101
|
p55PIK transcriptionally activated by MZF1 promotes colorectal cancer cell proliferation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:868131. [PMID: 23509792 PMCID: PMC3591147 DOI: 10.1155/2013/868131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K), plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb) protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation) assay shows that MZF1 binds to the cis-element "TGGGGA" in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P = 0.046, P = 0.047, resp.). A strong positive correlation (Rs = 0.94) between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.
Collapse
|
102
|
Wojtalla A, Fischer B, Kotelevets N, Mauri FA, Sobek J, Rehrauer H, Wotzkow C, Tschan MP, Seckl MJ, Zangemeister-Wittke U, Arcaro A. Targeting the phosphoinositide 3-kinase p110-α isoform impairs cell proliferation, survival, and tumor growth in small cell lung cancer. Clin Cancer Res 2012; 19:96-105. [PMID: 23172887 DOI: 10.1158/1078-0432.ccr-12-1138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study, we investigated the potential of targeting the catalytic class I(A) PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types. EXPERIMENTAL DESIGN The expression of PI3K isoforms in patient specimens was analyzed. The effects on SCLC cell survival and downstream signaling were determined following PI3K isoform inhibition by selective inhibitors or downregulation by siRNA. RESULTS Overexpression of the PI3K isoforms p110-α and p110-β and the antiapoptotic protein Bcl-2 was shown by immunohistochemistry in primary SCLC tissue samples. Targeting the PI3K p110-α with RNA interference or selective pharmacologic inhibitors resulted in strongly affected cell proliferation of SCLC cells in vitro and in vivo, whereas targeting p110-β was less effective. Inhibition of p110-α also resulted in increased apoptosis and autophagy, which was accompanied by decreased phosphorylation of Akt and components of the mTOR pathway, such as the ribosomal S6 protein, and the eukaryotic translation initiation factor 4E-binding protein 1. A DNA microarray analysis revealed that p110-α inhibition profoundly affected the balance of pro- and antiapoptotic Bcl-2 family proteins. Finally, p110-α inhibition led to impaired SCLC tumor formation and vascularization in vivo. CONCLUSION Together our data show the key involvement of the PI3K isoform p110-α in the regulation of multiple tumor-promoting processes in SCLC.
Collapse
Affiliation(s)
- Anna Wojtalla
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Juss JK, Hayhoe RP, Owen CE, Bruce I, Walmsley SR, Cowburn AS, Kulkarni S, Boyle KB, Stephens L, Hawkins PT, Chilvers ER, Condliffe AM. Functional redundancy of class I phosphoinositide 3-kinase (PI3K) isoforms in signaling growth factor-mediated human neutrophil survival. PLoS One 2012; 7:e45933. [PMID: 23029326 PMCID: PMC3454369 DOI: 10.1371/journal.pone.0045933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional PI3K isoforms (p110δKOγKO or p110γKO). Our data suggest that there is considerable functional redundancy amongst Class I PI3Ks (both Class IA and Class IB) with regard to GM-CSF-mediated suppression of neutrophil apoptosis. Hence pharmacological inhibition of any 3 or more PI3K isoforms was required to block the GM-CSF survival response in human neutrophils, with inhibition of individual or any two isoforms having little or no effect. Likewise, isolated blood neutrophils derived from double knockout PI3K p110δKOγKO mice underwent normal time-dependent constitutive apoptosis and displayed identical GM-CSF mediated survival to wild type cells, but were sensitized to pharmacological inhibition of the remaining PI3K isoforms. Surprisingly, the pro-survival neutrophil phenotype observed in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) was resilient to inactivation of the PI3K pathway.
Collapse
Affiliation(s)
- Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Richard P. Hayhoe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | | | - Ian Bruce
- Novartis, Horsham Research Centre, Horsham, United Kingdom
| | - Sarah R. Walmsley
- Academic Unit of Respiratory Medicine, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Andrew S. Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Suhasini Kulkarni
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Keith B. Boyle
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Len Stephens
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | | | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
104
|
Xing Y, Gerhard B, Hogge DE. Selective small molecule inhibitors of p110α and δ isoforms of phosphoinosityl-3-kinase are cytotoxic to human acute myeloid leukemia progenitors. Exp Hematol 2012; 40:922-33. [PMID: 22828407 DOI: 10.1016/j.exphem.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/30/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
The phosphoinosityl-3-kinase (PI3K) pathway is frequently constitutively active in blast cells from acute myeloid leukemia (AML) patients. RNA and protein from all four catalytic isoforms of PI3K (p110α, β, γ, and δ) were expressed in 38 AML samples, which also showed expression of phosphorylated Akt Ser473, indicating PI3K activation. Initial treatment of 12 AML samples with inhibitors targeting each of the four isoforms demonstrated that p110α and δ inhibition are more effective in killing AML blast colony-forming cells (CFC) than p110β or γ inhibition. In subsequent experiments, AML CFC from 46 patient samples were treated with the p110α and δ selective inhibitors, PI3Kα inhibitor 2 or PCN5603, and dose-dependent progenitor kill and inhibition of phosphorylated Akt Ser473 expression was observed. AML samples were more sensitive to PI3Kα inhibitor 2 and PCN5603 killing than normal bone marrow or normal peripheral blood CFC (median IC(50) for AML and normal CFCs treated with PI3Kα inhibitor 2, 1.8 and 4.3 μM, respectively, and for PCN5603, 1.9 and 6.2 μM, respectively). Furthermore, treatment of AML cells with PCN5603 also decreased survival of more primitive leukemia progenitors identified in long-term culture (AML long-term culture initiating cells), while less toxicity toward normal bone marrow long-term culture initiating cells was observed. Selective inhibition of the p110α and δ isoforms of PI3K kills AML progenitors while causing relative sparing of analogous normal cells.
Collapse
Affiliation(s)
- Yan Xing
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
105
|
Martín-Sánchez E, Rodríguez-Pinilla SM, Sánchez-Beato M, Lombardía L, Domínguez-González B, Romero D, Odqvist L, García-Sanz P, Wozniak MB, Kurz G, Blanco-Aparicio C, Mollejo M, Alves FJ, Menárguez J, González-Palacios F, Rodríguez-Peralto JL, Ortiz-Romero PL, García JF, Bischoff JR, Piris MA. Simultaneous inhibition of pan-phosphatidylinositol-3-kinases and MEK as a potential therapeutic strategy in peripheral T-cell lymphomas. Haematologica 2012; 98:57-64. [PMID: 22801959 DOI: 10.3324/haematol.2012.068510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral T-cell lymphomas are very aggressive hematologic malignancies for which there is no targeted therapy. New, rational approaches are necessary to improve the very poor outcome in these patients. Phosphatidylinositol-3-kinase is one of the most important pathways in cell survival and proliferation. We hypothesized that phosphatidylinositol-3-kinase inhibitors could be rationally selected drugs for treating peripheral T-cell lymphomas. Several phosphatidylinositol-3-kinase isoforms were inhibited genetically (using small interfering RNA) and pharmacologically (with CAL-101 and GDC-0941 compounds) in a panel of six peripheral and cutaneous T-cell lymphoma cell lines. Cell viability was measured by intracellular ATP content; apoptosis and cell cycle changes were checked by flow cytometry. Pharmacodynamic biomarkers were assessed by western blot. The PIK3CD gene, which encodes the δ isoform of phosphatidylinositol-3-kinase, was overexpressed in cell lines and primary samples, and correlated with survival pathways. However, neither genetic nor specific pharmacological inhibition of phosphatidylinositol-3-kinase δ affected cell survival. In contrast, the pan-phosphatidylinositol-3-kinase inhibitor GDC-0941 arrested all T-cell lymphoma cell lines in the G1 phase and induced apoptosis in a subset of them. We identified phospho-GSK3β and phospho-p70S6K as potential biomarkers of phosphatidylinositol-3-kinase inhibitors. Interestingly, an increase in ERK phosphorylation was observed in some GDC -0941-treated T-cell lymphoma cell lines, suggesting the presence of a combination of phosphatidylinositol-3-kinase and MEK inhibitors. A highly synergistic effect was found between the two inhibitors, with the combination enhancing cell cycle arrest at G0/G1 in all T-cell lymphoma cell lines, and reducing cell viability in primary tumor T cells ex vivo. These results suggest that the combined treatment of pan-phosphatidylinositol-3-kinase + MEK inhibitors could be more effective than single phosphatidylinositol-3-kinase inhibitor treatment, and therefore, that this combination could be of therapeutic value for treating peripheral and cutaneous T-cell lymphomas.
Collapse
Affiliation(s)
- Esperanza Martín-Sánchez
- Lymphoma Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ge Q, Moir LM, Trian T, Niimi K, Poniris M, Shepherd PR, Black JL, Oliver BG, Burgess JK. The phosphoinositide 3'-kinase p110δ modulates contractile protein production and IL-6 release in human airway smooth muscle. J Cell Physiol 2012; 227:3044-52. [PMID: 22015454 DOI: 10.1002/jcp.23046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor (TGF) β1 increases pro-inflammatory cytokines and contractile protein expression by human airway smooth muscle (ASM) cells, which could augment airway inflammation and hyperresponsiveness. Phosphoinositide 3' kinase (PI3K) is one of the signaling pathways implicated in TGFβ1 stimulation, and may be altered in asthmatic airways. This study compared the expression of PI3K isoforms by ASM cells from donors with asthma (A), chronic obstructive pulmonary disease (COPD), or neither disease (NA), and investigated the role of PI3K isoforms in the production of TGFβ1 induced pro-inflammatory cytokine and contractile proteins in ASM cells. A cells expressed higher basal levels of p110δ mRNA compared to NA and COPD cells; however COPD cells produced more p110δ protein. TGFβ1 increased 110δ mRNA expression to the same extent in the three groups. Neither the p110δ inhibitor IC87114 (1, 10, 30 µM), the p110β inhibitor TGX221 (0.1, 1, 10 µM) nor the PI3K pan inhibitor LY294002 (3, 10 µM) had any effect on basal IL-6, calponin or smooth muscle α-actin (α-SMA) expression. However, TGFβ1 increased calponin and α-SMA expression was inhibited by IC87114 and LY294002 in all three groups. IC87114, TGX221, and LY294002 reduced TGFβ1 induced IL-6 release in a dose related manner in all groups of ASM cells. PI3K p110δ is important for TGFβ1 induced production of the contractile proteins calponin and α-SMA and the proinflammatory cytokine IL-6 in ASM cells, and may therefore be relevant as a potential therapeutic target to treat both inflammation and airway remodeling.
Collapse
Affiliation(s)
- Qi Ge
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Waugh MG. Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Lett 2012; 325:125-31. [PMID: 22750097 DOI: 10.1016/j.canlet.2012.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/20/2012] [Accepted: 06/24/2012] [Indexed: 12/19/2022]
Abstract
This article focuses on the emerging roles for phosphatidylinositol 4-phosphate and the phosphatidylinositol 4-kinases in cancer. Phosphatidylinositol 4-phosphate is a common substrate for both the phosphatidylinositol 3-kinase and phospholipase C pathways, and has been implicated in the membrane targeting of proteins such as Girdin/GIV and OSBP. Alterations to phosphatidylinositol 4-kinase expression levels can modulate MAP kinase and Akt signalling, and are important for chemoresistance, tumour angiogenesis and the suppression of apoptosis and metastases. Recent improvements in high-throughput screening assays, and the discoveries that some anti-viral molecules are isoform selective phosphatidylinositol 4-kinase inhibitors have advanced the drugability of these enzymes.
Collapse
Affiliation(s)
- Mark G Waugh
- UCL Institute of Liver and Digestive Health, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
108
|
Abstract
The PI3K pathway plays an important role in key cellular functions such as cell growth, proliferation and survival. Genetic and epigenetic alterations in different pathway components lead to aberrant pathway activation and have been observed in high frequencies in various tumor types. Consequently, significant effort has been made to develop antineoplastic agents targeting different nodes in this pathway. Additionally, PI3K pathway status may have predictive and prognostic implications, and may contribute to drug resistance in tumor cells. This article provides an overview of our current knowledge of the PI3K pathway with an emphasis on its application in cancer treatment.
Collapse
Affiliation(s)
- Navid Sadeghi
- Division of Hematology & Oncology, Harold C Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Division of Hematology & Oncology, Harold C Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
109
|
Gross C, Bassell GJ. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110β-selective inhibitor. Mol Med 2012; 18:336-45. [PMID: 22207187 DOI: 10.2119/molmed.2011.00363] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 12/05/2011] [Indexed: 02/06/2023] Open
Abstract
The fragile X mental retardation protein (FMRP) plays a key role for neurotransmitter-mediated signaling upstream of neuronal protein synthesis. Functional loss of FMRP causes the inherited intellectual disability fragile X syndrome (FXS), and leads to increased and stimulus-insensitive neuronal protein synthesis in FXS animal models. Previous studies suggested that excess protein synthesis mediated by dysregulated signal transduction contributes to the majority of neurological defects in FXS, and might be a promising target for therapeutic strategies in patients. However, possible impairments in receptor-dependent protein synthesis have not been evaluated in patient cells so far. Using quantitative fluorescent metabolic labeling, we demonstrate that protein synthesis is exaggerated and cannot be further increased by cytokine stimulation in human fragile X lymphoblastoid cells. Our previous work suggested that loss of FMRP-mediated regulation of protein expression and enzymatic function of the PI3K catalytic subunit p110β contributes to dysregulated protein synthesis in a mouse model of FXS. Here, we demonstrate that these molecular mechanisms are recapitulated in FXS patient cells. Furthermore, we show that treatment with a p110β-selective antagonist rescues excess protein synthesis in synaptoneurosomes from an FXS mouse model and in patient cells. Our work suggests that dys-regulated protein synthesis and PI3K activity in patient cells might be suitable biomarkers to quantify the efficacy of drugs to ameliorate molecular mechanisms underlying FXS, and could be used for drug screens to refine treatment strategies for individual patients. Moreover, we provide rationale to pursue p110β-targeting treatments as potential therapy in FXS, and possibly other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
110
|
Zhao Y, Duan S, Zeng X, Liu C, Davies NM, Li B, Forrest ML. Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol Pharm 2012; 9:1705-16. [PMID: 22494444 DOI: 10.1021/mp3000309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TGX-221 is a potent, selective, and cell membrane permeable inhibitor of the PI3K p110β catalytic subunit. Recent studies showed that TGX-221 has antiproliferative activity against PTEN-deficient tumor cell lines including prostate cancers. The objective of this study was to develop an encapsulation system for parenterally delivering TGX-221 to the target tissue through a prostate-specific membrane aptamer (PSMAa10) with little or no side effects. In this study, PEG-PCL micelles were formulated to encapsulate the drug, and a prodrug strategy was pursued to improve the stability of the carrier system. Fluorescence imaging studies demonstrated that the cellular uptake of both drug and nanoparticles was significantly improved by targeted micelles in a PSMA positive cell line. The area under the plasma concentration time curve of the micelle formulation in nude mice was 2.27-fold greater than that of the naked drug, and the drug clearance rate was 6.16-fold slower. These findings suggest a novel formulation approach for improving site-specific drug delivery of a molecular-targeted prostate cancer treatment.
Collapse
Affiliation(s)
- Yunqi Zhao
- Department of Pharmaceutical Chemistry, The University of Kansas , Simons Laboratories, 2095 Constant Ave. Rm. 136B, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | |
Collapse
|
111
|
Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, Kashishian A, Thompson MA, Castillo M, Cordon-Cardo C, Davé UP, Ferrando A, Lannutti BJ, Diacovo TG. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 2012; 21:459-72. [PMID: 22516257 DOI: 10.1016/j.ccr.2012.02.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/26/2011] [Accepted: 02/24/2012] [Indexed: 12/19/2022]
Abstract
Constitutive phosphoinositide 3-kinase (PI3K)/Akt activation is common in T cell acute lymphoblastic leukemia (T-ALL). Although four distinct class I PI3K isoforms (α, β, γ, δ) could participate in T-ALL pathogenesis, none has been implicated in this process. We report that in the absence of PTEN phosphatase tumor suppressor function, PI3Kγ or PI3Kδ alone can support leukemogenesis, whereas inactivation of both isoforms suppressed tumor formation. The reliance of PTEN null T-ALL on the combined activities of PI3Kγ/δ was further demonstrated by the ability of a dual inhibitor to reduce disease burden and prolong survival in mice as well as prevent proliferation and promote activation of proapoptotic pathways in human tumors. These results support combined inhibition of PI3Kγ/δ as therapy for T-ALL.
Collapse
Affiliation(s)
- Prem S Subramaniam
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Both p110α and p110β isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J 2012; 442:151-9. [PMID: 22150431 PMCID: PMC3268223 DOI: 10.1042/bj20111741] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 12/26/2022]
Abstract
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/− mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/− mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.
Collapse
|
113
|
Class I phosphoinositide 3-kinases in normal and pathologic hematopoietic cells. Curr Top Microbiol Immunol 2012; 362:163-84. [PMID: 23086418 DOI: 10.1007/978-94-007-5025-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Class I phosphoinositide 3-kinases which produce the D3-phosphoinositide second messenger phosphatidylinositol 3,4,5-trisphosphate in response to membrane receptors activation play a critical role in cell proliferation, survival, metabolism, and motility. These lipid kinases and the phosphatases regulating the level of D3-phosphoinositides have been an intense area of research these last two decades. The class I phosphoinositide 3-kinases signaling is found aberrantly activated in numerous human cancers, including in malignant hemopathies, and are important therapeutic targets for cancer therapy. Haematopoiesis is an ongoing process which generates the distinct blood cell types from a common hematopoietic stem cell through the action of a variety of cytokines. In the human adult hematopoiesis occurs primarily in the bone marrow, and defects in hematopoiesis result in diseases, such as anemia, thrombocytopenia, myeloproliferative syndromes, or leukemia. Here we give a brief overview of the role of class I phosphoinositide 3-kinases in hematopoietic stem cells, in hematopoietic lineage development and in leukemia, particularly in acute myeloid leukemia and summarize the potential therapeutic implications.
Collapse
|
114
|
Mellinghoff IK, Schultz N, Mischel PS, Cloughesy TF. Will kinase inhibitors make it as glioblastoma drugs? Curr Top Microbiol Immunol 2012; 355:135-69. [PMID: 22015553 PMCID: PMC3784987 DOI: 10.1007/82_2011_178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Kinase inhibitors have emerged as effective cancer therapeutics in a variety of human cancers. Glioblastoma (GBM), the most common malignant brain tumor in adults, represents a compelling disease for kinase inhibitor therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Attempts to target the Ras-Phosphatidylinositol 3-kinase (PI3K)-mammalian Target of Rapamycin (mTOR) axis in GBM with first generation receptor tyrosine kinase (RTK) inhibitors and rapalogs have been disappointing. However, there is reason for renewed optimism given the now very detailed knowledge of the cancer genome in GBM and a wealth of novel compounds entering the clinic, including next generation RTK inhibitors, class I PI3K inhibitors, mTOR kinase inhibitors (TORKinibs), and dual PI3(K)/mTOR inhibitors. This chapter reviews common genetic alterations in growth factor signaling pathways in GBM, their validation as therapeutic targets in this disease, and strategies for future clinical development of kinase inhibitors for high grade glioma.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department and Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | |
Collapse
|
115
|
Abstract
UNLABELLED Several phosphoinositide 3-kinase (PI3K) inhibitors are in the clinic and many more are in preclinical development. CAL-101, a selective inhibitor of the PI3Kδ isoform, has shown remarkable success in certain hematologic malignancies. Although PI3Kδ signaling plays a central role in lymphocyte biology, the degree of single-agent therapeutic activity of CAL-101 during early-phase development has been somewhat unexpected. CAL-101 works in part by blocking signals from the microenvironment that normally sustain leukemia and lymphoma cells in a protective niche. As PI3Ks enter the arena of molecular-targeted therapies, CAL-101 provides proof of principle that isoform-selective compounds can be effective in selected cancer types and patient populations. SIGNIFICANCE A key question is whether compounds targeting a single PI3K catalytic isoform can provide meaningful single agent efficacy in cancer cells that express multiple isoforms. Clinical studies of the drug CAL-101 have provided a significant advance by showing that selective targeting of PI3Kδ achieves efficacy in chronic lymphocytic leukemia, in part through targeting the tumor microenvironment.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, Irvine, California 92697-3900, USA.
| | | |
Collapse
|
116
|
Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene 2011; 31:3213-22. [PMID: 22037215 PMCID: PMC3275680 DOI: 10.1038/onc.2011.495] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Women with type 2 diabetes (T2DM) are at greater risk of developing and dying from breast cancer than women without T2DM. Insulin resistance and hyperinsulinemia underlie the pathogenesis of T2DM. In the MKR mouse model of insulin resistance, we have previously shown increased activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway in association with accelerated mammary tumor growth. In this study, we demonstrate that inhibiting PI3K with the oral pan-class I PI3K inhibitor, NVP-BKM120 reduced the growth of Met-1 and MCNeuA mammary tumor orthografts in the MKR mouse. NVP-BKM120 treatment decreased phosphorylation of Akt and S6 ribosomal protein (S6rp); no change in Erk1/2 phosphorylation was seen. Hyperglycemia, hypertriglyceridemia and greater hyperinsulinemia developed in the MKR mice treated with NVP-BKM120. We previously reported reduced tumor growth using intraperitoneal rapamycin in the MKR mouse, with the development of hyperglycemia and hypertriglyceridemia. Therefore, we examined whether the oral PI3K/mTOR inhibitor NVP-BEZ235 augmented the tumor suppressing effects of PI3K inhibition. We also investigated the effect of targeted PI3K/mTOR inhibition on PI3K/Akt/mTOR and Erk1/2 signaling, and the potential effects on glycemia. NVP-BEZ235 suppressed the growth of Met-1 and MCNeuA tumor orthografts, and decreased Akt and S6rp phosphorylation, despite increased Erk1/2 phosphorylation in Met-1 orthografts of MKR mice. Less marked hyperglycemia and hyperinsulinemia developed with NVP-BEZ235 than NVP-BKM120. Overall, the results of this study demonstrated that inhibiting PI3K/Akt/mTOR signaling with the oral agents NVP-BKM120 and NVP-BEZ235 decreased mammary tumor growth in the hyperinsulinemic MKR mouse. Inhibiting PI3K alone led to more severe metabolic derangement than inhibiting both PI3K and mTOR. Therefore, PI3K may be an important target for the treatment of breast cancer in women with insulin resistance. Monitoring for hyperglycemia and dyslipidemia should be considered when using these agents in humans, given the metabolic changes detected in this study.
Collapse
|
117
|
Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskär K. p37δ is a new isoform of PI3K p110δ that increases cell proliferation and is overexpressed in tumors. Oncogene 2011; 31:3277-86. [PMID: 22020336 DOI: 10.1038/onc.2011.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinases (PI3Ks) regulate cell growth, proliferation and survival, and are frequently affected in human cancer. PI3K is composed of a catalytic subunit, p110, and a regulatory subunit, p85. The PI3K catalytic subunit p110δ is encoded by PIK3CD and contains p85- and RAS-binding domains, and a kinase domain. Here we present an alternatively spliced PIK3CD transcript encoding a previously unknown protein, p37δ, and demonstrate that this protein is expressed in human ovarian and colorectal tumors. p37δ retains the p85-binding domain and a fraction of the RAS-binding domain, lacks the catalytic domain, and has a unique carboxyl-terminal region. In contrast to p110δ, which stabilizes p85, p37δ promoted p85 sequestering. Despite the truncated RAS-binding domain, p37δ bound to RAS and we found a strong positive correlation between the protein levels of p37δ and RAS. Overexpressing p37δ, but not p110δ, increased the proliferation and invasive properties of HEK-293 cells and mouse embryonic fibroblasts. Cells overexpressing p37δ showed a quicker phosphorylation response of AKT and ERK1/2 following serum stimulation. Ubiquitous expression of human p37δ in the fruit fly increased body size, DNA content and phosphorylated ERK1/2 levels. Thus, p37δ appears to be a new tumor-specific isoform of p110δ with growth-promoting properties.
Collapse
Affiliation(s)
- S Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
118
|
Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal 2011; 4:re2. [PMID: 22009150 DOI: 10.1126/scisignal.2002165] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are implicated in a broad spectrum of cellular activities, such as growth, proliferation, differentiation, migration, and metabolism. Activation of class I PI3Ks by mutation or overexpression correlates with the development and maintenance of various human cancers. These PI3Ks are heterodimers, and the activity of the catalytic subunits is tightly controlled by the associated regulatory subunits. Although the same p85 regulatory subunits associate with all class IA PI3Ks, the functional outcome depends on the isotype of the catalytic subunit. New PI3K partners that affect the signaling by the PI3K heterodimers have been uncovered, including phosphate and tensin homolog (PTEN), cyclic adenosine monophosphate-dependent protein kinase (PKA), and nonstructural protein 1. Interactions with PI3K regulators modulate the intrinsic membrane affinity and either the rate of phosphoryl transfer or product release. Crystal structures for the class I and class III PI3Ks in complexes with associated regulators and inhibitors have contributed to developing isoform-specific inhibitors and have shed light on the numerous regulatory mechanisms controlling PI3K activation and inhibition.
Collapse
Affiliation(s)
- Oscar Vadas
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB20QH, UK.
| | | | | | | | | |
Collapse
|
119
|
Abstract
The American Association for Cancer Research (AACR) Special Conference on Targeting PI3K/mTOR Signaling in Cancer was held in San Francisco, California from February 24 to 27, 2011. The meeting was cochaired by Drs. Lewis C. Cantley, David M. Sabatini, and Funda Meric-Bernstam. The main focus of this event was the therapeutic potential of drugs targeting the PI3K/mTOR signaling pathway for the treatment of cancer. This article summarizes the recent discoveries in the field, with particular emphasis on the major themes of the conference.
Collapse
Affiliation(s)
- Brooke M Emerling
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
120
|
A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochem J 2011; 438:53-62. [PMID: 21668414 PMCID: PMC3174055 DOI: 10.1042/bj20110502] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.
Collapse
|
121
|
Conte E, Fruciano M, Fagone E, Gili E, Caraci F, Iemmolo M, Crimi N, Vancheri C. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms. PLoS One 2011; 6:e24663. [PMID: 21984893 PMCID: PMC3184941 DOI: 10.1371/journal.pone.0024663] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/16/2011] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-β (TGF-β)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-β signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-β: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-β-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110δ and p110γ are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and β. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110γ and p110α in both TGF-β-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Prognostic Value of Elevated SHIP2 Expression in Laryngeal Squamous Cell Carcinoma. Arch Med Res 2011; 42:589-95. [DOI: 10.1016/j.arcmed.2011.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022]
|
123
|
Differential effects of the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, on Akt activation and apoptosis. Cell Death Dis 2011; 1:e106. [PMID: 21218173 PMCID: PMC3015391 DOI: 10.1038/cddis.2010.84] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking.
Collapse
|
124
|
Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol Cell Biol 2011; 31:2122-33. [PMID: 21383062 DOI: 10.1128/mcb.01313-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Class I(A) phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes composed of a p85 regulatory and a p110 catalytic subunit that induce the formation of 3-polyphosphoinositides, which mediate cell survival, division, and migration. There are two ubiquitous PI3K isoforms p110α and p110β that have nonredundant functions in embryonic development and cell division. However, whereas p110α concentrates in the cytoplasm, p110β localizes to the nucleus and modulates nuclear processes such as DNA replication and repair. At present, the structural features that determine p110β nuclear localization remain unknown. We describe here that association with the p85β regulatory subunit controls p110β nuclear localization. We identified a nuclear localization signal (NLS) in p110β C2 domain that mediates its nuclear entry, as well as a nuclear export sequence (NES) in p85β. Deletion of p110β induced apoptosis, and complementation with the cytoplasmic C2-NLS p110β mutant was unable to restore cell survival. These studies show that p110β NLS and p85β NES regulate p85β/p110β nuclear localization, supporting the idea that nuclear, but not cytoplasmic, p110β controls cell survival.
Collapse
|
125
|
Brown JR, Auger KR. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol Biol 2011; 11:4. [PMID: 21208444 PMCID: PMC3024228 DOI: 10.1186/1471-2148-11-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/05/2011] [Indexed: 12/03/2022] Open
Abstract
Background Phosphoinositide lipid kinases (PIKs) generate specific phosphorylated variants of phosatidylinositols (PtdIns) that are critical for second messenger signaling and cellular membrane remodeling. Mammals have 19 PIK isoforms spread across three major families: the PtIns 3-kinases (PI3Ks), PtdIns 4-kinases (PI4Ks), and PtdIns-P (PIP) kinases (PIPKs). Other eukaryotes have fewer yet varying PIK complements. PIKs are also an important, emerging class of drug targets for many therapeutic areas including cancer, inflammatory and metabolic diseases and host-pathogen interactions. Here, we report the genomic occurrences and evolutionary relationships or phylogenomics of all three PIK families across major eukaryotic groups and suggest potential ramifications for drug discovery. Results Our analyses reveal four core eukaryotic PIKs which are type III PIK4A and PIK4B, and at least one homolog each from PI3K (possibly PIK3C3 as the ancestor) and PIP5K families. We also applied evolutionary analyses to PIK disease ontology and drug discovery. Mutated PIK3CA are known to be oncogenic and several inhibitors are in anti-cancer clinical trials. We found conservation of activating mutations of PIK3CA in paralogous isoforms suggesting specific functional constraints on these residues. By mapping published compound inhibition data (IC50s) onto a phylogeny of PI3Ks, type II PI4Ks and distantly related, MTOR, ATM, ATR and PRKDC kinases, we also show that compound polypharmacology corresponds to kinase evolutionary relationships. Finally, we extended the rationale for drugs targeting PIKs of malarial Plasmodium falciparum, and the parasites, Leishmania sp. and Trypanosoma sp. by identifying those PIKs highly divergent from human homologs. Conclusion Our phylogenomic analysis of PIKs provides new insights into the evolution of second messenger signaling. We postulate two waves of PIK diversification, the first in metazoans with a subsequent expansion in cold-blooded vertebrates that was post-emergence of Deutrostomia\Chordata but prior to the appearance of mammals. Reconstruction of the evolutionary relationships among these lipid kinases also adds to our understanding of their roles in various diseases and assists in their development as potential drug targets.
Collapse
Affiliation(s)
- James R Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, P,O, Box 5089, Collegeville, PA 19426-0989, USA.
| | | |
Collapse
|
126
|
Stephens L, Hawkins P. Signalling via class IA PI3Ks. ACTA ACUST UNITED AC 2010; 51:27-36. [PMID: 21035483 DOI: 10.1016/j.advenzreg.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Len Stephens
- The Babraham Institute, Babraham, Cambridge, UK.
| | | |
Collapse
|
127
|
Gratacap MP, Guillermet-Guibert J, Martin V, Chicanne G, Tronchère H, Gaits-Iacovoni F, Payrastre B. Regulation and roles of PI3Kβ, a major actor in platelet signaling and functions. ACTA ACUST UNITED AC 2010; 51:106-16. [PMID: 21035500 DOI: 10.1016/j.advenzreg.2010.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 01/12/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are important signaling enzymes involved in the regulation of a number of critical cell functions. Significant progress has been made during the last few years in defining the implication of individual PI3K isoforms. The role of the class IA PI3Kβ in different cell types has only been recently uncovered by the use of isoform-selective inhibitors and the development of mouse models harboring p110β catalytic subunit knock-out or germline knock-in of a kinase-dead allele of p110β. Although it is classically admitted that class IA PI3Ks are activated by receptor tyrosine kinases through recruitment of the regulatory subunits to specific tyrosine phosphorylated motifs via their SH2 domains, PI3Kβ is activated downstream of G protein-coupled receptors, and by co-operation between heterotrimeric G proteins and tyrosine kinases. PI3Kβ has been extensively studied in platelets where it appears to play an important role downstream of ITAM signaling, G protein-coupled receptors and aIIbβ3 integrin. Accordingly, mouse exhibiting p110β inactivation selectively in megakaryocyte/platelets are resistant to thromboembolism induced by carotid injury. The present review summarizes recent data concerning the mechanisms of PI3Kβ regulation and the roles of this PI3K isoform in blood platelet functions and other cell types.
Collapse
Affiliation(s)
- Marie-Pierre Gratacap
- Inserm, U563, Université Toulouse III, Centre de Physiopathologie de Toulouse Purpan, CHU-Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
128
|
|
129
|
PI3-kinase p110α mediates β1 integrin-induced Akt activation and membrane protrusion during cell attachment and initial spreading. Cell Signal 2010; 22:1838-48. [PMID: 20667469 DOI: 10.1016/j.cellsig.2010.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/30/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
Integrin-mediated cell adhesion activates several signaling effectors, including phosphatidylinositol 3-kinase (PI3K), a central mediator of cell motility and survival. To elucidate the molecular mechanisms of this important pathway the specific members of the PI3K family activated by different integrins have to be identified. Here, we studied the role of PI3K catalytic isoforms in β1 integrin-induced lamellipodium protrusion and activation of Akt in fibroblasts. Real-time total internal reflection fluorescence imaging of the membrane-substrate interface demonstrated that β1 integrin-mediated attachment induced rapid membrane spreading reaching essentially maximal contact area within 5-10 min. This process required actin polymerization and involved activation of PI3K. Isoform-selective pharmacological inhibition identified p110α as the PI3K catalytic isoform mediating both β1 integrin-induced cell spreading and Akt phosphorylation. A K756L mutation in the membrane-proximal part of the β1 integrin subunit, known to cause impaired Akt phosphorylation after integrin stimulation, induced slower cell spreading. The initial β1 integrin-regulated cell spreading as well as Akt phosphorylation were sensitive to the tyrosine kinase inhibitor PP2, but were not dependent on Src family kinases, FAK or EGF/PDGF receptor transactivation. Notably, cells expressing a Ras binding-deficient p110α mutant were severely defective in integrin-induced Akt phosphorylation, but exhibited identical membrane spreading kinetics as wild-type p110α cells. We conclude that p110α mediates β1 integrin-regulated activation of Akt and actin polymerization important for survival and lamellipodia dynamics. This could contribute to the tumorigenic properties of cells expressing constitutively active p110α.
Collapse
|
130
|
Vanhaesebroeck B, Vogt PK, Rommel C. PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol 2010; 347:1-19. [PMID: 20549473 DOI: 10.1007/82_2010_65] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here, we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here.PI3K has become a very intense area of research, with over 2,000 publications on PI3K in PubMed for 2009 alone. The expectations for a therapeutic impact of intervention with PI3K activity are high, and progress in the clinical arena is being monitored by many. However, targeted therapies almost invariably encounter roadblocks, often exposing unresolved questions in the basic understanding of the target. PI3K will most likely be no exception. Below, we describe some of these early "surprises" and how these inform and shape basic science investigations.
Collapse
|