101
|
Lee HY, Song I, Ha E, Cho SB, Yang WI, Shin KJ. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics 2008; 9:483. [PMID: 19014619 PMCID: PMC2621369 DOI: 10.1186/1471-2105-9-483] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/17/2008] [Indexed: 12/05/2022] Open
Abstract
Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at .
Collapse
Affiliation(s)
- Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
102
|
Shi H, Zhong H, Peng Y, Dong YL, Qi XB, Zhang F, Liu LF, Tan SJ, Ma RZ, Xiao CJ, Wells RS, Jin L, Su B. Y chromosome evidence of earliest modern human settlement in East Asia and multiple origins of Tibetan and Japanese populations. BMC Biol 2008; 6:45. [PMID: 18959782 PMCID: PMC2605740 DOI: 10.1186/1741-7007-6-45] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/29/2008] [Indexed: 12/27/2022] Open
Abstract
Background The phylogeography of the Y chromosome in Asia previously suggested that modern humans of African origin initially settled in mainland southern East Asia, and about 25,000–30,000 years ago, migrated northward, spreading throughout East Asia. However, the fragmented distribution of one East Asian specific Y chromosome lineage (D-M174), which is found at high frequencies only in Tibet, Japan and the Andaman Islands, is inconsistent with this scenario. Results In this study, we collected more than 5,000 male samples from 73 East Asian populations and reconstructed the phylogeography of the D-M174 lineage. Our results suggest that D-M174 represents an extremely ancient lineage of modern humans in East Asia, and a deep divergence was observed between northern and southern populations. Conclusion We proposed that D-M174 has a southern origin and its northward expansion occurred about 60,000 years ago, predating the northward migration of other major East Asian lineages. The Neolithic expansion of Han culture and the last glacial maximum are likely the key factors leading to the current relic distribution of D-M174 in East Asia. The Tibetan and Japanese populations are the admixture of two ancient populations represented by two major East Asian specific Y chromosome lineages, the O and D haplogroups.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology and Kunming Primate Research Centre, Chinese Academy of Sciences, Kunming, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Male dominance rarely skews the frequency distribution of Y chromosome haplotypes in human populations. Proc Natl Acad Sci U S A 2008; 105:11645-50. [PMID: 18703660 DOI: 10.1073/pnas.0710158105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central tenet of evolutionary social science holds that behaviors, such as those associated with social dominance, produce fitness effects that are subject to cultural selection. However, evidence for such selection is inconclusive because it is based on short-term statistical associations between behavior and fertility. Here, we show that the evolutionary effects of dominance at the population level can be detected using noncoding regions of DNA. Highly variable polymorphisms on the nonrecombining portion of the Y chromosome can be used to trace lines of descent from a common male ancestor. Thus, it is possible to test for the persistence of differential fertility among patrilines. We examine haplotype distributions defined by 12 short tandem repeats in a sample of 1269 men from 41 Indonesian communities and test for departures from neutral mutation-drift equilibrium based on the Ewens sampling formula. Our tests reject the neutral model in only 5 communities. Analysis and simulations show that we have sufficient power to detect such departures under varying demographic conditions, including founder effects, bottlenecks, and migration, and at varying levels of social dominance. We conclude that patrilines seldom are dominant for more than a few generations, and thus traits or behaviors that are strictly paternally inherited are unlikely to be under strong cultural selection.
Collapse
|
104
|
The crucial role of calibration in molecular date estimates for the peopling of the Americas. Am J Hum Genet 2008; 83:142-6; author reply 146-7. [PMID: 18606310 DOI: 10.1016/j.ajhg.2008.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/09/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
|
105
|
Vilar MG, Kaneko A, Hombhanje FW, Tsukahara T, Hwaihwanje I, Lum JK. Reconstructing the origin of the Lapita Cultural Complex: mtDNA analyses of East Sepik Province, PNG. J Hum Genet 2008; 53:698-708. [PMID: 18498001 DOI: 10.1007/s10038-008-0301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
The colonization of Oceania occurred in two waves. By 32,000 BP, humans had reached New Guinea and settled all intervisible islands east to the Solomon Islands. Around 3,500 BP, a distinct intrusive group from Southeast Asia reached coastal New Guinea, integrated their components with indigenous resources, and gave rise to the Lapita Cultural Complex. Within 2,500 years, Lapita and its descendant cultures colonized the Pacific. To uncover the origin of the Lapita Cultural Complex, we analyzed the hypervariable region I of the mitochondrial deoxyribonucleic acid (mtDNA) in 219 individuals from eight East Sepik Province villages: two villages in each of four environmental zones. Same-zone villages spoke different languages: one Austronesian and three Papuan (Arapesh, Abelam, and Boiken). Our analysis examined whether language or geography better predicted gene flow. In general, language better predicted genetic affinities. Boiken villages across all four zones showed no significant genetic difference (F(ST) P value > 0.05). In contrast, the Austronesian village was significantly different to most other villages (P < 0.05). Only the mountains and coast showed zonal gene flow (P > 0.05). We interpret the data to reflect limited gene flow inland by Austronesians overshadowed by a regional displacement by inland Boiken speakers migrating seaward. These results are consistent with oral histories and ethnographic accounts.
Collapse
Affiliation(s)
- Miguel G Vilar
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, NY, USA. .,Department of Anthropology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| | - Akira Kaneko
- Malaria Research Unit, Unit for Infectious Diseases, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of International Affairs and Tropical Medicine, Tokyo's Women's Medical University, Tokyo, Japan
| | - Francis W Hombhanje
- Faculty of Health Sciences, Divine Word University, Madang, Papua New Guinea
| | - Takahiro Tsukahara
- Department of International Affairs and Tropical Medicine, Tokyo's Women's Medical University, Tokyo, Japan
| | | | - J Koji Lum
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, NY, USA.,Department of Anthropology, Binghamton University, Binghamton, NY, 13902-6000, USA.,Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
106
|
Hellenthal G, Auton A, Falush D. Inferring human colonization history using a copying model. PLoS Genet 2008; 4:e1000078. [PMID: 18497854 PMCID: PMC2367454 DOI: 10.1371/journal.pgen.1000078] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/18/2008] [Indexed: 01/12/2023] Open
Abstract
Genome-wide scans of genetic variation can potentially provide detailed information on how modern humans colonized the world but require new methods of analysis. We introduce a statistical approach that uses Single Nucleotide Polymorphism (SNP) data to identify sharing of chromosomal segments between populations and uses the pattern of sharing to reconstruct a detailed colonization scenario. We apply our model to the SNP data for the 53 populations of the Human Genome Diversity Project described in Conrad et al. (Nature Genetics 38,1251-60, 2006). Our results are consistent with the consensus view of a single “Out-of-Africa” bottleneck and serial dilution of diversity during global colonization, including a prominent East Asian bottleneck. They also suggest novel details including: (1) the most northerly East Asian population in the sample (Yakut) has received a significant genetic contribution from the ancestors of the most northerly European one (Orcadian). (2) Native South Americans have received ancestry from a source closely related to modern North-East Asians (Mongolians and Oroquen) that is distinct from the sources for native North Americans, implying multiple waves of migration into the Americas. A detailed depiction of the peopling of the world is available in animated form. Humans like to tell stories. Amongst the most captivating is the story of the global spread of modern humans from their original homeland in Africa. Traditionally this has been the preserve of anthropologists, but geneticists are starting to make an important contribution. However, genetic evidence is typically analyzed in the context of anthropological preconceptions. For genetics to provide an accurate and detailed history without reference to anthropology, methods are required that translate DNA sequence data into histories. We introduce a statistical method that has three virtues. First, it is based on a copying model that incorporates the block-by-block inheritance of DNA from one generation to the next. This allows it to capture the rich information provided by patterns of DNA sharing across the whole genome. Second, its parameter space includes an enormous number of possible colonization scenarios, meaning that inferences are correspondingly rich in detail. Third, the inferred colonization scenario is determined algorithmically. We have applied this method to data from 53 human populations and find that while the current consensus is broadly supported, some populations have surprising histories. This scenario can be viewed as a movie, making it transparent where statistical analysis ends and where interpretation begins.
Collapse
Affiliation(s)
| | - Adam Auton
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Daniel Falush
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Environmental Research Institute, Cork, Ireland
- * E-mail:
| |
Collapse
|
107
|
Habgood PJ, Franklin NR. The revolution that didn't arrive: A review of Pleistocene Sahul. J Hum Evol 2008; 55:187-222. [PMID: 18485448 DOI: 10.1016/j.jhevol.2007.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 06/12/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
There is a "package" of cultural innovations that are claimed to reflect modern human behaviour. The introduction of the "package" has been associated with the Middle-to-Upper Palaeolithic transition and the appearance in Europe of modern humans. It has been proposed that modern humans spread from Africa with the "package" and colonised not only Europe but also southern Asia and Australia (McBrearty and Brooks, 2000; Mellars, 2006a). In order to evaluate this proposal, we explore the late Pleistocene archaeological record of Sahul, the combined landmass of Australia and Papua New Guinea, for indications of these cultural innovations at the earliest sites. It was found that following initial occupation of the continent by anatomically and behaviourally modern humans, the components were gradually assembled over a 30,000-year period. We discount the idea that the "package" was lost en route to Sahul and assess the possibility that the "package" was not integrated within the material culture of the initial colonising groups because they may not have been part of a rapid colonisation process from Africa. As the cultural innovations appear at different times and locations within Sahul, the proposed "package" of archaeologically visible traits cannot be used to establish modern human behaviour. Whilst the potential causal role of increasing population densities/pressure in the appearance of the "package" of modern human behaviour in the archaeological record is acknowledged, it is not seen as the sole explanation because the individual components of the "package" appear at sites that are widely separated in space and time.
Collapse
Affiliation(s)
- Phillip J Habgood
- School of Social Science, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
108
|
Barik SS, Sahani R, Prasad BVR, Endicott P, Metspalu M, Sarkar BN, Bhattacharya S, Annapoorna PCH, Sreenath J, Sun D, Sanchez JJ, Ho SYW, Chandrasekar A, Rao VR. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:19-27. [PMID: 18186508 DOI: 10.1002/ajpa.20773] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities.
Collapse
Affiliation(s)
- S S Barik
- Anthropological Survey of India, 27 Jawaharlal Nehru Road, Kolkata 700 016, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 2008; 18:830-8. [PMID: 18385274 DOI: 10.1101/gr.7172008] [Citation(s) in RCA: 601] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
110
|
Endicott P, Ho SY. A Bayesian evaluation of human mitochondrial substitution rates. Am J Hum Genet 2008; 82:895-902. [PMID: 18371929 DOI: 10.1016/j.ajhg.2008.01.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/24/2008] [Accepted: 01/29/2008] [Indexed: 01/29/2023] Open
Abstract
Accurate estimates of mitochondrial substitution rates are central to molecular studies of human evolution, but meaningful comparisons of published studies are problematic because of the wide range of methodologies and data sets employed. These differences are nowhere more pronounced than among rates estimated from phylogenies, genealogies, and pedigrees. By using a data set comprising mitochondrial genomes from 177 humans, we estimate substitution rates for various data partitions by using Bayesian phylogenetic analysis with a relaxed molecular clock. We compare the effect of multiple internal calibrations with the customary human-chimpanzee split. The analyses reveal wide variation among estimated substitution rates and divergence times made with different partitions and calibrations, with evidence of substitutional saturation, natural selection, and significant rate heterogeneity among lineages and among sites. Collectively, the results support dates for migration out of Africa and the common mitochondrial ancestor of humans that are considerably more recent than most previous estimates. Our results also demonstrate that human mitochondrial genomes exhibit a number of molecular evolutionary complexities that necessitate the use of sophisticated analytical models for genetic analyses.
Collapse
|
111
|
Human cranial diversity and evidence for an ancient lineage of modern humans. J Hum Evol 2008; 54:814-26. [PMID: 18164370 DOI: 10.1016/j.jhevol.2007.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 10/20/2007] [Accepted: 10/31/2007] [Indexed: 11/22/2022]
Abstract
This study examines the genetic affinities of various modern human groupings using a multivariate analysis of morphometric data. Phylogenetic relationships among these groupings are also explored using neighbor-joining analysis of the metric data. Results indicate that the terminal Pleistocene/early Holocene fossils from Australasia exhibit a close genetic affinity with early modern humans from the Levant. Furthermore, recent human populations and Upper Paleolithic Europeans share a most recent common ancestor not shared with either the early Australasians or the early Levantine humans. This pattern of genetic and phylogenetic relationships suggests that the early modern humans from the Levant either contributed directly to the ancestry of an early lineage of Australasians, or that they share a recent common ancestor with them. The principal findings of the study, therefore, lend support to the notion of an early dispersal from Africa by a more ancient lineage of modern human prior to 50 ka, perhaps as early as OIS 5 times (76-100 ka).
Collapse
|
112
|
Alonso S, Izagirre N, Smith-Zubiaga I, Gardeazabal J, Díaz-Ramón JL, Díaz-Pérez JL, Zelenika D, Boyano MD, Smit N, de la Rúa C. Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans. BMC Evol Biol 2008; 8:74. [PMID: 18312627 PMCID: PMC2292700 DOI: 10.1186/1471-2148-8-74] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 02/29/2008] [Indexed: 12/31/2022] Open
Abstract
Background The observed correlation between ultraviolet light incidence and skin color, together with the geographical apportionment of skin reflectance among human populations, suggests an adaptive value for the pigmentation of the human skin. We have used Affymetrix U133a v2.0 gene expression microarrays to investigate the expression profiles of a total of 9 melanocyte cell lines (5 from lightly pigmented donors and 4 from darkly pigmented donors) plus their respective unirradiated controls. In order to reveal signatures of selection in loci with a bearing on skin pigmentation in humans, we have resequenced between 4 to 5 kb of the proximal regulatory regions of three of the most differently expressed genes, in the expectation that variation at regulatory regions might account for intraespecific morphological diversity, as suggested elsewhere. Results Contrary to our expectations, expression profiles did not cluster the cells into unirradiated versus irradiated melanocytes, or into lightly pigmented versus darkly pigmented melanocytes. Instead, expression profiles correlated with the presence of Bovine Pituitary Extract (known to contain α-MSH) in the media. This allowed us to differentiate between melanocytes that are synthesizing melanin and those that are not. TYR, TYRP1 and DCT were among the five most differently expressed genes between these two groups. Population genetic analyses of sequence haplotypes of the proximal regulatory flanking-regions included Tajima's D, HEW and DHEW neutrality tests analysis. These were complemented with EHH tests (among others) in which the significance was obtained by a novel approach using extensive simulations under the coalescent model with recombination. We observe strong evidence for positive selection for TYRP1 alleles in Africans and for DCT and TYRP1 in Asians. However, the overall picture reflects a complex pattern of selection, which might include overdominance for DCT in Europeans. Conclusion Diversity patterns clearly evidence adaptive selection in pigmentation genes in Africans and Asians. In Europeans, the evidence is more complex, and both directional and balancing selection may be involved in light skin. As a result, different non-African populations may have acquired light skin by alternative ways, and so light skin, and perhaps dark skin too, may be the result of convergent evolution.
Collapse
Affiliation(s)
- Santos Alonso
- Dept, Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Mitochondrial DNA structure in the Arabian Peninsula. BMC Evol Biol 2008; 8:45. [PMID: 18269758 PMCID: PMC2268671 DOI: 10.1186/1471-2148-8-45] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 02/12/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two potential migratory routes followed by modern humans to colonize Eurasia from Africa have been proposed. These are the two natural passageways that connect both continents: the northern route through the Sinai Peninsula and the southern route across the Bab al Mandab strait. Recent archaeological and genetic evidence have favored a unique southern coastal route. Under this scenario, the study of the population genetic structure of the Arabian Peninsula, the first step out of Africa, to search for primary genetic links between Africa and Eurasia, is crucial. The haploid and maternally inherited mitochondrial DNA (mtDNA) molecule has been the most used genetic marker to identify and to relate lineages with clear geographic origins, as the African Ls and the Eurasian M and N that have a common root with the Africans L3. RESULTS To assess the role of the Arabian Peninsula in the southern route, we genetically analyzed 553 Saudi Arabs using partial (546) and complete mtDNA (7) sequencing, and compared the lineages obtained with those present in Africa, the Near East, central, east and southeast Asia and Australasia. The results showed that the Arabian Peninsula has received substantial gene flow from Africa (20%), detected by the presence of L, M1 and U6 lineages; that an 18% of the Arabian Peninsula lineages have a clear eastern provenance, mainly represented by U lineages; but also by Indian M lineages and rare M links with Central Asia, Indonesia and even Australia. However, the bulk (62%) of the Arabian lineages has a Northern source. CONCLUSION Although there is evidence of Neolithic and more recent expansions in the Arabian Peninsula, mainly detected by (preHV)1 and J1b lineages, the lack of primitive autochthonous M and N sequences, suggests that this area has been more a receptor of human migrations, including historic ones, from Africa, India, Indonesia and even Australia, than a demographic expansion center along the proposed southern coastal route.
Collapse
|
114
|
Soares P, Trejaut JA, Loo JH, Hill C, Mormina M, Lee CL, Chen YM, Hudjashov G, Forster P, Macaulay V, Bulbeck D, Oppenheimer S, Lin M, Richards MB. Climate Change and Postglacial Human Dispersals in Southeast Asia. Mol Biol Evol 2008; 25:1209-18. [DOI: 10.1093/molbev/msn068] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
115
|
Underhill PA, Kivisild T. Use of Y Chromosome and Mitochondrial DNA Population Structure in Tracing Human Migrations. Annu Rev Genet 2007; 41:539-64. [PMID: 18076332 DOI: 10.1146/annurev.genet.41.110306.130407] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120;
| | - Toomas Kivisild
- Leverhulme Center of Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom;
| |
Collapse
|