
| | - Kirsten S Habicht
- Nordic Center for Earth Evolution and Department of Biology, University of Southern DenmarkOdense, Denmark
| | - Bo Thamdrup
- Nordic Center for Earth Evolution and Department of Biology, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
115
|
Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ Microbiol 2017; 19:2258-2271. [PMID: 28276129 DOI: 10.1111/1462-2920.13721] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Miye Kwon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | | | - Jaejin Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sang Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ok-Sun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
116
|
Hoshino T, Inagaki F. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Lett Appl Microbiol 2017; 64:355-363. [PMID: 28256106 DOI: 10.1111/lam.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. SIGNIFICANCE AND IMPACT OF THE STUDY Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- T Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan
| | - F Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan.,Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa, Japan
| |
Collapse
|
117
|
Wang J, Kan J, Zhang X, Xia Z, Zhang X, Qian G, Miao Y, Leng X, Sun J. Archaea Dominate the Ammonia-Oxidizing Community in Deep-Sea Sediments of the Eastern Indian Ocean-from the Equator to the Bay of Bengal. Front Microbiol 2017; 8:415. [PMID: 28360898 PMCID: PMC5352681 DOI: 10.3389/fmicb.2017.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Ammonia-oxidizing Archaea (AOA) and ammonia-oxidizing Bacteria (AOB) oxidize ammonia to nitrite, and therefore play essential roles in nitrification and global nitrogen cycling. To better understand the population structure and the distribution of AOA and AOB in the deep Eastern Indian Ocean (EIO), nine surface sediment samples (>3,300 m depth) were collected during the inter-monsoon Spring 2013. One sediment sample from the South China Sea (SCS; 2,510 m) was also included for comparison. The community composition, species richness, and diversity were characterized by clone libraries (total 1,238 clones), and higher diversity of archaeal amoA genes than bacterial amoA genes was observed in all analyzed samples. Real time qPCR analysis also demonstrated higher abundances (gene copy numbers) of archaeal amoA genes than bacterial amoA genes, and the ratios of AOA/AOB ranged from 1.42 to 8.49 among sites. In addition, unique and distinct clades were found in both reconstructed AOA and AOB phylogeny, suggesting the presence of niche-specific ammonia-oxidizing microorganisms in the EIO. The distribution pattern of both archaeal and bacterial amoA genes revealed by NMDS (non-metric multidimensional scaling) showed a distinct geographic separation of the sample from the SCS and most of the samples from the EIO following nitrogen gradients. Higher abundance and diversity of archaeal amoA genes indicated that AOA may play a more important role than AOB in the deep Indian Ocean. Environmental parameters shaping the distribution pattern of AOA were different from that of AOB, indicating distinct metabolic characteristics and/or adaptation mechanisms between AOA and AOB in the EIO, especially in deep-sea environments.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jinjun Kan
- Stroud Water Research Center Avondale, PA, USA
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Zhiqiang Xia
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xuecheng Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Gang Qian
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Yanyi Miao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xiaoyun Leng
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| |
Collapse
|
118
|
Pisapia C, Gérard E, Gérard M, Lecourt L, Lang SQ, Pelletier B, Payri CE, Monnin C, Guentas L, Postec A, Quéméneur M, Erauso G, Ménez B. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems. Front Microbiol 2017; 8:57. [PMID: 28197130 PMCID: PMC5281578 DOI: 10.3389/fmicb.2017.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.
Collapse
Affiliation(s)
- Céline Pisapia
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
- DISCO beamline, Synchrotron SOLEILSaint Aubin, France
| | - Emmanuelle Gérard
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| | - Martine Gérard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Léna Lecourt
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Susan Q. Lang
- Department of Earth and Ocean Sciences, School of the Earth, Ocean and Environment, University of South Carolina, ColumbiaSC, USA
| | - Bernard Pelletier
- GIS Grand Observatoire de l’environnement et de la biodiversité terrestre et marine dans le Pacifique Sud, Centre IRD de NouméaNouméa, New Caledonia
| | | | - Christophe Monnin
- Géosciences Environnement Toulouse, Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouse, France
| | - Linda Guentas
- UR227 COREUS, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Matériaux Polymères Interfaces Environnement Marin EA 4323, Université de ToulonLa Garde, France
- Mediterranean Institute of Oceanography, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Insulaire du Vivant et de l’Environnement, Université de la Nouvelle-CalédonieNouméa, New Caledonia
| | - Anne Postec
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Marianne Quéméneur
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Gaël Erauso
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Bénédicte Ménez
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| |
Collapse
|
119
|
Mohapatra RK, Parhi PK, Patra JK, Panda CR, Thatoi HN. Biodetoxification of Toxic Heavy Metals by Marine Metal Resistant Bacteria- A Novel Approach for Bioremediation of the Polluted Saline Environment. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
120
|
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:941-955. [PMID: 27753265 DOI: 10.1111/1758-2229.12487] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Annika Vaksmaa
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Claudia Lüke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| |
Collapse
|
121
|
An X, Baker P, Li H, Su J, Yu C, Cai C. The patterns of bacterial community and relationships between sulfate-reducing bacteria and hydrochemistry in sulfate-polluted groundwater of Baogang rare earth tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21766-21779. [PMID: 27522211 DOI: 10.1007/s11356-016-7381-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Microorganisms are the primary agents responsible for the modification, degradation, and/or detoxification of pollutants, and thus, they play a major role in their natural attenuation; yet, little is known about the structure and diversity of the subsurface community and relationships between microbial community and groundwater hydrochemistry. In this study, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) allowed a comparative microbial community analysis of sulfate-contaminated groundwater samples from nine different wells in the region of Baogang rare earth tailings. Using real-time PCR, the abundance of total bacteria and the sulfate-reducing genes of aprA and dsrB were quantified. Statistical analyses showed a clear distinction of the microbial community diversity between the contaminated and uncontaminated samples, with Proteobacteria being the most dominant members of the microbial community. SO42- concentrations exerted a significant effect on the variation of the bacterial community (P < 0.05), with higher concentrations of sulfate reducing the microbial diversity (H' index), indicating that human activity (e.g., mining industries) was a possible factor disturbing the structure of the bacterial community. Quantitative analysis of the functional genes showed that the proportions of dsrB to total bacteria were 0.002-2.85 %, and the sulfate-reducing bacteria (SRB) were predominant within the prokaryotic community in the groundwater. The uncontaminated groundwater with low sulfate concentration harbored higher abundance of SRB than that in the polluted samples, while no significant correlation was observed between sulfate concentrations and SRB abundances in this study, suggesting other environmental factors possibly contributed to different distributions and abundances of SRB in the different sites. The results should facilitate expanded studies to identify robust microbe-environment interactions and provide a strong foundation for qualitative exploration of the bacterial diversity in rare earth tailings groundwater that might ultimately be incorporated into the remediation of environmental contamination.
Collapse
Affiliation(s)
- Xinli An
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Paul Baker
- Bangor University, Bangor, Gwynedd, LL572DG, UK
| | - Hu Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Su
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changping Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Cai
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
122
|
Inagaki F. PL-03Exploration of Deep Subseafloor Life and the Biosphere: The State-of-the-Art Analytical Technique. Microscopy (Oxf) 2016. [DOI: 10.1093/jmicro/dfw096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
123
|
Matturro B, Ubaldi C, Rossetti S. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination. Front Microbiol 2016; 7:1502. [PMID: 27708637 PMCID: PMC5030254 DOI: 10.3389/fmicb.2016.01502] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute - National Research Council, Monterotondo Italy
| | - Carla Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, Centro Ricerche Casaccia, Rome Italy
| | - Simona Rossetti
- Water Research Institute - National Research Council, Monterotondo Italy
| |
Collapse
|
124
|
Fan X, Xing P. Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu. Front Microbiol 2016; 7:1510. [PMID: 27708641 PMCID: PMC5030832 DOI: 10.3389/fmicb.2016.01510] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats.
Collapse
Affiliation(s)
- Xianfang Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology (CAS)Nanjing, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science (CAS)Nanjing, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology (CAS) Nanjing, China
| |
Collapse
|
125
|
Lauer A, Sørensen KB, Teske A. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225). Microorganisms 2016; 4:microorganisms4030032. [PMID: 27681926 PMCID: PMC5039592 DOI: 10.3390/microorganisms4030032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/16/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022] Open
Abstract
Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.
Collapse
Affiliation(s)
- Antje Lauer
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Biology Department, California State University Bakersfield, Bakersfield, CA 93311-1022, USA.
| | - Ketil Bernt Sørensen
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Ramboll, Copenhagen DK-2300, Denmark.
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
126
|
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340. [PMID: 27621725 PMCID: PMC5002886 DOI: 10.3389/fmicb.2016.01340] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoxuan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Liu
- Information Network Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lijun Xi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
127
|
Rastelli E, Corinaldesi C, Petani B, Dell'Anno A, Ciglenečki I, Danovaro R. Enhanced viral activity and dark CO2
fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica. Environ Microbiol 2016; 18:4511-4522. [DOI: 10.1111/1462-2920.13484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Bruna Petani
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Irena Ciglenečki
- Division for Marine and Environmental Research, Bijenicka 54; Rudjer Bošković Institute; Zagreb 10001 Croatia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| |
Collapse
|
128
|
Walsh EA, Kirkpatrick JB, Pockalny R, Sauvage J, Spivack AJ, Murray RW, Sogin ML, D'Hondt S. Relationship of Bacterial Richness to Organic Degradation Rate and Sediment Age in Subseafloor Sediment. Appl Environ Microbiol 2016; 82:4994-9. [PMID: 27287321 PMCID: PMC4968545 DOI: 10.1128/aem.00809-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Subseafloor sediment hosts a large, taxonomically rich, and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here, we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with increasing depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates with abundance-weighted community composition but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment, where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context. IMPORTANCE Subseafloor sediment provides a wonderful opportunity to investigate the drivers of microbial diversity in communities that may have been isolated for millions of years. Our paper shows the impact of in situ conditions on bacterial community structure in subseafloor sediment. Specifically, it shows that bacterial richness in subseafloor sediment declines exponentially with sediment age, and in parallel with organic-fueled oxidation rate. This result suggests that subseafloor diversity ultimately depends on electron donor diversity and/or total community respiration. This work studied how and why biological richness changes over time in the extraordinary ecosystem of subseafloor sediment.
Collapse
Affiliation(s)
- Emily A Walsh
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| | - John B Kirkpatrick
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| | - Robert Pockalny
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| | - Justine Sauvage
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| | - Arthur J Spivack
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| | - Richard W Murray
- Department of Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island, USA
| |
Collapse
|
129
|
Fullerton H, Moyer CL. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere. Appl Environ Microbiol 2016; 82:3000-3008. [PMID: 26969693 PMCID: PMC4959059 DOI: 10.1128/aem.00624-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
130
|
Katayama T, Yoshioka H, Takahashi HA, Amo M, Fujii T, Sakata S. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough. FEMS Microbiol Ecol 2016; 92:fiw093. [DOI: 10.1093/femsec/fiw093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 01/17/2023] Open
|
131
|
Bukin SV, Pavlova ON, Manakov AY, Kostyreva EA, Chernitsyna SM, Mamaeva EV, Pogodaeva TV, Zemskaya TI. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions. Front Microbiol 2016; 7:690. [PMID: 27242716 PMCID: PMC4861714 DOI: 10.3389/fmicb.2016.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.
Collapse
Affiliation(s)
- Sergei V Bukin
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Olga N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Andrei Y Manakov
- Laboratory of Clathrate Compounds, Nikolaev Institute of Inorganic Chemistry, Russian Academy of Science Novosibirsk, Russia
| | - Elena A Kostyreva
- Laboratory of Petroleum Geochemistry, Trofimuk Institute of Petroleum Geology and Geophysics, Russian Academy of Science Novosibirsk, Russia
| | - Svetlana M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Elena V Mamaeva
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Tatyana V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| | - Tamara I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Russian Academy of Science Irkutsk, Russia
| |
Collapse
|
132
|
Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, Jørgensen BB, Stepanauskas R, Reinhardt R, Schramm A, Loy A, Adrian L. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. mBio 2016; 7:e00266-16. [PMID: 27143384 PMCID: PMC4959651 DOI: 10.1128/mbio.00266-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi The presence of genes encoding dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many of the amplified dsrAB sequences were affiliated with the DEH Dsr clade, which we propose equates to a family-level clade. This provides supporting evidence for the potential for sulfite reduction by diverse DEH species. DEH-C11 also harbored genes encoding reductases for arsenate, dimethyl sulfoxide, and halogenated organics. The reductive dehalogenase homolog (RdhA) forms a monophyletic clade along with RdhA sequences from various DEH-derived contigs retrieved from available metagenomes. Multiple facts indicate that this RdhA may not be a terminal reductase. The presence of other genes indicated that nutrients and energy may be derived from the oxidation of substituted homocyclic and heterocyclic aromatic compounds. Together, these results suggest that marine DEH play a previously unrecognized role in sulfur cycling and reveal the potential for expanded catabolic and respiratory functions among subsurface DEH. IMPORTANCE Sediments underlying our oceans are inhabited by microorganisms in cell numbers similar to those estimated to inhabit the oceans. Microorganisms in sediments consist of various diverse and uncharacterized groups that contribute substantially to global biogeochemical cycles. Since most subsurface microorganisms continue to evade cultivation, possibly due to very slow growth, we obtained and analyzed genomic information from a representative of one of the most widespread and abundant, yet uncharacterized bacterial groups of the marine subsurface. We describe several key features that may contribute to their widespread distribution, such as respiratory flexibility and the potential to use oxidized sulfur compounds, which are abundant in marine environments, as electron acceptors. Together, these data provide important information that can be used to assist in designing enrichment strategies or other postgenomic studies, while also improving our understanding of the diversity and distribution of dsrAB genes, which are widely used functional marker genes for sulfur-cycling microbes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Myriel Cooper
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars Schreiber
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Karen G Lloyd
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Dorthe G Petersen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | | - Andreas Schramm
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
133
|
Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly WP, Lyons TW, Pearson A, Macalady JL. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Front Microbiol 2016; 7:598. [PMID: 27199928 PMCID: PMC4846661 DOI: 10.3389/fmicb.2016.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur, and other sulfur intermediates. While much is known regarding microbial communities in sunlit portions of euxinic systems, the composition and genetic potential of organisms living at aphotic depths have rarely been studied. Metagenomic sequencing of samples from the hypolimnion and the underlying sediments of Mahoney Lake indicate that multiple taxa contribute to sulfate reduction below the chemocline and that the hypolimnion and sediments each support distinct populations of sulfate reducing bacteria (SRB) that differ from the SRB populations observed in the chemocline. After assembling and binning the metagenomic datasets, we recovered near-complete genomes of dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial genomes encoded a 16S rRNA sequence that was most closely related to the sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA sequence that was most closely related to the fatty acid- and aromatic acid-degrading genus Syntrophus. We also recovered two near-complete genomes of Firmicutes species. Analysis of concatenated ribosomal protein trees suggests these genomes are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter. Our metagenomic data indicate that these Firmicutes contribute to carbon cycling below the chemocline. Lastly, we recovered a nearly complete genome from the sediment metagenome which represents a new genus within the FCB (Fibrobacteres, Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found little or no evidence for organisms capable of sulfide oxidation in the aphotic zone below the chemocline. Instead, comparison of functional genes below the chemocline are consistent with recovery of multiple populations capable of reducing oxidized sulfur. Our data support previous observations that at least some of the sulfide necessary to support the dense population of phototrophs in the chemocline is supplied from sulfate reduction in the hypolimnion and sediments. These studies provide key insights regarding the taxonomic and functional diversity within a euxinic environment and highlight the complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Roderick J Bovee
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Sarah R Sattin
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Wiebke Mohr
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - William P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | - Timothy W Lyons
- Department of Earth Sciences, University of California Riverside, CA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center, Department of Geosciences, Pennsylvania State University University Park, TX, USA
| |
Collapse
|
134
|
Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ 2016; 4:e1913. [PMID: 27114874 PMCID: PMC4841229 DOI: 10.7717/peerj.1913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.
Collapse
Affiliation(s)
- Elizabeth Trembath-Reichert
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - David H Case
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| |
Collapse
|
135
|
Bienhold C, Zinger L, Boetius A, Ramette A. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria. PLoS One 2016; 11:e0148016. [PMID: 26814838 PMCID: PMC4731391 DOI: 10.1371/journal.pone.0148016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The deep ocean floor covers more than 60% of the Earth's surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000-5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe.
Collapse
Affiliation(s)
- Christina Bienhold
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lucie Zinger
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alban Ramette
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
136
|
The Vertical Distribution of Sediment Archaeal Community in the "Black Bloom" Disturbing Zhushan Bay of Lake Taihu. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:8232135. [PMID: 26884723 PMCID: PMC4738990 DOI: 10.1155/2016/8232135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/27/2015] [Accepted: 12/20/2015] [Indexed: 11/18/2022]
Abstract
Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay.
Collapse
|
137
|
Hoshino T, Kuratomi T, Morono Y, Hori T, Oiwane H, Kiyokawa S, Inagaki F. Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan. Front Microbiol 2016; 6:1554. [PMID: 26793184 PMCID: PMC4707226 DOI: 10.3389/fmicb.2015.01554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
Previous studies of microbial communities in deep-sea hydrothermal ferric deposits have demonstrated that members of Zetaproteobacteria play significant ecological roles in biogeochemical iron-cycling. However, the ecophysiological characteristics and interaction between other microbial members in the habitat still remain largely unknown. In this study, we investigated microbial communities in a core sample obtained from shallow hydrothermal iron-oxyhydroxide deposits at Nagahama Bay of Satsuma Iwo-Jima, Japan. Scanning electron microscopic observation showed numerous helical stalk structures, suggesting the occurrence of iron-oxidizing bacteria. Analysis of 16S rRNA gene sequences indicated the co-occurrence of iron-oxidizing Zetaproteobacteria and iron-reducing bacteria such as the genera Deferrisoma and Desulfobulbus with strong correlations on the sequence abundance. CARD-FISH indicated that the numbers of Zetaproteobacteria were not always consistent to the frequency of stalk structures. In the stalk-abundant layers with relatively small numbers of Zetaproteobacteria cells, accumulation of polyphosphate was observed inside Zetaproteobacteria cells, whereas no polyphosphate grains were observed in the topmost layers with fewer stalks and abundant Zetaproteobacteria cells. These results suggest that Zetaproteobacteria store intracellular polyphosphates during active iron oxidation that contributes to the mineralogical growth and biogeochemical iron cycling.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Takashi Kuratomi
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Yuki Morono
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | | | - Shoichi Kiyokawa
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Fumio Inagaki
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| |
Collapse
|
138
|
Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L, Moné A, Denonfoux J, Peyretaillade E, Debroas D, Boucher D, Peyret P. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes. PLoS One 2016; 11:e0145558. [PMID: 26734727 PMCID: PMC4703385 DOI: 10.1371/journal.pone.0145558] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/04/2015] [Indexed: 12/29/2022] Open
Abstract
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
- * E-mail:
| | - Eric Dugat-Bony
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Mickaël Mege
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Nicolas Parisot
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research–UFZ, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Jérémie Denonfoux
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Didier Debroas
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Delphine Boucher
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Pierre Peyret
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| |
Collapse
|
139
|
Honkalas V, Dabir A, Dhakephalkar PK. Life in the Anoxic Sub-Seafloor Environment: Linking Microbial Metabolism and Mega Reserves of Methane Hydrate. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:235-262. [DOI: 10.1007/10_2015_5004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
140
|
Analysis of Low-Biomass Microbial Communities in the Deep Biosphere. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:149-78. [PMID: 27261783 DOI: 10.1016/bs.aambs.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed.
Collapse
|
141
|
Nunoura T, Takaki Y, Shimamura S, Kakuta J, Kazama H, Hirai M, Masui N, Tomaru H, Morono Y, Imachi H, Inagaki F, Takai K. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan. Environ Microbiol 2015; 18:1889-906. [PMID: 26486095 DOI: 10.1111/1462-2920.13096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 01/23/2023]
Abstract
Subseafloor pelagic sediments with high concentrations of organic matter form habitats for diverse microorganisms. Here, we determined depth profiles of genes for SSU rRNA, mcrA, dsrA and amoA from just beneath the seafloor to 363.3 m below the seafloor (mbsf) using core samples obtained from the forearc basin off the Shimokita Peninsula. The molecular profiles were combined with data on lithostratigraphy, depositional age, sedimentation rate and pore-water chemistry. The SSU rRNA gene tag structure and diversity changed at around the sulfate-methane transition zone (SMTZ), whereas the profiles varied further with depth below the SMTZ, probably in connection with the variation in pore-water chemistry. The depth profiles of diversity and abundance of dsrA, a key gene for sulfate reduction, suggested the possible niche separations of sulfate-reducing populations, even below the SMTZ. The diversity and abundance patterns of mcrA, a key gene for methanogenesis/anaerobic methanotrophy, suggested a stratified distribution and separation of anaerobic methanotrophy and hydrogenotrophic or methylotrophic methanogensis below the SMTZ. This study provides novel insights into the relationships between the composition and function of microbial communities and the chemical environment in the nutrient-rich continental margin subseafloor sediments, which may result in niche separation and variability in subseafloor microbial populations.
Collapse
Affiliation(s)
- Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.,Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Jungo Kakuta
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hiromi Kazama
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Noriaki Masui
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Hitoshi Tomaru
- Department of Earth Sciences, Chiba University, Chiba, Inageku, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
142
|
Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs KU, Friedrich MW. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea. Front Microbiol 2015; 6:1290. [PMID: 26635758 PMCID: PMC4658423 DOI: 10.3389/fmicb.2015.01290] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.
Collapse
Affiliation(s)
- Oluwatobi E Oni
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; International Max-Planck Research School for Marine Microbiology Bremen, Germany
| | - Frauke Schmidt
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Department of Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | | | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Michael W Friedrich
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
143
|
Fichtel K, Logemann J, Fichtel J, Rullkötter J, Cypionka H, Engelen B. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface. Front Microbiol 2015; 6:1078. [PMID: 26500624 PMCID: PMC4594026 DOI: 10.3389/fmicb.2015.01078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment-basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.
Collapse
Affiliation(s)
- Katja Fichtel
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jörn Logemann
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jörg Fichtel
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jürgen Rullkötter
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Heribert Cypionka
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Bert Engelen
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| |
Collapse
|
144
|
Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D'Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME JOURNAL 2015; 10:979-89. [PMID: 26430855 PMCID: PMC4796937 DOI: 10.1038/ismej.2015.175] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.
Collapse
Affiliation(s)
- Emily A Walsh
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | - John B Kirkpatrick
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI, USA
| | - Scott D Rutherford
- Department of Environmental Sciences, Roger Williams University, Bristol, RI, USA
| | - David C Smith
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI, USA
| | - Mitchell Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI, USA
| |
Collapse
|
145
|
Subha B, Song YC, Woo JH. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing. MARINE POLLUTION BULLETIN 2015; 98:235-246. [PMID: 26139459 DOI: 10.1016/j.marpolbul.2015.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity.
Collapse
Affiliation(s)
- Bakthavachallam Subha
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Young Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea.
| | - Jung Hui Woo
- Nuclear Power Equipment Research Center, Korea Maritime and Ocean University, Busan, South Korea
| |
Collapse
|
146
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
147
|
Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015; 6:872. [PMID: 26379647 PMCID: PMC4549626 DOI: 10.3389/fmicb.2015.00872] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/01/2023] Open
Abstract
Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment.
Collapse
Affiliation(s)
- Stephanie A Carr
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME, USA
| | - Kevin W Mandernack
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis IN, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| |
Collapse
|
148
|
Hugoni M, Agogué H, Taib N, Domaizon I, Moné A, Galand PE, Bronner G, Debroas D, Mary I. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea. MICROBIAL ECOLOGY 2015; 70:473-83. [PMID: 25851445 DOI: 10.1007/s00248-015-0601-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/18/2015] [Indexed: 05/15/2023]
Abstract
To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.
Collapse
Affiliation(s)
- Mylène Hugoni
- Laboratoire "Microorganismes: Génome et Environnement", Clermont Université, Université Blaise Pascal, BP 10448, 63000, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y. DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 2015. [PMID: 26206933 DOI: 10.1126/science.aaa6882] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.
Collapse
Affiliation(s)
- F Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - K-U Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - Y Kubo
- Center for Deep-Earth Exploration, JAMSTEC, Yokohama 236-0061, Japan. Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - M W Bowles
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - V B Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - W-L Hong
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - T Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - A Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - H Imachi
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Kaneko
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - M A Lever
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Y-S Lin
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - B A Methé
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - S Morita
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8567, Japan
| | - Y Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - W Tanikawa
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Bihan
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - S A Bowden
- Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Aberdeen AB2A 3UE, UK
| | - M Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - C Glombitza
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - D Gross
- Department of Applied Geosciences and Geophysics, Montanuniversität, 8700 Leoben, Austria
| | - G J Harrington
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - T Hori
- Environmental Management Research Institute, AIST, Tsukuba, Ibaraki 305-8569, Japan
| | - K Li
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - D Limmer
- Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Aberdeen AB2A 3UE, UK
| | - C-H Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | - M Murayama
- Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - N Ohkouchi
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - S Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y-S Park
- Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Yuseong-gu, Daejeon 305-350, Korea
| | - S C Phillips
- Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - X Prieto-Mollar
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - M Purkey
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - N Riedinger
- Department of Earth Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Y Sanada
- Center for Deep-Earth Exploration, JAMSTEC, Yokohama 236-0061, Japan. Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - J Sauvage
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - G Snyder
- Department of Earth Science, Rice University, Houston, TX 77005, USA
| | - R Susilawati
- School of Earth Science, University of Queensland, Brisbane Queensland 4072, Australia
| | - Y Takano
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - E Tasumi
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - T Terada
- Marine Works Japan, Yokosuka 237-0063, Japan
| | - H Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - E Trembath-Reichert
- Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - D T Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y Yamada
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan. Department of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
150
|
Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME JOURNAL 2015; 10:273-86. [PMID: 26090992 DOI: 10.1038/ismej.2015.97] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
The 'Atribacteria' is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species- to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the 'Atribacteria' inclusive of OP9 and JS1. Additional conserved features within the 'Atribacteria' were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the 'Atribacteria' are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate.
Collapse
|