101
|
Selle K, Goh YJ, Johnson BR, O'Flaherty S, Andersen JM, Barrangou R, Klaenhammer TR. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus. Front Microbiol 2017; 8:553. [PMID: 28443071 PMCID: PMC5387067 DOI: 10.3389/fmicb.2017.00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.
Collapse
Affiliation(s)
- Kurt Selle
- Functional Genomics Graduate Program, North Carolina State UniversityRaleigh, NC, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Yong J Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Brant R Johnson
- Microbiology Graduate Program, North Carolina State UniversityRaleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Joakim M Andersen
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Rodolphe Barrangou
- Functional Genomics Graduate Program, North Carolina State UniversityRaleigh, NC, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Todd R Klaenhammer
- Functional Genomics Graduate Program, North Carolina State UniversityRaleigh, NC, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA.,Microbiology Graduate Program, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
102
|
Paganelli FL, van de Kamer T, Brouwer EC, Leavis HL, Woodford N, Bonten MJ, Willems RJ, Hendrickx AP. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium. Int J Antimicrob Agents 2017; 49:355-363. [DOI: 10.1016/j.ijantimicag.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/01/2023]
|
103
|
van Harten RM, Willems RJL, Martin NI, Hendrickx APA. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies? Trends Microbiol 2017; 25:467-479. [PMID: 28209400 DOI: 10.1016/j.tim.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting.
Collapse
Affiliation(s)
- Roel M van Harten
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
104
|
Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
106
|
Wesener DA, Levengood MR, Kiessling LL. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. J Biol Chem 2016; 292:2944-2955. [PMID: 28039359 DOI: 10.1074/jbc.m116.759340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
Collapse
Affiliation(s)
| | - Matthew R Levengood
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Laura L Kiessling
- From the Department of Biochemistry and .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
107
|
Matano LM, Morris HG, Wood BM, Meredith TC, Walker S. Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening. Bioorg Med Chem 2016; 24:6307-6314. [PMID: 27594549 PMCID: PMC5180449 DOI: 10.1016/j.bmc.2016.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022]
Abstract
Since the introduction of penicillin into the clinic in 1942, antibiotics have saved the lives of millions of people around the world. While penicillin and other traditional broad spectrum antibiotics were effective as monotherapies, the inexorable spread of antibiotic resistance has made alternative therapeutic approaches necessary. Compound combinations are increasingly seen as attractive options. Such combinations may include: lethal compounds; synthetically lethal compounds; or administering a lethal compound with a nonlethal compound that targets a virulence factor or a resistance factor. Regardless of the therapeutic strategy, high throughput screening is a key approach to discover potential leads. Unfortunately, the discovery of biologically active compounds that inhibit a desired pathway can be a very slow process, and an inordinate amount of time is often spent following up on compounds that do not have the desired biological activity. Here we describe a pathway-directed high throughput screening paradigm that combines the advantages of target-based and whole cell screens while minimizing the disadvantages. By exploiting this paradigm, it is possible to rapidly identify biologically active compounds that inhibit a pathway of interest. We describe some previous successful applications of this paradigm and report the discovery of a new class of d-alanylation inhibitors that may be useful as components of compound combinations to treat methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Leigh M Matano
- Department of Microbiology and Immunobiology, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Heidi G Morris
- Department of Microbiology and Immunobiology, 4 Blackfan Circle, Boston, MA 02115, USA
| | - B McKay Wood
- Department of Microbiology and Immunobiology, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, 206 South Frear Laboratory, University Park, PA 16802, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, 4 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
108
|
Yang X, Huang E, Yousef AE. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiol Res 2016; 195:18-23. [PMID: 28024522 DOI: 10.1016/j.micres.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
Abstract
Brevibacillin is a newly-discovered antimicrobial lipopeptide produced by Brevibacillus laterosporus OSY-I1. It is active against Gram-positive bacteria, including antibiotic resistant strains. This research was initiated to investigate the mechanism of action of brevibacillin against an indicator strain, Staphylococcus aureus ATCC 6538. Results of the study proved that brevibacillin binds to lipoteichoic acid (LTA) on cell wall before interacting with cell membrane. Additionally, brevibacillin disrupts S. aureus cytoplasmic membrane by increasing its permeability, depolarization and potassium leakage. Therefore, cytoplasmic membrane serves as a major target for brevibacillin. Despite the presence of multiple sites on S. aureus cell envelope, scanning electron microscope observation didn't reveal evidence of cell lysis or any morphological defects in cells treated with brevibacillin. Based on the results of this study, we propose that the electrostatic interaction between the cationic brevibacillin and the anionic LTA helped the accumulation of the antimicrobial agent at cell surface; this was followed by translocation of the lipopeptide to the cytoplasmic membrane and disrupting its vital functions.
Collapse
Affiliation(s)
- Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - En Huang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States; Department of Microbiology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
109
|
Fontana C, Zaccheus M, Weintraub A, Ansaruzzaman M, Widmalm G. Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-16000. Carbohydr Res 2016; 432:41-9. [PMID: 27392309 DOI: 10.1016/j.carres.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed d-Glc, d-GalN, d-QuiN and l-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by (1)H and (13)C NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using (1)H, (13)C, (15)N and (31)P NMR spectroscopy; inter-residue correlations were identified by (1)H,(13)C-heteronuclear multiple-bond correlation, (1)H,(1)H-NOESY and (1)H,(31)P-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: →3)-d-Gro-(1-P-6)-β-d-Glcp-(1→4)-α-l-FucpNAc-(1→3)-β-d-QuipNAc-(1→ with a side-chain consisting of α-d-Glcp-(1→6)-α-d-GalpNAc-(1→ linked to the O3 position of the FucNAc residue.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mona Zaccheus
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
110
|
The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone. mBio 2016; 7:mBio.01228-16. [PMID: 27507828 PMCID: PMC4981727 DOI: 10.1128/mbio.01228-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.
Collapse
|
111
|
Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res 2016; 39:1519-1529. [PMID: 27498542 DOI: 10.1007/s12272-016-0804-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/29/2022]
Abstract
Lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, is associated with various inflammatory diseases ranging from minor skin diseases to severe sepsis. It is known that LTA is recognized by Toll-like receptor 2 (TLR2), leading to the initiation of innate immune responses and further development of adaptive immunity. However, excessive immune responses may result in the inflammatory sequelae that are involved in severe diseases such as sepsis. Although numerous studies have tried to identify the molecular basis for the pathophysiology of Gram-positive bacterial infection, the exact role of LTA during the infection has not been clearly elucidated. This review provides an overview of LTA structure and host recognition by TLR2 that leads to the activation of innate immune responses. Emphasis is placed on differential immunostimulating activities of LTAs of various Gram-positive bacteria at the molecular level.
Collapse
|
112
|
Bertram R. Complementation Plasmids, Inducible Gene-Expression Systems, and Reporters for Staphylococci. Methods Mol Biol 2016; 1373:25-32. [PMID: 25646605 DOI: 10.1007/7651_2014_181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A cornucopia of methods and molecular tools is available for genetic modification of staphylococci, as shown for at least ten different species to date (Prax et al. Microbiology 159:421-435, 2013). This chapter reviews a number of frequently used vectors for complementation purposes that usually replicate in E. coli and staphylococci and differ in parameters including copy number, mode of replication, and sequence length. Systems for the artificial control of gene expression are described that are modulated by low-molecular-weight effectors such as metal cations, carbohydrates, and antibiotics. Finally, the usefulness of reporter proteins that exhibit enzymatic or autofluorescent characteristics in staphylococci is highlighted.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Waldhäuser Str. 70/8, 72076, Tübingen, Germany. .,, Ernst-Simon-Str. 2-4, 72072, Tübingen, Germany.
| |
Collapse
|
113
|
Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications. J Bacteriol 2016; 198:2029-42. [PMID: 27185829 PMCID: PMC4944223 DOI: 10.1128/jb.00116-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is a foodborne Gram-positive bacterial pathogen, and many of its virulence factors are either secreted proteins or proteins covalently or noncovalently attached to the cell wall. Previous work has indicated that noncovalently attached proteins with GW (glycine-tryptophan) domains are retained in the cell wall by binding to the cell wall polymer lipoteichoic acid (LTA). LTA is a glycerol phosphate polymer, which is modified in L. monocytogenes with galactose and d-alanine residues. We identified Lmo0933 as the cytoplasmic glycosyltransferase required for the LTA glycosylation process and renamed the protein GtlA, for glycosyltransferase LTA A. Using L. monocytogenes mutants lacking galactose or d-alanine modifications or the complete LTA polymer, we show that GW domain proteins are retained within the cell wall, indicating that other cell wall polymers are involved in the retention of GW domain proteins. Further experiments revealed peptidoglycan as the binding receptor as a purified GW domain fusion protein can bind to L. monocytogenes cells lacking wall teichoic acid (WTA) as well as purified peptidoglycan derived from a wild-type or WTA-negative strain. With this, we not only identify the first enzyme involved in the LTA glycosylation process, but we also provide new insight into the binding mechanism of noncovalently attached cell wall proteins.
IMPORTANCE Over the past 20 years, a large number of bacterial genome sequences have become available. Computational approaches are used for the genome annotation and identification of genes and encoded proteins. However, the function of many proteins is still unknown and often cannot be predicted bioinformatically. Here, we show that the previously uncharacterized Listeria monocytogenes gene lmo0933 likely codes for a glycosyltransferase required for the decoration of the cell wall polymer lipoteichoic acid (LTA) with galactose residues. Using L. monocytogenes mutants lacking LTA modifications or the complete polymer, we show that specific cell wall proteins, often associated with virulence, are retained within the cell wall, indicating that additional cell wall polymers are involved in their retention.
Collapse
|
114
|
Shiraishi T, Yokota S, Fukiya S, Yokota A. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:147-161. [PMID: 27867802 PMCID: PMC5107633 DOI: 10.12938/bmfh.2016-006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 02/02/2023]
Abstract
Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are
one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In
particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of
LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including
probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its
immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding
its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed
physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure
of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
115
|
Mann PA, Müller A, Wolff KA, Fischmann T, Wang H, Reed P, Hou Y, Li W, Müller CE, Xiao J, Murgolo N, Sher X, Mayhood T, Sheth PR, Mirza A, Labroli M, Xiao L, McCoy M, Gill CJ, Pinho MG, Schneider T, Roemer T. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets. PLoS Pathog 2016; 12:e1005585. [PMID: 27144276 PMCID: PMC4856313 DOI: 10.1371/journal.ppat.1005585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. Staphylococcus aureus and Staphylococcus epidermidis cause life-threatening infections that are commonly acquired in hospitals as well as the community and remain difficult to treat with current antibiotics. In part, this is due to the emergence of methicillin-resistant S. aureus and S. epidermidis (MRSA and MRSE), which exhibit broad resistance to β-lactams such as penicillin and other members of this important founding class of antibiotics. Compounding this problem, Staphylococci commonly colonize the surface of catheters and other medical devices, forming bacterial communities that are intrinsically resistant to antibiotics. Here we functionally characterize a family of 2-epimerases, named MnaA and Cap5P, that we demonstrate by genetic, biochemical, and X-ray crystallography means are essential for wall teichoic acid biosynthesis and that upon their genetic inactivation render methicillin-resistant Staphylococci unable to form biofilms as well as broadly hypersusceptible to β-lactam antibiotics both in vitro and in a host infection setting. WTA 2-epimerases therefore constitute a novel class of methicillin-resistant Staphylococcal drug targets.
Collapse
Affiliation(s)
- Paul A. Mann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kerstin A. Wolff
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Thierry Fischmann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Hao Wang
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Patricia Reed
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Yan Hou
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Wenjin Li
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Jianying Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Nicholas Murgolo
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Xinwei Sher
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Todd Mayhood
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Payal R. Sheth
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Asra Mirza
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Marc Labroli
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Li Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mark McCoy
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Charles J. Gill
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Terry Roemer
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
- * E-mail:
| |
Collapse
|
116
|
van der Es D, Groenia NA, Laverde D, Overkleeft HS, Huebner J, van der Marel GA, Codée JDC. Synthesis of E. faecium wall teichoic acid fragments. Bioorg Med Chem 2016; 24:3893-3907. [PMID: 26993744 DOI: 10.1016/j.bmc.2016.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
The first synthesis of different Enterococcus faecium wall teichoic acid (WTA) fragments is presented. The structure of these major cell wall components was elucidated recently and it was shown that these glycerolphosphate (GroP) based polymers are built up from -6-(GalNAc-α(1-3)-GalNAc-β(1-2)-GroP)- repeating units. We assembled WTA fragments up to three repeating units in length, in two series that differ in the stereochemistry of the glycerolphosphate moiety. The key GalNAc-GalNAc-GroP synthons, required for the synthesis, were generated from galactosazide building blocks that were employed in highly stereoselective glycosylation reactions to furnish both the α- and β-configured linkages. By comparing the NMR spectra of the synthesized fragments with the isolated material it appears that the hereto undefined stereochemistry of the glycerol phosphate moiety is sn-glycerol-3-phosphate. The generated fragments will be valuable tools to study their immunological activity at the molecular level.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Nadia A Groenia
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
117
|
Smith DS, Siggins MK, Gierula M, Pichon B, Turner CE, Lynskey NN, Mosavie M, Kearns AM, Edwards RJ, Sriskandan S. Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus. Microb Genom 2016; 2:e000049. [PMID: 28348843 PMCID: PMC5320583 DOI: 10.1099/mgen.0.000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
The range of exoproteins and core exoproteome of 14 Staphylococcus aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8 %) were found in all 14 isolates whereas 144 (23 %) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95 % of the proteins identified were not subject to any major post-translational modification. Migration of 5 % of the proteins was not as expected: 1 % of the proteins migrated at a mass greater than predicted, while 4 % appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.
Collapse
Affiliation(s)
- Debra S Smith
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Matthew K Siggins
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Magdalena Gierula
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Bruno Pichon
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Claire E Turner
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Nicola N Lynskey
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Mia Mosavie
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Angela M Kearns
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Robert J Edwards
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Shiranee Sriskandan
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
118
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as
Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
119
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
120
|
Atila M, Luo Y. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . F1000Res 2016; 5:121. [PMID: 26998233 PMCID: PMC4792211 DOI: 10.12688/f1000research.7842.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Cationic modulation of the dominantly negative electrostatic structure of phospholipids plays an important role in bacterial response to changes in the environment. In addition to zwitterionic phosphatidylethanolamine, Gram-positive bacteria are also abundant in positively charged lysyl-phosphatidylglycerol. Increased amounts of both types of lipids render Gram-positive bacterial cells more resistant to cationic antibiotic peptides such as defensins. Lysyl and alanyl-phosphatidylglycerol as well as alanyl-cardiolipin have also been studied by mass spectroscopy. Phospholipids modified by other amino acids have been discovered by chemical analysis of the lipid lysate but have yet to be studied by mass spectroscopy. We exploited the high sensitivity of modern mass spectroscopy in searching for substructures in complex mixtures to establish a sensitive and thorough screen for aminoacylated phospholipids. The search for deprotonated aminoacyl anions in lipid extracted from
Bacillus subtilis strain 168 yielded strong evidence as well as relative abundance of aminoacyl-phosphatidylglycerols, which serves as a crude measure of the specificity of aminoacyl-phosphatidylglycerol synthase MprF. No aminoacyl-cardiolipin was found. More importantly, the second most abundant species in this category is D-alanyl-phosphatidylglycerol, suggesting a possible role in the D-alanylation pathway of wall- and lipo-teichoic acids.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
121
|
Melehani JH, Duncan JA. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. Curr Top Microbiol Immunol 2016; 397:257-82. [PMID: 27460814 DOI: 10.1007/978-3-319-41171-2_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus is a Gram-positive coccus that interacts with human hosts on a spectrum from quiet commensal to deadly pathogen. S. aureus is capable of infecting nearly every tissue in the body resulting in cellulitis, pneumonia, osteomyelitis, endocarditis, brain abscesses, bacteremia, and more. S. aureus has a wide range of factors that promote infection, and each site of infection triggers a different response in the human host. In particular, the different patterns of inflammasome activation mediate tissue-specific pathogenesis or protection in S. aureus infection. Although still a nascent field, understanding the unique host-pathogen interactions in each infection and the role of inflammasomes in mediating pathogenesis may lead to novel strategies for treating S. aureus infections. Reviews addressing S. aureus virulence and pathogenesis (Thammavongsa et al. 2015), as well as epidemiology and pathophysiology (Tong et al. 2015), have recently been published. This review will focus on S. aureus factors that activate inflammasomes and their impact on innate immune signaling and bacterial survival.
Collapse
Affiliation(s)
- Jason H Melehani
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medicine, Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
122
|
Colagiorgi A, Turroni F, Mancabelli L, Serafini F, Secchi A, van Sinderen D, Ventura M. Insights into teichoic acid biosynthesis byBifidobacterium bifidumPRL2010. FEMS Microbiol Lett 2015; 362:fnv141. [DOI: 10.1093/femsle/fnv141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 12/23/2022] Open
|
123
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
124
|
Vinayavekhin N, Mahipant G, Vangnai AS, Sangvanich P. Untargeted metabolomics analysis revealed changes in the composition of glycerolipids and phospholipids in Bacillus subtilis under 1-butanol stress. Appl Microbiol Biotechnol 2015; 99:5971-83. [PMID: 26025016 DOI: 10.1007/s00253-015-6692-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/18/2015] [Accepted: 05/15/2015] [Indexed: 01/21/2023]
Abstract
1-Butanol has been utilized widely in industry and can be produced or transformed by microbes. However, current knowledge about the mechanisms of 1-butanol tolerance in bacteria remains quite limited. Here, we applied untargeted metabolomics to study Bacillus subtilis cells under 1-butanol stress and identified 55 and 37 ions with significantly increased and decreased levels, respectively. Using accurate mass determination, tandem mass spectra, and synthetic standards, 86 % of these ions were characterized. The levels of phosphatidylethanolamine, diglucosyldiacylglycerol, and phosphatidylserine were found to be upregulated upon 1-butanol treatment, whereas those of diacylglycerol and lysyl phosphatidylglycerol were downregulated. Most lipids contained 15:0/15:0, 16:0/15:0, and 17:0/15:0 acyl chains, and all were mapped to membrane lipid biosynthetic pathways. Subsequent two-stage quantitative real-time reverse transcriptase PCR analyses of genes in the two principal membrane lipid biosynthesis pathways revealed elevated levels of ywiE transcripts in the presence of 1-butanol and reduced expression levels of cdsA, pgsA, mprF, clsA, and yfnI transcripts. Thus, the gene transcript levels showed agreement with the metabolomics data. Lastly, the cell morphology was investigated by scanning electron microscopy, which indicated that cells became almost twofold longer after 1.4 % (v/v) 1-butanol stress for 12 h. Overall, the studies uncovered changes in the composition of glycerolipids and phospholipids in B. subtilis under 1-butanol stress, emphasizing the power of untargeted metabolomics in the discovery of new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,
| | | | | | | |
Collapse
|
125
|
Tuchscherr L, Bischoff M, Lattar SM, Noto Llana M, Pförtner H, Niemann S, Geraci J, Van de Vyver H, Fraunholz MJ, Cheung AL, Herrmann M, Völker U, Sordelli DO, Peters G, Löffler B. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog 2015; 11:e1004870. [PMID: 25923704 PMCID: PMC4414502 DOI: 10.1371/journal.ppat.1004870] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | - Santiago M. Lattar
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariangeles Noto Llana
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Henrike Pförtner
- Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Jennifer Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Martin J. Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ambrose L. Cheung
- Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | - Uwe Völker
- Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Daniel O. Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
126
|
Viana D, Comos M, McAdam PR, Ward MJ, Selva L, Guinane CM, González-Muñoz BM, Tristan A, Foster SJ, Fitzgerald JR, Penadés JR. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat Genet 2015; 47:361-366. [PMID: 25685890 PMCID: PMC4824278 DOI: 10.1038/ng.3219] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2015] [Indexed: 11/25/2022]
Abstract
The capacity of microbial pathogens to alter their host-tropism leading to epidemics in distinct host-species populations is a global public and veterinary health concern. In order to investigate the molecular basis of a bacterial host-switching event in a tractable host-species, we traced the evolutionary trajectory of the common rabbit clone of Staphylococcus aureus. We report that it evolved through a likely human-to-rabbit host jump over 40 years ago, and that only a single natural nucleotide mutation was required and sufficient to convert a human-specific S. aureus strain into one which could infect rabbits. Related mutations were identified at the same locus in other rabbit strains of distinct clonal origin, consistent with convergent evolution. This first report of a single mutation that was sufficient to alter the host-tropism of a micro-organism during its evolution highlights the capacity of some pathogens to readily expand into novel host-species populations.
Collapse
Affiliation(s)
- David Viana
- Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - María Comos
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias(CITA-IVIA), Apdo. 187, 12.400 Segorbe, Castellón, Spain
| | - Paul R McAdam
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom
| | - Melissa J Ward
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH93JT
| | - Laura Selva
- Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - Caitriona M Guinane
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom
| | - Beatriz M González-Muñoz
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Anne Tristan
- Centre National de Référence des Staphylocoques, Université Lyon, France
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom
| | - José R Penadés
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010, Valencia, Spain.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
127
|
Hatano S, Hirose Y, Yamamoto Y, Murosaki S, Yoshikai Y. Scavenger receptor for lipoteichoic acid is involved in the potent ability of Lactobacillus plantarum strain L-137 to stimulate production of interleukin-12p40. Int Immunopharmacol 2015; 25:321-31. [PMID: 25698554 DOI: 10.1016/j.intimp.2015.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Heat-killed Lactobacillus plantarum strain L-137 (HK L-137) is a more potent inducer of interleukin (IL)-12 than other heat-killed Lactobacillus strains. To elucidate the mechanism involved in this IL-12p40 induction, we compared HK L-137 with heat-killed L. plantarum strain JCM1149 (HK JCM1149) by nuclear magnetic resonance and mass spectrometry. Results showed that HK L-137 contained lipoteichoic acid (LTA) with a chemical structure similar to that of JCM1149, except for a lower degree of glucosyl substitution in the poly(glycerol phosphate) backbone. Lysozyme sensitivity and electrophoretic moiety analysis revealed that HK L-137 exposed more LTA on its cell surface than HK JCM1149. Phagocytosis of HK L-137 by splenic adherent cells was significantly greater than that of HK JCM1149. Anti-LTA antibody and anti-scavenger receptor-A (SR-A) antibody selectively inhibited phagocytosis of HK L-137, as well as IL-12p40 production, by splenic adherent cells. Thus, a higher efficiency of phagocytosis of HK L-137 via SR-A for LTA is responsible for the potent IL-12p40 induction.
Collapse
Affiliation(s)
- Shinya Hatano
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitaka Hirose
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Shinji Murosaki
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
128
|
Pneumococcal wall teichoic acid is required for the pathogenesis of Streptococcus pneumoniae in murine models. J Microbiol 2015; 53:147-54. [PMID: 25626371 DOI: 10.1007/s12275-015-4616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Pneumococcal asymptomatic colonization of the respiratory tracts is a major risk for invasive pneumococcal disease. We have previously shown that pneumococcal wall teichoic acid (WTA) was involved in pneumococcal infection of sepsis and adherence to epithelial and endothelial cells. In this study, we investigated the contribution of pneumococcal WTA to bacterial colonization and dissemination in murine models. The result showed that nasopharynx colonizing D39 bacterial cells have a distinct phenotype showing an increased exposure of teichoic acids relative to medium-grown bacteria. The WTA-deficient mutants were impaired in their colonization to the nasopharynx and lungs, and led to a mild inflammation in the lungs at 36 h post-inoculation. Pretreatment of the murine nares with WTA reduced the ability of wild type D39 bacteria to colonize the nasopharynx. In addition, the WTA-deficient strain was impaired in its ability to invade the blood and brain following intranasal administration. WTA-deficient D39 strain was reduced in C3 deposition but was more susceptible to the killing by the neutrophils as compared with its parent strain. Our results also demonstrated that the WTA enhanced pneumococcal colonization and dissemination independently of the host strains. These results indicate that WTA plays an important role in pneumococcal pathogenesis, both in colonization and dissemination processes.
Collapse
|
129
|
Nega M, Dube L, Kull M, Ziebandt AK, Ebner P, Albrecht D, Krismer B, Rosenstein R, Hecker M, Götz F. Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics 2015; 15:1268-79. [PMID: 25430637 PMCID: PMC4409834 DOI: 10.1002/pmic.201400343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/06/2014] [Accepted: 11/25/2014] [Indexed: 11/05/2022]
Abstract
FemABX peptidyl transferases are involved in non-ribosomal pentaglycine interpeptide bridge biosynthesis. Here, we characterized the phenotype of a Staphylococcus carnosus femB deletion mutant, which was affected in growth and showed pleiotropic effects such as enhanced methicillin sensitivity, lysostaphin resistance, cell clustering, and decreased peptidoglycan cross-linking. However, comparative secretome analysis revealed a most striking difference in the massive secretion or release of proteins into the culture supernatant in the femB mutant than the wild type. The secreted proteins can be categorized into typical cytosolic proteins and various murein hydrolases. As the transcription of the murein hydrolase genes was up-regulated in the mutant, they most likely represent an adaption response to the life threatening mutation. Even though the transcription of the cytosolic protein genes was unaltered, their high abundance in the supernatant of the mutant is most likely due to membrane leakage triggered by the weakened murein sacculus and enhanced autolysins.
Collapse
Affiliation(s)
- Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Biology and Assembly of the Bacterial Envelope. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:41-76. [PMID: 26621461 DOI: 10.1007/978-3-319-23603-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All free-living bacterial cells are delimited and protected by an envelope of high complexity. This physiological barrier is essential for bacterial survival and assures multiple functions. The molecular assembly of the different envelope components into a functional structure represents a tremendous biological challenge and is of high interest for fundamental sciences. The study of bacterial envelope assembly has also been fostered by the need for novel classes of antibacterial agents to fight the problematic of bacterial resistance to antibiotics. This chapter focuses on the two most intensively studied classes of bacterial envelopes that belong to the phyla Firmicutes and Proteobacteria. The envelope of Firmicutes typically has one membrane and is defined as being monoderm whereas the envelope of Proteobacteria contains two distinct membranes and is referred to as being diderm. In this chapter, we will first discuss the multiple roles of the bacterial envelope and clarify the nomenclature used to describe the different types of envelopes. We will then define the architecture and composition of the envelopes of Firmicutes and Proteobacteria while outlining their similarities and differences. We will further cover the extensive progress made in the field of bacterial envelope assembly over the last decades, using Bacillus subtilis and Escherichia coli as model systems for the study of the monoderm and diderm bacterial envelopes, respectively. We will detail our current understanding of how molecular machines assure the secretion, insertion and folding of the envelope proteins as well as the assembly of the glycosidic components of the envelope. Finally, we will highlight the topics that are still under investigation, and that will surely lead to important discoveries in the near future.
Collapse
|
131
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
132
|
Kuhn S, Slavetinsky CJ, Peschel A. Synthesis and function of phospholipids in Staphylococcus aureus. Int J Med Microbiol 2014; 305:196-202. [PMID: 25595024 DOI: 10.1016/j.ijmm.2014.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Phospholipids are the major components of bacterial membranes, and changes in phospholipid composition affect important cellular processes such as metabolism, stress response, antimicrobial resistance, and virulence. The most prominent phospholipids in Staphylococcus aureus are phosphatidylglycerol, lysyl-phosphatidylglycerol, and cardiolipin, whose biosynthesis is mediated by a complex protein machinery. Phospholipid composition of the staphylococcal membrane has to be continuously adjusted to changing external conditions, which is achieved by a series of transcriptional and biochemical regulatory mechanisms. This mini-review outlines the current state of knowledge concerning synthesis, regulation, and function of the major staphylococcal phospholipids.
Collapse
Affiliation(s)
- Sebastian Kuhn
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Christoph J Slavetinsky
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Andreas Peschel
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany.
| |
Collapse
|
133
|
Rice CV, Middaugh A, Wickham JR, Friedline A, Thomas KJ, Scull E, Johnson K, Zachariah M, Garimella R. Bacterial lipoteichoic acid enhances cryosurvival. Extremophiles 2014; 19:297-305. [PMID: 25477208 DOI: 10.1007/s00792-014-0714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022]
Abstract
Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. We show that lipoteichoic acid (LTA), a biopolymer in the cell wall of Gram-positive bacteria, can be added to B. subtilis cultures and increase freeze tolerance. At 1 % w/v, LTA enables a 50 % survival rate, similar to the results obtained with 1 % w/v glycerol as measured with the resazurin cell viability assay. In the absence of added LTA or glycerol, a very small number of B. subtilis cells survive freezing. This suggests that an innate freeze tolerance mechanism exists. While cryoprotection can be provided by extracellular polymeric substances, our data demonstrate a role for LTA in cryoprotection. Currently, the exact mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. However, low temperature microscopy data show small ice crystals aligned along channels of liquid water. Our observations suggest that teichoic acids could protect liquid water within biofilms and planktonic bacteria, augmenting the role of brine while also raising the possibility for survival without brine present.
Collapse
Affiliation(s)
- Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kiriyama Y, Yazawa K, Tanaka T, Yoshikawa R, Yamane H, Hashimoto M, Sekiguchi J, Yamamoto H. Localization and expression of the Bacillus subtilis
dl-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes. Microbiology (Reading) 2014; 160:2639-2649. [DOI: 10.1099/mic.0.080366-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacillus subtilis LytF plays a principal role in cell separation through its localization at the septa and poles on the vegetative cell surface. In this study, we found that a mutation in a major lipoteichoic acid (LTA) synthase gene – ltaS – results in a considerable reduction in the σD-dependent transcription of lytF. The lytF transcription was also reduced in mutants that affected glycolipid anchor biosynthesis. Immunofluorescence microscopy revealed that both the numbers of cells expressing LytF and the LytF foci in these mutants were decreased. In addition, the transcriptional activity of lytF was almost abolished in the double (ltaS yfnI), triple (ltaS yfnI yqgS), and quadruple (ltaS yfnI yqgS yvgJ) mutants during vegetative growth. Cell separation defects in these mutants were partially restored with artificial expression of LytF. Interestingly, when lytF transcription was induced in the ltaS single or multiple mutants, LytF was localized not only at the septum, but also along the sidewall. The amounts of LytF bound to cell wall in the single (ltaS) and double (ltaS yfnI) mutants gradually increased as compared with that in the WT strain, and those in the triple (ltaS yfnI yqgS) and quadruple mutants were almost similar to that in the double mutant. Moreover, reduction of the lytF transcription and chained cell morphology in the ltaS mutant were completely restored with artificial induction of the yqgS gene. These results strongly suggest that LTA influences the temporal, σD-dependent transcription of lytF and is an additional inhibitory component to the vegetative cell separation enzyme LytF.
Collapse
Affiliation(s)
- Yuuka Kiriyama
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Kazuya Yazawa
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Tatsuhito Tanaka
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Ritsuko Yoshikawa
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Hisaya Yamane
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Masayuki Hashimoto
- Center of Infectious Disease and Signal Transduction, National Cheng Kung University Medical College, Tainan City 704-56, Taiwan
- Institute of Molecular Medicine, Tainan City 704-56, Taiwan
| | - Junichi Sekiguchi
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Hiroki Yamamoto
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| |
Collapse
|
135
|
Meredith TC, Wang H, Beaulieu P, Gründling A, Roemer T. Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation. Mob Genet Elements 2014; 2:171-178. [PMID: 23094235 PMCID: PMC3469428 DOI: 10.4161/mge.21647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Determining the mechanism of action of bacterial growth inhibitors can be a formidable challenge in the progression of small molecules into antibacterial therapies. To help address this bottleneck, we have developed a robust transposon mutagenesis system using a suite of outward facing promoters in order to generate a comprehensive range of expression genotypes in Staphylococcus aureus from which to select defined compound-resistant transposon insertion mutants. Resistance stemming from either gene or operon over/under-expression, in addition to deletion, provides insight into multiple factors that contribute to a compound's observed activity, including means of cell envelope penetration and susceptibility to efflux. By profiling the entire resistome, the suitability of an antibacterial target itself is also evaluated, sometimes with unanticipated results. We herein show that for the staphylococcal signal peptidase (SpsB) inhibitors, modulating expression of lipoteichoic acid synthase (LtaS) confers up to a 100-fold increase in the minimal inhibitory concentration. As similarly efficient transposition systems are or will become established in other bacteria and cell types, we discuss the utility, limitations and future promise of Tnp mutagenesis for determining both a compound's mechanism of action and in the evaluation of novel targets.
Collapse
Affiliation(s)
- Timothy C Meredith
- Infectious Diseases Division; Merck Frosst Center for Therapeutic Research; Kirkland, Quebec, Canada
| | | | | | | | | |
Collapse
|
136
|
Campeotto I, Percy MG, MacDonald JT, Förster A, Freemont PS, Gründling A. Structural and mechanistic insight into the Listeria monocytogenes two-enzyme lipoteichoic acid synthesis system. J Biol Chem 2014; 289:28054-69. [PMID: 25128528 PMCID: PMC4192460 DOI: 10.1074/jbc.m114.590570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Indexed: 11/07/2022] Open
Abstract
Lipoteichoic acid (LTA) is an important cell wall component required for proper cell growth in many Gram-positive bacteria. In Listeria monocytogenes, two enzymes are required for the synthesis of this polyglycerolphosphate polymer. The LTA primase LtaP(Lm) initiates LTA synthesis by transferring the first glycerolphosphate (GroP) subunit onto the glycolipid anchor and the LTA synthase LtaS(Lm) extends the polymer by the repeated addition of GroP subunits to the tip of the growing chain. Here, we present the crystal structures of the enzymatic domains of LtaP(Lm) and LtaS(Lm). Although the enzymes share the same fold, substantial differences in the cavity of the catalytic site and surface charge distribution contribute to enzyme specialization. The eLtaS(Lm) structure was also determined in complex with GroP revealing a second GroP binding site. Mutational analysis confirmed an essential function for this binding site and allowed us to propose a model for the binding of the growing chain.
Collapse
Affiliation(s)
- Ivan Campeotto
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, and
| | - Matthew G Percy
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, and
| | - James T MacDonald
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Förster
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul S Freemont
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angelika Gründling
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, and
| |
Collapse
|
137
|
Yan J, Liu Y, Gao Y, Dong J, Mu C, Li D, Yang G. RNAIII suppresses the expression of LtaS via acting as an antisense RNA inStaphylococcus aureus. J Basic Microbiol 2014; 55:255-61. [DOI: 10.1002/jobm.201400313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Jun Yan
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Chunhua Mu
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Di Li
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences; 27 Taiping Road Beijing 100850 P. R. China
| |
Collapse
|
138
|
Hewelt-Belka W, Nakonieczna J, Belka M, Bączek T, Namieśnik J, Kot-Wasik A. Comprehensive methodology for Staphylococcus aureus lipidomics by liquid chromatography and quadrupole time-of-flight mass spectrometry. J Chromatogr A 2014; 1362:62-74. [DOI: 10.1016/j.chroma.2014.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/09/2014] [Accepted: 08/03/2014] [Indexed: 11/25/2022]
|
139
|
Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiol 2014; 9:1209-20. [DOI: 10.2217/fmb.14.56] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.
Collapse
Affiliation(s)
- Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| |
Collapse
|
140
|
Percy MG, Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu Rev Microbiol 2014; 68:81-100. [DOI: 10.1146/annurev-micro-091213-112949] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew G. Percy
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| |
Collapse
|
141
|
A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: implications for bacterial virulence. J Bacteriol 2014; 196:3324-34. [PMID: 25002545 DOI: 10.1128/jb.01696-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Teichoic acid (TA), together with peptidoglycan (PG), represents a highly complex glycopolymer that ensures cell wall integrity and has several crucial physiological activities. Through an insertion-deletion mutation strategy, we show that ΔrafX mutants are impaired in cell wall covalently attached TA (WTA)-PG biosynthesis, as evidenced by their abnormal banding patterns and reduced amounts of WTA in comparison with wild-type strains. Site-directed mutagenesis revealed an essential role for external loop 4 and some highly conserved amino acid residues in the function of RafX protein. The rafX gene was highly conserved in closely related streptococcal species, suggesting an important physiological function in the lifestyle of streptococci. Moreover, a strain D39 ΔrafX mutant was impaired in bacterial growth, autolysis, bacterial division, and morphology. We observed that a strain R6 ΔrafX mutant was reduced in adhesion relative to the wild-type R6 strain, which was supported by an inhibition assay and a reduced amount of CbpA protein on the ΔrafX mutant bacterial cell surface, as shown by flow cytometric analysis. Finally, ΔrafX mutants were significantly attenuated in virulence in a murine sepsis model. Together, these findings suggest that RafX contributes to the biosynthesis of WTA, which is essential for full pneumococcal virulence.
Collapse
|
142
|
Martinez RJ, Wu CH, Beazley MJ, Andersen GL, Conrad ME, Hazen TC, Taillefert M, Sobecky PA. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments. PLoS One 2014; 9:e100383. [PMID: 24950228 PMCID: PMC4065101 DOI: 10.1371/journal.pone.0100383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4(3-)) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration.
Collapse
Affiliation(s)
- Robert J. Martinez
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Cindy H. Wu
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Melanie J. Beazley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Gary L. Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Mark E. Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Martial Taillefert
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patricia A. Sobecky
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| |
Collapse
|
143
|
Adamo R. Glycan surface antigens fromBacillus anthracisas vaccine targets: current status and future perspectives. Expert Rev Vaccines 2014; 13:895-907. [DOI: 10.1586/14760584.2014.924404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
144
|
Reichmann NT, Piçarra Cassona C, Monteiro JM, Bottomley AL, Corrigan RM, Foster SJ, Pinho MG, Gründling A. Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus. Mol Microbiol 2014; 92:273-86. [PMID: 24533796 PMCID: PMC4065355 DOI: 10.1111/mmi.12551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
Abstract
Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate-chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two-hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi-enzyme complex and providing further evidence for the co-ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co-ordination with cell division, while glycolipid synthesis takes place throughout the membrane.
Collapse
Affiliation(s)
- Nathalie T Reichmann
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, SW7 2AZ, UK
| | - Carolina Piçarra Cassona
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, SW7 2AZ, UK
| | - João M Monteiro
- Instituto de Technologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Amy L Bottomley
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of SheffieldSheffield, UK
| | - Rebecca M Corrigan
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, SW7 2AZ, UK
| | - Simon J Foster
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of SheffieldSheffield, UK
| | - Mariana G Pinho
- Instituto de Technologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondon, SW7 2AZ, UK
| |
Collapse
|
145
|
Tadmor K, Pozniak Y, Burg Golani T, Lobel L, Brenner M, Sigal N, Herskovits AA. Listeria monocytogenes MDR transporters are involved in LTA synthesis and triggering of innate immunity during infection. Front Cell Infect Microbiol 2014; 4:16. [PMID: 24611134 PMCID: PMC3933815 DOI: 10.3389/fcimb.2014.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Multi-drug resistance (MDR) transporters are known eponymously for their ability to confer resistance to various antimicrobial drugs. However, it is likely that this is not their primary function and that MDR transporters evolved originally to play additional roles in bacterial physiology. In Listeria monocytogenes a set of MDR transporters was identified to mediate activation of innate immune responses during mammalian cell infection. This phenotype was shown to be dependent on c-di-AMP secretion, but the physiological processes underlying this phenomenon were not completely resolved. Here we describe a genetic approach taken to screen for L. monocytogenes genes or physiological pathways involved in MDR transporter-dependent triggering of the type I interferon response. We found that disruption of L. monocytogenes lipoteichoic acid (LTA) synthesis results in enhanced triggering of type I interferon responses in infected macrophage cells yet does not impact bacterial intracellular growth. This innate immune response required the MDR transporters and could be recapitulated by exposing macrophage cells to culture supernatants derived from LTA mutant bacteria. Notably, we found that the MDR transporters themselves are required for full production of LTA, an observation that links MDR transporters to LTA synthesis for the first time. In light of our findings, we propose that the MDR transporters play a role in regulating LTA synthesis, possibly via c-di-AMP efflux, a physiological function in cell wall maintenance that triggers the host innate immune system.
Collapse
Affiliation(s)
- Keren Tadmor
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Yair Pozniak
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Tamar Burg Golani
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Moran Brenner
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Nadejda Sigal
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Anat A Herskovits
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
146
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
147
|
Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42. [PMID: 24415723 DOI: 10.1128/jb.01155-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.
Collapse
|
148
|
The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J Bacteriol 2013; 196:971-81. [PMID: 24363342 DOI: 10.1128/jb.01366-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.
Collapse
|
149
|
Parsons JB, Yao J, Jackson P, Frank M, Rock CO. Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus. BMC Microbiol 2013; 13:260. [PMID: 24238430 PMCID: PMC3840577 DOI: 10.1186/1471-2180-13-260] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022] Open
Abstract
Background The balanced synthesis of membrane phospholipids, fatty acids and cell wall constituents is a vital facet of bacterial physiology, but there is little known about the biochemical control points that coordinate these activities in Gram-positive bacteria. In Escherichia coli, the glycerol-phosphate acyltransferase (PlsB) plays a key role in coordinating fatty acid and phospholipid synthesis, but pathogens like Staphylococcus aureus have a different acyltransferase (PlsY), and the headgroup of the major membrane phospholipid, phosphatidylglycerol (PtdGro), is used as a precursor for lipoteichoic acid synthesis. Results The PlsY acyltransferase in S. aureus was switched off by depriving strain PDJ28 (ΔgpsA) of the required glycerol supplement. Removal of glycerol from the growth medium led to the rapid cessation of phospholipid synthesis. However, the continued utilization of the headgroup caused a reduction in PtdGro coupled with the accumulation of CDP-diacylglycerol and phosphatidic acid. PtdGro was further decreased by its stimulated conversion to cardiolipin. Although acyl-acyl carrier protein (ACP) and malonyl-CoA accumulated, fatty acid synthesis continued at a reduced level leading to the intracellular accumulation of unusually long-chain free fatty acids. Conclusions The cessation of new phospholipid synthesis led to an imbalance in membrane compositional homeostasis. PtdGro biosynthesis was not coupled to headgroup turnover leading to the accumulation of pathway intermediates. The synthesis of cardiolipin significantly increased revealing a stress response to liberate glycerol-phosphate for PtdGro synthesis. Acyl-ACP accumulation correlated with a decrease in fatty acid synthesis; however, the coupling was not tight leading to the accumulation of intracellular fatty acids.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis TN 38105, USA.
| | | | | | | | | |
Collapse
|
150
|
Palomino MM, Allievi MC, Gründling A, Sanchez-Rivas C, Ruzal SM. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid. Microbiology (Reading) 2013; 159:2416-2426. [DOI: 10.1099/mic.0.070607-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Maria Mercedes Palomino
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, UK
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Mariana C. Allievi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, UK
| | - Carmen Sanchez-Rivas
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Sandra M. Ruzal
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|