101
|
Chen YNP, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CHT, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016; 535:148-52. [DOI: 10.1038/nature18621] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/26/2016] [Indexed: 01/20/2023]
|
102
|
Gao ZH, Shi YM, Qiang Z, Wang X, Shang SZ, Yang Y, Du BW, Peng HP, Ji X, Li H, Wang F, Xiao WL. Plasiatine, an Unprecedented Indole-Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2. Sci Rep 2016; 6:24945. [PMID: 27101899 PMCID: PMC4840323 DOI: 10.1038/srep24945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 01/29/2023] Open
Abstract
Plasiatine (1), isolated from the seeds of Plantago asiatica, is an unprecedented indole analogue linked to a phenylpropanoid moiety via a carbon bond that builds up a novel heteromeric construction with a C19N2 scaffold. Its structure was determined by spectroscopic data and computational evidence. Notably, experimental assay demonstrated that 1 significantly enhanced the activity of the nonreceptor protein tyrosine phosphatase Shp2 in vitro in a concentration-dependent manner with an EC50 value of 0.97 μM, and activated phosphorylation of ERK, a known target of Shp2. Moreover, plasiatine (1) promoted hepatocellular HepG2 cells migration. Molecular docking suggested that plasiatine (1) binds to the catalytic cleft of Shp2. These results identified plasiatine (1) as the first small molecule Shp2 activator, and it warrants further investigation as a novel pharmaceutical tool to study the function of Shp2 in tumorigenesis.
Collapse
Affiliation(s)
- Zhong-Hua Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Yi-Ming Shi
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510006, P. R. China
| | - Zhe Qiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Xia Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shan-Zhai Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Yan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Bao-Wen Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Hui-Pan Peng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Xu Ji
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Wei-Lie Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
103
|
Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF. PLoS One 2016; 11:e0153463. [PMID: 27078017 PMCID: PMC4831796 DOI: 10.1371/journal.pone.0153463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 01/11/2023] Open
Abstract
Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased mRNA expression of GPNMB (transmembrane glycoprotein NMB) in HepG2 cells and in hepatic tissue from ARSB-deficient mice followed decline in expression of ARSB and was mediated by the microphthalmia-associated transcription factor (MITF), but was unaffected by silencing galectin-3. Since GPNMB is increased in multiple malignancies, studies were performed to determine how decline in ARSB increased GPNMB expression. The mechanism by which decline in ARSB increased nuclear phospho-MITF was due to reduced activity of SHP2, a protein tyrosine phosphatase with Src homology (SH2) domains that regulates multiple cellular processes. SHP2 activity declined due to increased binding with chondroitin 4-sulfate when ARSB was reduced. When SHP2 activity was inhibited, phosphorylations of p38 mitogen-associated phosphokinase (MAPK) and of MITF increased, leading to GPNMB promoter activation. A dominant negative SHP2 construct, the SHP2 inhibitor PHSP1, and silencing of ARSB increased phospho-p38, nuclear MITF, and GPNMB. In contrast, constitutively active SHP2 and overexpression of ARSB inhibited GPNMB expression. The interaction between chondroitin 4-sulfate and SHP2 is a novel intersection between sulfation and phosphorylation, by which decline in ARSB and increased chondroitin 4-sulfation can inhibit SHP2, thereby regulating downstream tyrosine phosphorylations by sustained phosphorylations with associated activation of signaling and transcriptional events.
Collapse
|
104
|
Xia LX, Hua W, Jin Y, Tian BP, Qiu ZW, Zhang C, Che LQ, Zhou HB, Wu YF, Huang HQ, Lan F, Ke YH, Lee JJ, Li W, Ying SM, Chen ZH, Shen HH. Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2. Cell Death Dis 2016; 7:e2175. [PMID: 27054330 PMCID: PMC4855658 DOI: 10.1038/cddis.2016.74] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023]
Abstract
SHP2 participates in multiple signaling events by mediating T-cell development and function, and regulates cytokine-dependent granulopoiesis. To explore whether and how SHP2 can regulate bone-marrow eosinophil differentiation, we investigate the contribution of SHP2 in the bone-marrow eosinophil development in allergic mice. Blockade of SHP2 function by SHP2 inhibitor PHPS-1 or conditional shp2 knockdown by adenovirus-inhibited bone-marrow-derived eosinophil differentiation in vitro, with no detectable effects on the apoptosis of eosinophils. Furthermore, SHP2 induced eosinophil differentiation via regulation of the extracellular signal-regulated kinase pathway. Myeloid shp2 conditional knockout mice (LysMcreshp2flox/flox) failed to induce eosinophilia as well as airway hyper-responsiveness. The SHP2 inhibitor PHPS-1 also alleviated eosinophilic airway inflammation and airway hyper-responsiveness, accompanied by significantly reduced levels of systemic eosinophils and eosinophil lineage-committed progenitors in allergic mice. We demonstrate that inhibition of eosinophil development is SHP2-dependent and SHP2 is sufficient to promote eosinophil formation in vivo. Our data reveal SHP2 as a critical regulator of eosinophil differentiation, and inhibition of SHP2 specifically in myeloid cells alleviates allergic airway inflammation.
Collapse
Affiliation(s)
- L-x Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - W Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - B-p Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Z-w Qiu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - C Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - L-q Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-b Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y-f Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-q Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - F Lan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y-h Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - J J Lee
- Division of Pulmonary Medicine and Hematology and Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale 85259, Arizona
| | - W Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - S-m Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Z-h Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-h Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,The State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China
| |
Collapse
|
105
|
|
106
|
Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015; 5:17626. [PMID: 26626996 PMCID: PMC4667271 DOI: 10.1038/srep17626] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Shp2 is a ubiquitously expressed protein tyrosine phosphatase (PTP) related to adult acute myelogenous leukemia and human solid tumors. In this report, we describe identification of a potent Shp2 inhibitor, Fumosorinone (Fumos) from entomogenous fungi, which shows selective inhibition of Shp2 over other tested PTPs. Using a surface plasmon resonance analysis, we further confirmed the physical interaction between Shp2 and Fumos. Fumos inhibits Shp2-dependent activation of the Ras/ERK signal pathway downstream of EGFR, and interrupts EGF-induced Gab1-Shp2 association. As expected, Fumos shows little effects on the Shp2-independent ERK1/2 activation induced by PMA or oncogenic Ras. Furthermore, Fumos down-regulates Src activation, inhibits phosphorylation of Paxillin and prevents tumor cell invasion. These results suggest that Fumos can inhibit Shp2-dependent cell signaling in human cells and has a potential for treatment of Shp2-associated diseases.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Mengmeng Cao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Siyu Zhu
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Cuicui Wang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fan Liang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Leilei Yan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
107
|
Sharma N, Parihar S, Jadeja RN, Kant R, Gupta VK. Crystal structure of (Z)-3-methyl-4-((naphth-1-ylamino)methylidene)-1-phenyl-1H-pyrazol-5(4H)-one. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s106377451507024x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
108
|
Prahallad A, Heynen GJJE, Germano G, Willems SM, Evers B, Vecchione L, Gambino V, Lieftink C, Beijersbergen RL, Di Nicolantonio F, Bardelli A, Bernards R. PTPN11 Is a Central Node in Intrinsic and Acquired Resistance to Targeted Cancer Drugs. Cell Rep 2015; 12:1978-85. [PMID: 26365186 DOI: 10.1016/j.celrep.2015.08.037] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023] Open
Abstract
Most BRAF (V600E) mutant melanomas are sensitive to selective BRAF inhibitors, but BRAF mutant colon cancers are intrinsically resistant to these drugs because of feedback activation of EGFR. We performed an RNA-interference-based genetic screen in BRAF mutant colon cancer cells to search for phosphatases whose knockdown induces sensitivity to BRAF inhibition. We found that suppression of protein tyrosine phosphatase non-receptor type 11 (PTPN11) confers sensitivity to BRAF inhibitors in colon cancer. Mechanistically, we found that inhibition of PTPN11 blocks signaling from receptor tyrosine kinases (RTKs) to the RAS-MEK-ERK pathway. PTPN11 suppression is lethal to cells that are driven by activated RTKs and prevents acquired resistance to targeted cancer drugs that results from RTK activation. Our findings identify PTPN11 as a drug target to combat both intrinsic and acquired resistance to several targeted cancer drugs. Moreover, activated PTPN11 can serve as a biomarker of drug resistance resulting from RTK activation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Genomic Library
- High-Throughput Nucleotide Sequencing
- Humans
- Indoles/pharmacology
- Lentivirus/genetics
- MAP Kinase Signaling System
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred NOD
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sulfonamides/pharmacology
- Transduction, Genetic
- Vemurafenib
- Xenograft Model Antitumor Assays
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Anirudh Prahallad
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Guus J J E Heynen
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Giovanni Germano
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Stefan M Willems
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bastiaan Evers
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Loredana Vecchione
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Valentina Gambino
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Rene Bernards
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
109
|
Whittaker SR, Cowley GS, Wagner S, Luo F, Root DE, Garraway LA. Combined Pan-RAF and MEK Inhibition Overcomes Multiple Resistance Mechanisms to Selective RAF Inhibitors. Mol Cancer Ther 2015; 14:2700-11. [PMID: 26351322 DOI: 10.1158/1535-7163.mct-15-0136-t] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/30/2015] [Indexed: 12/19/2022]
Abstract
RAF and MEK inhibitors are effective in BRAF-mutant melanoma but not in BRAF-mutant colorectal cancer. To gain additional insights into this difference, we performed a genome-scale pooled shRNA enhancer screen in a BRAF-mutant, RAF inhibitor-resistant colorectal cancer cell line exposed to the selective RAF inhibitor PLX4720. We identified multiple genes along the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) signaling axis that, when suppressed, either genetically or pharmacologically, sensitized cells to the selective RAF inhibitor through sustained inhibition of MAPK signaling. Strikingly, CRAF was a key mediator of resistance that could be overcome by the use of pan-RAF inhibitors in combination with a MEK inhibitor. Furthermore, the combination of pan-RAF and MEK inhibitors displayed strong synergy in melanoma and colorectal cancer cell lines with RAS-activating events such as RTK activation, KRAS mutation, or NF1 loss-of-function mutations. Combinations of selective RAF inhibitors, such as PLX4720 or dabrafenib, with MEK inhibitors did not incur such profound synergy, suggesting that inhibition of CRAF by pan-RAF inhibitors plays a key role in determining cellular response. Importantly, in contrast to the modest activity seen with single-agent treatment, dual pan-RAF and MEK inhibition results in the induction of apoptosis, greatly enhancing efficacy. Notably, combined pan-RAF and MEK inhibition can overcome intrinsic and acquired resistance to single-agent RAF/MEK inhibition, supporting dual pan-RAF and MEK inhibition as a novel therapeutic strategy for BRAF- and KRAS-mutant cancers.
Collapse
Affiliation(s)
- Steven R Whittaker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts. Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | | | - Steve Wagner
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Flora Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts
| | | | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
110
|
Seo H, Cho S. PTP Inhibitor V Inhibits Dual-specificity Phosphatase 22 (DUSP22) Activity. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huiyun Seo
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| | - Sayeon Cho
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| |
Collapse
|
111
|
Corallino S, Iwai LK, Payne LS, Huang PH, Sacco F, Cesareni G, Castagnoli L. Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase. N Biotechnol 2015; 33:524-36. [PMID: 26316256 DOI: 10.1016/j.nbt.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
The phosphatase SHP-2 plays an essential role in growth factor signaling and mutations in its locus is the cause of congenital and acquired pathologies. Mutations of SHP-2 are known to affect the activation of the RAS pathway. Gain-of-function mutations cause the Noonan syndrome, the most common non-chromosomal congenital disorder. In order to obtain a holistic picture of the intricate regulatory mechanisms underlying SHP-2 physiology and pathology, we set out to characterize perturbations of the cell phosphorylation profile caused by an altered localization of SHP-2. To describe the proteins whose activity may be directly or indirectly modulated by SHP-2 activity, we identified tyrosine peptides that are differentially phosphorylated in wild type SHP-2 cells and isogenic cells expressing a non-functional SHP-2 variant that cannot dephosphorylate the physiological substrates due to a defect in cellular localization upon growth factor stimulation. By an iTRAQ based strategy coupled to mass spectrometry, we have identified 63 phosphorylated tyrosine residues in 53 different proteins whose phosphorylation is affected by SHP-2 activity. Some of these confirm already established regulatory mechanisms while many others suggest new possible signaling routes that may contribute to the modulation of the ERK and p38 pathways by SHP-2. Interestingly many new proteins that we found to be regulated by SHP-2 activity are implicated in the formation and regulation of focal adhesions.
Collapse
Affiliation(s)
- Salvatore Corallino
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy.
| | - Leo K Iwai
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Leo S Payne
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Paul H Huang
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy.
| |
Collapse
|
112
|
Wang S, Zheng G, Zhao L, Xu F, Qian J. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway. J Cell Mol Med 2015; 19:2432-40. [PMID: 26119280 PMCID: PMC4594684 DOI: 10.1111/jcmm.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/13/2015] [Indexed: 01/12/2023] Open
Abstract
Src homology phosphotyrosyl phosphatase 2 (Shp-2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp-2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp-2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp-2 does not affect viral replication or virus-induced interferon-alpha (IFN-α) production. Interestingly, whereas A549 cells were activated by IFN-α, the blocking of Shp-2 resulted in increased viral replication that was associated with the reduced expression of the IFN-stimulated genes of 2',5'-oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp-2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN-α-induced Jak/Stat1 pathway activation rather than by affecting the production of IFN-α itself.
Collapse
Affiliation(s)
- Saisai Wang
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gang Zheng
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifang Zhao
- Department of Infectious Diseases, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Qian
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
113
|
Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med 2015; 19:2075-83. [PMID: 26088100 PMCID: PMC4568912 DOI: 10.1111/jcmm.12618] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 01/13/2023] Open
Abstract
Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer-related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruifang Niu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
114
|
Grosskopf S, Eckert C, Arkona C, Radetzki S, Böhm K, Heinemann U, Wolber G, von Kries JP, Birchmeier W, Rademann J. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem 2015; 10:815-26. [PMID: 25877780 DOI: 10.1002/cmdc.201500015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 12/24/2022]
Abstract
Selective inhibitors of the protein tyrosine phosphatase SHP2 (src homology region 2 domain phosphatase; PTPN11), an enzyme that is deregulated in numerous human tumors, were generated through a combination of chemical synthesis and structure-based rational design. Seventy pyridazolon-4-ylidenehydrazinyl benzenesulfonates were prepared and evaluated in enzyme assays. The binding modes of active inhibitors were simulated in silico using a newly generated crystal structure of SHP2. The most powerful compound, GS-493 (4-{(2Z)-2-[1,3-bis(4-nitrophenyl)-5-oxo-1,5-dihydro-4H-pyrazol-4-yliden]hydrazino}benzenesulfonic acid; 25) inhibited SHP2 with an IC50 value of 71±15 nM in the enzyme assay and was 29- and 45-fold more active toward SHP2 than against related SHP1 and PTP1B. In cell culture experiments compound 25 was found to block hepatocyte growth factor (HGF)-stimulated epithelial-mesenchymal transition of human pancreatic adenocarcinoma (HPAF) cells, as indicated by a decrease in the minimum neighbor distances of cells. Moreover, 25 inhibited cell colony formation in the non-small-cell lung cancer cell line LXFA 526L in soft agar. Finally, 25 was observed to inhibit tumor growth in a murine xenograft model. Therefore, the novel specific compound 25 strengthens the hypothesis that SHP2 is a relevant protein target for the inhibition of mobility and invasiveness of cancer cells.
Collapse
Affiliation(s)
- Stefanie Grosskopf
- Institut für Pharmazie/Institut für Chemie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin (Germany) http://www.bcp.fu-berlin.de/ag-rademann; Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Wagner S, Schütz A, Rademann J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic. Bioorg Med Chem 2015; 23:2839-47. [PMID: 25907367 DOI: 10.1016/j.bmc.2015.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).
Collapse
Affiliation(s)
- Stefan Wagner
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
116
|
Lan L, Holland JD, Qi J, Grosskopf S, Rademann J, Vogel R, Györffy B, Wulf-Goldenberg A, Birchmeier W. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice. EMBO J 2015; 34:1493-508. [PMID: 25736378 DOI: 10.15252/embj.201489004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/04/2015] [Indexed: 12/26/2022] Open
Abstract
In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer.
Collapse
Affiliation(s)
- Linxiang Lan
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jane D Holland
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jingjing Qi
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Stefanie Grosskopf
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Regina Vogel
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Walter Birchmeier
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
117
|
Ueshima C, Kataoka TR, Hirata M, Furuhata A, Suzuki E, Toi M, Tsuruyama T, Okayama Y, Haga H. The Killer Cell Ig-like Receptor 2DL4 Expression in Human Mast Cells and Its Potential Role in Breast Cancer Invasion. Cancer Immunol Res 2015; 3:871-80. [PMID: 25735953 DOI: 10.1158/2326-6066.cir-14-0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2-containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G(+) cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G(+) breast cancer cells and KIR2DL4(+) tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ(2) = 7.439; P < 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G-expressing cancer invasion and the subsequent metastasis.
Collapse
Affiliation(s)
- Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Furuhata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshimichi Okayama
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
118
|
Hou X, Li R, Li K, Yu X, Sun JP, Fang H. Fast Identification of Novel Lymphoid Tyrosine Phosphatase Inhibitors Using Target–Ligand Interaction-Based Virtual Screening. J Med Chem 2014; 57:9309-22. [DOI: 10.1021/jm500692u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuben Hou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Rong Li
- Key
Laboratory Experimental Teratology of the Ministry of Education and
Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kangshuai Li
- Department
of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yu
- Department
of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jin-Peng Sun
- Key
Laboratory Experimental Teratology of the Ministry of Education and
Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
119
|
|
120
|
Trichomide A, a Natural Cyclodepsipeptide, Exerts Immunosuppressive Activity against Activated T Lymphocytes by Upregulating SHP2 Activation to Overcome Contact Dermatitis. J Invest Dermatol 2014; 134:2737-2746. [DOI: 10.1038/jid.2014.252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
121
|
|
122
|
Glutathione S-transferase P influences redox and migration pathways in bone marrow. PLoS One 2014; 9:e107478. [PMID: 25216273 PMCID: PMC4162606 DOI: 10.1371/journal.pone.0107478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+)-ATPase) regulate Ca(2+) fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/-) cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected]
Collapse
|
123
|
Tao B, Jin W, Xu J, Liang Z, Yao J, Zhang Y, Wang K, Cheng H, Zhang X, Ke Y. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2801-11. [PMID: 25127857 DOI: 10.4049/jimmunol.1303463] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The alternative activation of M2 macrophages in the lungs has been implicated as a causative agent in pulmonary fibrosis; however, the mechanisms underlying M2 polarization are poorly characterized. In this study, we investigated the role of the ubiquitously expressed Src homology domain-containing tyrosine phosphatase Shp2 in this process. Shp2 inactivation augmented IL-4-mediated M2 polarization in vitro, suggesting that Shp2 regulates macrophage skewing and prevents a bias toward the M2 phenotype. Conditional removal of Shp2 in monocytes/macrophages with lysozyme M promoter-driven Cre recombinase caused an IL-4-mediated shift toward M2 polarization. Additionally, an increase in arginase activity was detected in Shp2(∆/∆) mice after i.p. injection of chitin, whereas Shp2-deficient macrophages showed enhanced M2 polarization and protection against schistosome egg-induced schistosomiasis. Furthermore, mutants were more sensitive than control mice to bleomycin-induced inflammation and pulmonary fibrosis. Shp2 was associated with IL-4Rα and inhibited JAK1/STAT6 signaling through its phosphatase activity; loss of Shp2 promoted the association of JAK1 with IL-4Rα, which enhanced IL-4-mediated JAK1/STAT6 activation that resulted in M2 skewing. Taken together, these findings define a role for Shp2 in alveolar macrophages and reveal that Shp2 is required to inhibit the progression of M2-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Bo Tao
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Wei Jin
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and
| | - Jiaqi Xu
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Zuyu Liang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and
| | - Junlin Yao
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and
| | - Yun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Kai Wang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
124
|
Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Med Chem 2014; 6:1423-37. [DOI: 10.4155/fmc.14.88] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatases have been the focus of considerable research efforts aimed at developing novel therapeutics; however, these targets are often characterized as being ‘undruggable’ due to the challenge of achieving selectivity, potency and cell permeability. More recently, there has been renewed interest in developing inhibitors of the tyrosine phosphatase SHP2 (PTPN11) in the light of its broad role in cancer, specifically juvenile myelomonocytic leukemia, and recent studies that implicate SHP2 as a key factor in breast cancer progression. Recent significant advances in the field of SHP2 inhibitor development raise the question: are we on the verge of a new era of protein tyrosine phosphatase-directed therapeutics? This article critically appraises recent developments, assesses ongoing challenges and presents a perspective on possible future directions.
Collapse
|
125
|
Zeng LF, Zhang RY, Yu ZH, Li S, Wu L, Gunawan AM, Lane BS, Mali RS, Li X, Chan RJ, Kapur R, Wells CD, Zhang ZY. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J Med Chem 2014; 57:6594-609. [PMID: 25003231 PMCID: PMC4136714 DOI: 10.1021/jm5006176] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The Src homology 2 domain containing
protein tyrosine phosphatase-2
(SHP2) is an oncogenic phosphatase associated with various kinds of
leukemia and solid tumors. Thus, there is substantial interest in
developing SHP2 inhibitors as potential anticancer and antileukemia
agents. Using a structure-guided and fragment-based library approach,
we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM
and greater than 5-fold selectivity against 20 mammalian PTPs. Structural
and modeling studies reveal that the hydroxyindole carboxylic acid
anchors the inhibitor to the SHP2 active site, while interactions
of the oxalamide linker and the phenylthiophene tail with residues
in the β5–β6 loop contribute
to 11a-1’s binding potency and selectivity.
Evidence suggests that 11a-1 specifically
attenuates the SHP2-dependent signaling inside the cell. Moreover, 11a-1 blocks growth factor mediated Erk1/2 and
Akt activation and exhibits excellent antiproliferative activity in
lung cancer and breast cancer as well as leukemia cell lines.
Collapse
Affiliation(s)
- Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, ‡Herman B. Wells Center for Pediatric Research, and §Chemical Genomics Core Facility, Indiana University School of Medicine , 635 Barnhill Drive, Indianapolis, Indiana 46202 United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Li J, Kang Y, Wei L, Liu W, Tian Y, Chen B, Lin X, Li Y, Feng GS, Lu Z. Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor. PLoS One 2014; 9:e102847. [PMID: 25048202 PMCID: PMC4105620 DOI: 10.1371/journal.pone.0102847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The extranuclear estrogen receptor pathway opens up novel perspectives in many physiological and pathological processes, especially in breast carcinogenesis. However, its function and mechanisms are not fully understood. Herein we present data identifying Shp2, a SH2-containing tyrosine phosphatase, as a critical component of extranuclear ER pathway in breast cancer. The research checked that the effect of Shp2 on the tumor formation and growth in animal model and investigated the regulation of Shp2 on the bio-effect and signaling transduction of estrogen in breast cancer cell lines. The results showed that Shp2 was highly expressed in more than 60% of total 151 breast cancer cases. The inhibition of Shp2 activity by PHPS1 (a Shp2 inhibitor) delayed the development of dimethylbenz(a)anthracene (DMBA)-induced tumors in the rat mammary gland and also blocked tumor formation in MMTV-pyvt transgenic mice. Estradiol (E2) stimulated protein expression and phosphorylation of Shp2, and induced Shp2 binding to ERα and IGF-1R around the membrane to facilitate the phosphorylation of Erk and Akt in breast cancer cells MCF7. Shp2 was also involved in several biological effects of the extranuclear ER-initiated pathway in breast cancer cells. Specific inhibitors (phps1, phps4 and NSC87877) or small interference RNAs (siRNA) of Shp2 remarkably suppressed E2-induced gene transcription (Cyclin D1 and trefoil factor 1 (TFF1)), rapid DNA synthesis and late effects on cell growth. These results introduced a new mechanism for Shp2 oncogenic action and shed new light on extranuclear ER-initiated action in breast tumorigenesis by identifying a novel associated protein, Shp2, for extranuclear ER pathway, which might benefit the therapy of breast cancer.
Collapse
Affiliation(s)
- Jun Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yujia Kang
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Longgang Wei
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjie Liu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Yang Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gen-Sheng Feng
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhongxian Lu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
127
|
Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H, Hashimoto J. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab 2014; 32:378-92. [PMID: 24122251 DOI: 10.1007/s00774-013-0514-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
Abstract
It has been suggested that interleukin-6 (IL-6)plays a key role in the pathogenesis of rheumatoid arthritis(RA), including osteoporosis not only in inflamed joints but also in the whole body. However, previous in vitro studies regarding the effects of IL-6 on osteoblast differentiation are inconsistent. The aim of this study was to examine the effects and signal transduction of IL-6 on osteoblast differentiation in MC3T3-E1 cells and primary murine calvarial osteoblasts. IL-6 and its soluble receptor significantly reduced alkaline phosphatase (ALP) activity, the expression of osteoblastic genes (Runx2, osterix, and osteocalcin), and mineralization in a dose-dependent manner, which indicates negative effects of IL-6 on osteoblast differentiation. Signal transduction studies demonstrated that IL-6 activated not only two major signaling pathways, SHP2/MEK/ERK and JAK/STAT3, but also the SHP2/PI3K/Akt2 signaling pathway. The negative effect of IL-6 on osteoblast differentiation was restored by inhibition of MEK as well as PI3K, while it was enhanced by inhibition of STAT3. Knockdown of MEK2 and Akt2 transfected with siRNA enhanced ALP activity and gene expression of Runx2. These results indicate that IL-6 negatively regulates osteoblast differentiation through SHP2/MEK2/ERK and SHP2/PI3K/Akt2 pathways, while affecting it positively through JAK/STAT3. Inhibition of MEK2 and Akt2 signaling in osteoblasts might be of potential use in the treatment of osteoporosis in RA.
Collapse
|
128
|
Parihar S, Boricha VP, Jadeja RN. Pyrazolone as a recognition site: Rhodamine 6G-based fluorescent probe for the selective recognition of Fe3+in acetonitrile-aqueous solution. LUMINESCENCE 2014; 30:168-74. [DOI: 10.1002/bio.2709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/09/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sanjay Parihar
- Department of Chemistry; The M. S. University of Baroda; Vadodara 390002 India
| | - Vinod P. Boricha
- Analytical Science Division; Central Salt and Marine Chemicals Research Institute (Constituents of CSIR, New Delhi), G. B. Marg; Bhavnagar 364002 India
| | - R. N. Jadeja
- Department of Chemistry; The M. S. University of Baroda; Vadodara 390002 India
| |
Collapse
|
129
|
|
130
|
|
131
|
|
132
|
Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, Mackerell AD, Tang LD, Qu CK. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Mol Cancer Ther 2013; 12:1738-48. [PMID: 23825065 DOI: 10.1158/1535-7163.mct-13-0049-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activating mutations in PTPN11 (encoding SHP2), a protein tyrosine phosphatase (PTP) that plays an overall positive role in growth factor and cytokine signaling, are directly associated with the pathogenesis of Noonan syndrome and childhood leukemias. Identification of SHP2-selective inhibitors could lead to the development of new drugs that ultimately serve as treatments for PTPN11-associated diseases. As the catalytic core of SHP2 shares extremely high homology to those of SHP1 and other PTPs that play negative roles in cell signaling, to identify selective inhibitors of SHP2 using computer-aided drug design, we targeted a protein surface pocket that is adjacent to the catalytic site, is predicted to be important for binding to phosphopeptide substrates, and has structural features unique to SHP2. From computationally selected candidate compounds, #220-324 effectively inhibited SHP2 activity with an IC50 of 14 μmol/L. Fluorescence titration experiments confirmed its direct binding to SHP2. This active compound was further verified for its ability to inhibit SHP2-mediated cell signaling and cellular function with minimal off-target effects. Furthermore, mouse myeloid progenitors with the activating mutation (E76K) in PTPN11 and patient leukemic cells with the same mutation were more sensitive to this inhibitor than wild-type cells. This study provides evidence that SHP2 is a "druggable" target for the treatment of PTPN11-associated diseases. As the small-molecule SHP2 inhibitor identified has a simple chemical structure, it represents an ideal lead compound for the development of novel anti-SHP2 drugs. Mol Cancer Ther; 12(9); 1738-48. ©2013 AACR.
Collapse
Affiliation(s)
- Bing Yu
- Corresponding Author: Cheng-Kui Qu, Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Wolstein Bldg., Rm. 2-126, Cleveland, OH 44106.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo. Pancreas 2013; 42:795-806. [PMID: 23271399 DOI: 10.1097/mpa.0b013e3182793fd7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. METHODS SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. RESULTS Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. CONCLUSIONS These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
Collapse
|
134
|
Design, synthesis, biological activity and molecular dynamics studies of specific protein tyrosine phosphatase 1B inhibitors over SHP-2. Int J Mol Sci 2013; 14:12661-74. [PMID: 23774838 PMCID: PMC3709806 DOI: 10.3390/ijms140612661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
Abstract
Over expressing in PTPN1 (encoding Protein tyrosine phosphatase 1B, PTP1B), a protein tyrosine phosphatase (PTP) that plays an overall positive role in insulin signaling, is linked to the pathogenesis of diabetes and obesity. The relationship between PTP1B and human diseases exhibits PTP1B as the target to treat these diseases. In this article, small weight molecules of the imidazolidine series were screened from databases and optimized on silicon as the inhibitors of PTP1B based on the steric conformation and electronic configuration of thiazolidinedione (TZD) compounds. The top three candidates were tested using an in vitro biological assay after synthesis. Finally, we report a novel inhibitor, Compound 13, that specifically inhibits PTP1B over the closely related phosphatase Src homology 2 (SH2) domain-containing phosphatase 2 (SHP-2) at 80 μM. Its IC50 values are reported in this paper as well. This compound was further verified by computer analysis for its ability to combine the catalytic domains of PTP1B and SHP-2 by molecular dynamics (MD) simulations.
Collapse
|
135
|
Schramm C, Edwards MA, Krenz M. New approaches to prevent LEOPARD syndrome-associated cardiac hypertrophy by specifically targeting Shp2-dependent signaling. J Biol Chem 2013; 288:18335-44. [PMID: 23673659 DOI: 10.1074/jbc.m113.483800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In LEOPARD syndrome (LS) patients, mutations in the protein tyrosine phosphatase Shp2 cause hypertrophic cardiomyopathy. The prohypertrophic effects of mutant Shp2 are mediated downstream by hyperactivation of mammalian target of rapamycin. Our goal was to further define the signaling cascade that is essential for the underlying pathomechanism, thus expanding the list of potential future therapeutic targets. Using cultured neonatal rat cardiomyocytes with adenoviral gene delivery and pharmacological inhibitors, we found that hypertrophy induced by a particularly aggressive LS mutation in Shp2 depends on hyperactivation of Akt and focal adhesion kinase as well as mammalian target of rapamycin. Dissecting domain-specific functions of Shp2 using double and truncation mutants, we determined that the hypertrophic effects of mutant Shp2 depend on the two SH2 domains and on an intact catalytic center. The latter finding prompted us to test the efficacy of a Shp2 inhibitor targeted directly at the catalytic pocket. This compound, PHPS1, effectively prevented mutant Shp2-induced hypertrophy. In summary, we identified three novel targets for pharmacological therapy of LS-associated cardiac hypertrophy. Of particular importance is the finding that intervention directly at the mutant Shp2 protein is effective because this would facilitate custom-tailored therapeutic approaches for patients carrying LS mutations in Shp2.
Collapse
Affiliation(s)
- Christine Schramm
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
136
|
|
137
|
Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 2013; 280:413-31. [PMID: 22682070 DOI: 10.1111/j.1742-4658.2012.08655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation on tyrosine residues is tightly controlled by protein tyrosine phosphatases (PTPs) at multiple levels: spatio-temporal expression, subcellular localization and post-translational modification. Structural and functional analysis of the PTP domains has provided insight into catalysis and regulatory mechanisms that control the enzymatic activity. Understanding the molecular basis of PTP regulation is of fundamental importance to dissect the pleiotropic effect of these enzymes in both health and disease. Here, we review recent insights into the regulation of receptor-like PTPs by extracellular ligands and into regulation by reversible oxidation that impairs catalysis directly. The physiological roles of PTPs are essential in homeostasis in eukaryotic cells and pertubation of their functional attributes causes different disease states. As an example, we discuss recent findings indicating how inappropriate oxidation of PTPs in cancer cells may contribute to cell transformation. On the other hand, PTPs from many pathogens are key virulence factors and manipulate signalling pathways in the host cells to promote invasion and survival of the microorganisms. This research area has received relatively little attention but has advanced remarkably. We review the structural features of pathogenic PTPs, their similarities and differences with eukaryotic PTPs, and the possible exploitation of this knowledge for therapeutic intervention.
Collapse
Affiliation(s)
- Frank Böhmer
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|
138
|
Tautz L, Critton DA, Grotegut S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 2013; 1053:179-221. [PMID: 23860656 DOI: 10.1007/978-1-62703-562-0_13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein tyrosine phosphorylation is a key regulatory mechanism in eukaryotic cell physiology. Aberrant expression or function of protein tyrosine kinases and protein tyrosine phosphatases can lead to serious human diseases, including cancer, diabetes, as well as cardiovascular, infectious, autoimmune, and neuropsychiatric disorders. Here, we give an overview of the protein tyrosine phosphatase superfamily with its over 100 members in humans. We review their structure, function, and implications in human diseases, and discuss their potential as novel drug targets, as well as current challenges and possible solutions to developing therapeutics based on these enzymes.
Collapse
Affiliation(s)
- Lutz Tautz
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
139
|
Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S, Feng GS, Li XJ, Chan RJ. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 2012; 22:998-1006. [PMID: 23082805 DOI: 10.1089/scd.2012.0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Tsang YH, Han X, Man WY, Lee N, Poon RYC. Novel functions of the phosphatase SHP2 in the DNA replication and damage checkpoints. PLoS One 2012. [PMID: 23189174 PMCID: PMC3506573 DOI: 10.1371/journal.pone.0049943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication stress- and DNA damage-induced cell cycle checkpoints are critical for maintaining genome stability. To identify protein phosphatases involved in the activation and maintenance of the checkpoints, we have carried out RNA interference-based screens with a human phosphatome shRNA library. Several phosphatases, including SHP2 (also called PTPN11) were found to be required for cell survival upon hydroxyurea-induced replicative stress in HeLa cells. More detailed studies revealed that SHP2 was also important for the maintenance of the checkpoint after DNA damage induced by cisplatin or ionizing radiation in HeLa cells. Furthermore, SHP2 was activated after replicative stress and DNA damage. Although depletion of SHP2 resulted in a delay in cyclin E accumulation and an extension of G1 phase, these cell cycle impairments were not responsible for the increase in apoptosis after DNA damage. Depletion of SHP2 impaired CHK1 activation, checkpoint-mediated cell cycle arrest, and DNA repair. These effects could be rescued with a shRNA-resistant SHP2. These results underscore the importance of protein phosphatases in checkpoint control and revealed a novel link between SHP2 and cell cycle checkpoints.
Collapse
Affiliation(s)
- Yiu Huen Tsang
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Xianxian Han
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wing Yu Man
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Nelson Lee
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y. C. Poon
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- * E-mail:
| |
Collapse
|
141
|
Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, Meurice N, MacKeigan JP. Identification of small molecule inhibitors of PTPσ through an integrative virtual and biochemical approach. PLoS One 2012. [PMID: 23185579 PMCID: PMC3502291 DOI: 10.1371/journal.pone.0050217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PTPσ is a dual-domain receptor type protein tyrosine phosphatase (PTP) with physiologically important functions which render this enzyme an attractive biological target. Specifically, loss of PTPσ has been shown to elicit a number of cellular phenotypes including enhanced nerve regeneration following spinal cord injury (SCI), chemoresistance in cultured cancer cells, and hyperactive autophagy, a process critical to cell survival and the clearance of pathological aggregates in neurodegenerative diseases. Owing to these functions, modulation of PTPσ may provide therapeutic value in a variety of contexts. Furthermore, a small molecule inhibitor would provide utility in discerning the cellular functions and substrates of PTPσ. To develop such molecules, we combined in silico modeling with in vitro phosphatase assays to identify compounds which effectively inhibit the enzymatic activity of PTPσ. Importantly, we observed that PTPσ inhibition was frequently mediated by oxidative species generated by compounds in solution, and we further optimized screening conditions to eliminate this effect. We identified a compound that inhibits PTPσ with an IC50 of 10 µM in a manner that is primarily oxidation-independent. This compound favorably binds the D1 active site of PTPσ in silico, suggesting it functions as a competitive inhibitor. This compound will serve as a scaffold structure for future studies designed to build selectivity for PTPσ over related PTPs.
Collapse
Affiliation(s)
- Katie R. Martin
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Pooja Narang
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Yong Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Audra L. Kauffman
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Joachim Petit
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | | | - Jeffrey P. MacKeigan
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
142
|
Abdel-Aziz HA, Aboul-Fadl T, Al-Obaid ARM, Ghazzali M, Al-Dhfyan A, Contini A. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity. Arch Pharm Res 2012; 35:1543-52. [PMID: 23054710 DOI: 10.1007/s12272-012-0904-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/02/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022]
Abstract
Novel 6-aryl-2-methylnicotinic acid hydrazides 4a-c and their corresponding hydrazones 5a-c and 6a-i were synthesized. X-ray single crystal diffraction of 6h confirmed the chemical structure of hydrazones 6a-i. Antiproliferative activity of the synthetic compounds was investigated against K562 leukemia cell lines. Variable cell growth inhibitory activities were obtained with IC₅₀ range from 24.99 to 66.78 μM where the compound 6c exhibited the maximum activity. Structure activity relationship analysis has been performed and a common pharmacophore model for the synthesized derivatives has been obtained by using the pharmacophore elucidation module of the software MOE. The best model obtained is characterized by two projected locations of potential H-bond donors (F 3 and F4) and two Aromatic annotations (F1 and F2).
Collapse
Affiliation(s)
- Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
143
|
Swarbrick A, Daly RJ. New insights into signalling networks regulating breast cancer stem cells. Breast Cancer Res 2012; 14:321. [PMID: 22999218 PMCID: PMC4053095 DOI: 10.1186/bcr3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In a recent paper, Aceto and colleagues report that Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp2) plays a critical role in maintenance of breast tumour-initiating cells, and they define novel effectors downstream of Shp2 that regulate cellular invasion and self-renewal, including the transcription factors c-Myc and zinc finger E-box binding homeobox 1 and the suppressor of miRNA biogenesis lin-28 homolog B. These findings provide important mechanistic insights into breast tumourigenesis and highlight Shp2 as a potential therapeutic target.
Collapse
|
144
|
Li FF, Shen J, Shen HJ, Zhang X, Cao R, Zhang Y, Qui Q, Lin XX, Xie YC, Zhang LH, Jia YL, Dong XW, Jiang JX, Bao MJ, Zhang S, Ma WJ, Wu XM, Shen H, Xie QM, Ke Y. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3159-67. [PMID: 22891281 PMCID: PMC3496208 DOI: 10.4049/jimmunol.1200197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Cigarette smoke (CS), the major cause of chronic obstructive pulmonary disease, contains a variety of oxidative components that were implicated in the regulation of Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) activity. However, the contribution of Shp2 enzyme to chronic obstructive pulmonary disease pathogenesis remains unclear. We investigated the role of Shp2 enzyme in blockading CS-induced pulmonary inflammation. Shp2 levels were assessed in vivo and in vitro. Mice (C57BL/6) or pulmonary epithelial cells (NCI-H292) were exposed to CS or cigarette smoke extract (CSE) to induce acute injury and inflammation. Lungs of smoking mice showed increased levels of Shp2, compared with those of controls. Treatment of lung epithelial cells with CSE showed elevated levels of Shp2 associated with the increased release of IL-8. Selective inhibition or knockdown of Shp2 resulted in decreased IL-8 release in response to CSE treatment in pulmonary epithelial cells. In comparison with CS-exposed wild-type mice, selective inhibition or conditional knockout of Shp2 in lung epithelia reduced IL-8 release and pulmonary inflammation in CS-exposed mice. In vitro biochemical data correlate CSE-mediated IL-8 release with Shp2-regulated epidermal growth factor receptor/Grb-2-associated binders/MAPK signaling. Our data suggest an important role for Shp2 in the pathological alteration associated with CS-mediated inflammation. Shp2 may be a potential target for therapeutic intervention for inflammation in CS-induced pulmonary diseases.
Collapse
Affiliation(s)
- Fen-fen Li
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Hui-juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Rui Cao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Qiu Qui
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Xi-xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yi-cheng Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Lin-hui Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jun-xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Meng-jing Bao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Shanshan Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Wen-jiang Ma
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xi-mei Wu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Huahao Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| |
Collapse
|
145
|
Timmerman I, Hoogenboezem M, Bennett AM, Geerts D, Hordijk PL, van Buul JD. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation. Mol Biol Cell 2012; 23:4212-25. [PMID: 22956765 PMCID: PMC3484100 DOI: 10.1091/mbc.e12-01-0038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reconstitution of the endothelial barrier involves SHP2-mediated dephosphorylation of VE-cadherin–associated β-catenin, leading to reassembly of adherens junctions and thereby closing the gaps between endothelial cells. Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
146
|
He R, Zeng LF, He Y, Zhang S, Zhang ZY. Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 2012; 280:731-50. [PMID: 22816879 DOI: 10.1111/j.1742-4658.2012.08718.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The importance of protein tyrosine phosphatases (PTPs) in the regulation of cellular signalling is well established. Malfunction of PTP activity is also known to be associated with cancer, metabolic syndromes and autoimmune disorders, as well as neurodegenerative and infectious diseases. However, a detailed understanding of the roles played by the PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific small molecule agents. In addition, the therapeutic benefits of modulating this target class are underexplored as a result of a lack of suitable chemical probes. Potent and specific PTP inhibitors could significantly facilitate functional analysis of the PTPs in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. We highlight the current challenges to and opportunities for developing PTP-specific small molecule agents. We also review available selective small molecule inhibitors developed for a number of PTPs, including PTP1B, TC-PTP, SHP2, lymphoid-specific tyrosine phosphatase, haematopoietic protein tyrosine phosphatase, CD45, PTPβ, PTPγ, PTPRO, Vaccinia H1-related phosphatase, mitogen-activated protein kinase phosphatase-1, mitogen-activated protein kinase phosphatase-3, Cdc25, YopH, mPTPA and mPTPB.
Collapse
Affiliation(s)
- Rongjun He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
147
|
Gupta VK, You Y, Klistorner A, Graham SL. Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1643-9. [PMID: 22878065 DOI: 10.1016/j.bbadis.2012.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/02/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
Tropomyosin-receptor-kinase B (TrkB receptor) activation plays an important role in the survival of retinal ganglion cells (RGCs). This study reports a novel finding that, SH2 domain-containing phosphatase-2 (Shp-2) binds to the TrkB receptor in RGCs and negatively regulates its activity under glaucomatous stress. This enhanced binding of TrkB and Shp2 is mediated through caveolin. Caveolin 1 and 3 undergo hyper-phosphorylation in RGCs under stress and bind to the Shp2 phosphatase. Shp2 undergoes activation under glaucomatous stress conditions in RGCs in vivo with a concurrent loss of TrkB activity. Inhibiting the Shp2 phosphatase restored TrkB activity in cells exposed to excitotoxic and oxidative stress. Collectively, these findings implicate a molecular basis of Shp2 mediated TrkB deactivation leading to RGC degeneration observed in glaucoma.
Collapse
Affiliation(s)
- Vivek K Gupta
- Australian School of Advanced Medicine, Macquarie University, Australia.
| | | | | | | |
Collapse
|
148
|
Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood 2012; 120:2669-78. [PMID: 22806893 DOI: 10.1182/blood-2011-08-375873] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intracellular mechanism(s) that contribute to promiscuous signaling via oncogenic KIT in systemic mastocytosis and acute myelogenous leukemia are poorly understood. We show that SHP2 phosphatase is essential for oncogenic KIT-induced growth and survival in vitro and myeloproliferative disease (MPD) in vivo. Genetic disruption of SHP2 or treatment of oncogene-bearing cells with a novel SHP2 inhibitor alone or in combination with the PI3K inhibitor corrects MPD by disrupting a protein complex involving p85α, SHP2, and Gab2. Importantly, a single tyrosine at position 719 in oncogenic KIT is sufficient to develop MPD by recruiting p85α, SHP2, and Gab2 complex to oncogenic KIT. Our results demonstrate that SHP2 phosphatase is a druggable target that cooperates with lipid kinases in inducing MPD.
Collapse
|
149
|
Schiff bases of indoline-2,3-dione (isatin) with potential antiproliferative activity. Chem Cent J 2012; 6:49. [PMID: 22647272 PMCID: PMC3523985 DOI: 10.1186/1752-153x-6-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/08/2012] [Indexed: 01/26/2023] Open
Abstract
Background Cancer is one of the most dreaded diseases and it is a leading cause of mankind death worldwide. Recent reports documented a remarkable antiproliferative activity of isatin nucleus against various cancer cell lines. The current work describes the antiproliferative activity of Schiff bases of combinatorial mixtures of the isatin derivatives M1-M22 as well as the individual compounds 1-11(A-K) of these combinatorial mixtures. Results The designed combinatorial library composed from eleven hydrazides A-K and eleven isatin derivatives 1-11 has been synthesized to formally generate 22 mixtures, M1-M22 of 121 Schiff bases, and their antiproliferative activity against K562 chronic myelogenous leukemia cells was evaluated. The indexed method of analysis of the prepared library was applied to elucidate the active components in the tested mixtures M1-M22. The predictions from the crossing procedure was validated through evaluation of the antiproliferative activity of individual compounds 1-11(A-K) of the library. Individual compounds 1-11(A-K) were also evaluated against the non-tumorigenic MCF-12A cell line to investigate their selectivity. A pharmacophore model was developed to further optimize the antiproliferative activity among this series of compounds. Conclusions Variable antiproliferative activity was revealed with the investigated mixtures M1-M22 and the individual compounds 1-11(A-K). Most of the tested mixtures and several individual Schiff bases displayed high potency with IC50 values in the low micromolar range. A considerable selectivity of some individual compounds to the tumorigenic K562 cell line compared with the non-tumorigenic MCF-12A cell line was observed as indicated by their selectivity index (SI).
Collapse
|
150
|
Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2. Cancer Lett 2012; 320:81-5. [PMID: 22306001 DOI: 10.1016/j.canlet.2012.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
Abstract
Interferon-α2b (IFN-α2b) is used to treat melanoma but there is a need to improve its efficacy. IFN-α2b signaling requires STAT1/STAT2 tyrosine phosphorylation and is subject to negative regulation by phosphatases. In this study, we determined whether inhibition of the protein tyrosine phosphatase Shp2 could enhance IFN-α2b responses in human melanoma cells. Shp2 knockdown increased IFN-α2b-stimulated STAT1 Tyr-701 phosphorylation and ISRE-luciferase activity even though it did not affect STAT2 Tyr-690 phosphorylation in A375 cells. In A375 tumor xenografts, Shp2 knockdown enhanced the anti-melanoma effect of IFN-α2b. Furthermore, the Shp2 inhibitor SPI-112Me increased the IFN-α2b-induced STAT1 activation and anti-proliferative response in A375 and SK-MEL-2 cells. These results demonstrate that inhibition of Shp2 can enhance the anti-melanoma activity of IFN-α2b.
Collapse
|