101
|
Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 2012; 13:3341-3353. [PMID: 22489154 PMCID: PMC3317715 DOI: 10.3390/ijms13033341] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/01/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX). Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX) can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.
Collapse
|
102
|
Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. CHEMISTRY & BIOLOGY 2012; 19:60-71. [PMID: 22284355 PMCID: PMC3269031 DOI: 10.1016/j.chembiol.2011.12.008] [Citation(s) in RCA: 668] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 12/29/2022]
Abstract
Recent advances of biological drugs have broadened the scope of therapeutic targets for a variety of human diseases. This holds true for dozens of RNA-based therapeutics currently under clinical investigation for diseases ranging from genetic disorders to HIV infection to various cancers. These emerging drugs, which include therapeutic ribozymes, aptamers, and small interfering RNAs (siRNAs), demonstrate the unprecedented versatility of RNA. However, RNA is inherently unstable, potentially immunogenic, and typically requires a delivery vehicle for efficient transport to the targeted cells. These issues have hindered the clinical progress of some RNA-based drugs and have contributed to mixed results in clinical testing. Nevertheless, promising results from recent clinical trials suggest that these barriers may be overcome with improved synthetic delivery carriers and chemical modifications of the RNA therapeutics. This review focuses on the clinical results of siRNA, RNA aptamer, and ribozyme therapeutics and the prospects for future successes.
Collapse
Affiliation(s)
- John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
103
|
Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S, Hahn U. Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol 2012; 9:67-80. [PMID: 22258147 PMCID: PMC3342945 DOI: 10.4161/rna.9.1.18062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aptamers represent an emerging strategy to deliver cargo molecules, including dyes, drugs, proteins or even genes, into specific target cells. Upon binding to specific cell surface receptors aptamers can be internalized, for example by macropinocytosis or receptor mediated endocytosis. Here we report the in vitro selection and characterization of RNA aptamers with high affinity (Kd = 20 nM) and specificity for the human IL-6 receptor (IL-6R). Importantly, these aptamers trigger uptake without compromising the interaction of IL-6R with its natural ligands the cytokine IL-6 and glycoprotein 130 (gp130). We further optimized the aptamers to obtain a shortened, only 19-nt RNA oligonucleotide retaining all necessary characteristics for high affinity and selective recognition of IL-6R on cell surfaces. Upon incubation with IL-6R presenting cells this aptamer was rapidly internalized. Importantly, we could use our aptamer, to deliver bulky cargos, exemplified by fluorescently labeled streptavidin, into IL-6R presenting cells, thereby setting the stage for an aptamer-mediated escort of drug molecules to diseased cell populations or tissues.
Collapse
Affiliation(s)
- Cindy Meyer
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Katja Eydeler
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Eileen Magbanua
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Tijana Zivkovic
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Nicolas Piganeau
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Inken Lorenzen
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute; University of Bonn; Bonn, Germany
| | - Stefan Rose-John
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Ulrich Hahn
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| |
Collapse
|
104
|
Davydova A, Vorobjeva M, Venyaminova A. Escort aptamers: new tools for the targeted delivery of therapeutics into cells. Acta Naturae 2011; 3:12-29. [PMID: 22649701 PMCID: PMC3347615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Escort aptamers are DNA or RNA sequences with high affinity to certain cell-surface proteins, which can be used for targeted delivery of various agents into cells of a definite type. The peculiarities of the selection of escort aptamers are discussed in this review. The methods used in selection of escort aptamers via the SELEX technique are considered, including selection against isolated cell-surface proteins, cell fragments, living eukaryotic cells, and bacteria. Particular attention is given to the design and chemical modification of escort aptamers. The different fields of application of escort aptamers are described, including the targeted delivery of siRNAs, nanoparticles, toxins, and photoagents, as well as the identification of specific cell markers and the detection or isolation of cells of a definite type. The potential for the application of escort aptamers in the development of new therapeutic agents and diagnostic systems is also discussed.
Collapse
Affiliation(s)
- A.S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - M.A. Vorobjeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - A.G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| |
Collapse
|
105
|
Abstract
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology and Research Innovation (ITRI), Geelong Technology Precinct (GTP), Deakin University, Victoria, Australia.
| | | | | |
Collapse
|
106
|
Cibiel A, Dupont DM, Ducongé F. Methods To Identify Aptamers against Cell Surface Biomarkers. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058655 DOI: 10.3390/ph4091216] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.
Collapse
Affiliation(s)
- Agnes Cibiel
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
| | - Daniel Miotto Dupont
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark; E-Mail: (D.M.D.)
| | - Frédéric Ducongé
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-169-867-766; Fax: +33-169-867-786
| |
Collapse
|
107
|
Meyer C, Hahn U, Rentmeister A. Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011; 2011:904750. [PMID: 21904667 PMCID: PMC3166764 DOI: 10.4061/2011/904750] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022] Open
Abstract
Aptamers are short nucleic
acids that bind to defined targets with high affinity
and specificity. The first aptamers have been selected
about two decades ago by an in vitro process named
SELEX (systematic evolution of ligands by exponential
enrichment). Since then, numerous aptamers with
specificities for a variety of targets from small
molecules to proteins or even whole cells have been
selected. Their applications range from biosensing and
diagnostics to therapy and target-oriented drug
delivery. More recently, selections using complex
targets such as live cells have become feasible. This
paper summarizes progress in cell-SELEX techniques
and highlights recent developments, particularly in
the field of medically relevant aptamers with a focus
on therapeutic and drug-delivery
applications.
Collapse
Affiliation(s)
- Cindy Meyer
- Chemistry Department, MIN Faculty, Institute for Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
108
|
Abstract
Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.
Collapse
|
109
|
Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 2011; 6:e20299. [PMID: 21687663 PMCID: PMC3110755 DOI: 10.1371/journal.pone.0020299] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (K(d) = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents.
Collapse
Affiliation(s)
- Na Li
- AM Biotechnologies, Houston, Texas, United States of America
| | - Hong Hanh Nguyen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michelle Byrom
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Andrew D. Ellington
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
110
|
|
111
|
|
112
|
López-Colón D, Jiménez E, You M, Gulbakan B, Tan W. Aptamers: turning the spotlight on cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:328-40. [PMID: 21412992 DOI: 10.1002/wnan.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article is a review of the development and application of aptamer probes for cell imaging. Aptamers selected against whole cells have been modified with different fluorescent dyes and nanomaterials, such as gold nanoparticles, quantum dots, and superparamagnetic iron oxide, for their use as imaging probes of live cells. These probes have been successfully used for cell imaging both in vitro and in vivo by optical imaging, magnetic resonance imaging (MRI), computed tomography (CT), and positron-emission tomography (PET). In this article, we discuss the development of different aptamer-based probes currently available for imaging of live cells and their applications in the biomedical field.
Collapse
Affiliation(s)
- Dalia López-Colón
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
113
|
Abstract
Nucleic acid aptamers are in vitro-selected small, single-stranded DNA or RNA oligonucleotides that can specifically recognize their target on the basis of their unique 3-dimensional structures. Recent advances in the development of escort aptamers to deliver and enhance the efficacy of other therapeutic agents have drawn enthusiasm in exploiting cell-type-specific aptamers as drug delivery vehicles. This review mainly focuses on the recent developments of aptamer-mediated targeted delivery systems. We also place particular emphasis on aptamers evolved against cell membrane receptors and possibilities for translation to clinical applications.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | |
Collapse
|
114
|
Abstract
The clinical potential of siRNAs for silencing genes critical to disease progression is clear, but a fail-proof method for delivering siRNAs to the cytoplasm of diseased tissues or cells has yet to be identified. A variety of delivery approaches have been explored to directly or indirectly couple siRNAs to delivery vehicles. This review explores the use of synthetic single-stranded DNA and RNA aptamers as a means to deliver siRNAs, shRNAs and antisense oligonucleotides for therapeutic intervention. Topics covered include: the advantages and challenges of using aptamers as delivery tools; current aptamer-mediated siRNA delivery platforms for the treatment of cancer and HIV; and emerging methodologies for the identification of aptamers capable of internalizing into target cell types.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Internal Medicine, Department of Radiation Oncology, 375 Newton Rd, 5202 MERF, Iowa City, IA 52242, USA
| | - Paloma H Giangrande
- Department of Internal Medicine, Department of Radiation Oncology, 375 Newton Rd, 5202 MERF, Iowa City, IA 52242, USA
| |
Collapse
|
115
|
Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 2010; 28:517-25. [PMID: 20719399 DOI: 10.1016/j.tibtech.2010.07.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 01/11/2023]
Abstract
Aptamers are short, structured, single-stranded RNA or DNA ligands that bind with high affinity to their target molecules, which range from small chemicals to large cell-surface and transmembrane proteins. Aptamers are now emerging as promising molecules to target specific cancer epitopes in clinical diagnosis and therapy. Furthermore, because of their high specificity and low toxicity, aptamers might be considered as the compounds-of-choice for in vivo cell recognition. Specific cancer cell recognition could be capitalized upon for delivering therapeutic nanoparticles, small interfering RNA bioconjugates, chemotherapeutic cargos or molecular imaging probes. In this article, we review recent advances in the use of aptamers for in vivo cancer cell recognition, with a particular focus on novel applications of aptamers for targeting the cell surface.
Collapse
|
116
|
Aptamers for Targeted Drug Delivery. Pharmaceuticals (Basel) 2010; 3:1761-1778. [PMID: 27713328 PMCID: PMC4033951 DOI: 10.3390/ph3061761] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022] Open
Abstract
Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.
Collapse
|
117
|
Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. SILENCE 2010; 1:4. [PMID: 20226078 PMCID: PMC2835998 DOI: 10.1186/1758-907x-1-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022]
Abstract
This potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of siRNAs into specific cell populations is still the principal challenge in the clinical development of RNAi therapeutics. With the increasing enthusiasm for developing targeted delivery vehicles, nucleic acid-based aptamers targeting cell surface proteins are being explored as promising delivery vehicles to target a distinct disease or tissue in a cell-type-specific manner. The aptamer-based delivery of siRNAs can often enhance the therapeutic efficacy and reduce the unwanted off-target effects of siRNAs. In particular, for RNA interference-based therapeutics, aptamers represent an efficient agent for cell type-specific, systemic delivery of these oligonucleotides. In this review, we summarize recent attractive developments in creatively using cell-internalizing aptamers to deliver siRNAs to target cells. The optimization and improvement of aptamer-targeted siRNAs for clinical translation are further highlighted.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|
118
|
Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009; 19:209-22. [PMID: 19653880 DOI: 10.1089/oli.2009.0199] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structured single-stranded nucleic acids, or aptamers, bind target molecules with high affinity and specificity, which translates into unique therapeutic possibilities. Currently, aptamers can be identified to most proteins, including blood-clotting factors, cell-surface receptors, and transcription factors. Chemical modifications to the oligonucleotides enhance their pharmacokinetics and pharmacodynamics, thus extending their therapeutic potential. Several aptamers have entered the clinical pipeline for applications and diseases such as macular degeneration, coronary artery bypass graft surgery, and various types of cancer. Furthermore, the functional repertoire of aptamers has expanded with the descriptions of multivalent agonistic aptamers and aptamers-siRNA chimeras. This review highlights those aptamers and aptamer-based approaches with particular likelihood of achieving therapeutic application.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
119
|
Abstract
When aptamers first emerged almost two decades ago, most were RNA species that bound and tagged or inhibited simple target ligands. Very soon after, the 'selectionologists' developing aptamer technology quickly realized more potential for the aptamer. In recent years, advances in aptamer techniques have enabled the use of aptamers as small molecule inhibitors, diagnostic tools and even therapeutics. Aptamers are now being employed in novel applications. We review, herein, some of the recent and exciting applications of aptamers in cell-specific recognition and delivery.
Collapse
Affiliation(s)
- Amy C. Yan
- Department of Biochemistry, Albert Einstein College of Medicine, Lab: (718) 678-1025, Office: (718) 678-1024
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Lab: (718) 678-1025, Office: (718) 678-1024
| |
Collapse
|
120
|
Enhanced prion protein stability coupled to DNA recognition and milieu acidification. Biophys Chem 2009; 141:135-9. [DOI: 10.1016/j.bpc.2008.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|