101
|
At least three xenon binding sites in the glycine binding domain of the N-methyl D-aspartate receptor. Arch Biochem Biophys 2022; 724:109265. [DOI: 10.1016/j.abb.2022.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
|
102
|
Wu Y, Li X, Hua T, Liu ZJ, Liu H, Zhao S. MD Simulations Revealing Special Activation Mechanism of Cannabinoid Receptor 1. Front Mol Biosci 2022; 9:860035. [PMID: 35425811 PMCID: PMC9004671 DOI: 10.3389/fmolb.2022.860035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is gaining much interest for its regulating role in the central nervous system and its value as a drug target. Structures of CB1 in inactive and active states have revealed conformational change details that are not common in other GPCRs. Here, we performed molecular dynamics simulations of CB1 in different ligand binding states and with mutations to reveal its activation mechanism. The conformational change of the “twin toggle switch” residues F2003.36 and W3566.48 that correlates with ligand efficacy is identified as a key barrier step in CB1 activation. Similar conformational change of residues 3.36/6.48 is also observed in melanocortin receptor 4, showing this “twin toggle switch” residue pair is crucial for the activation of multiple GPCR members.
Collapse
Affiliation(s)
- Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| |
Collapse
|
103
|
Mozumder S, Bej A, Sengupta J. Ligand-Dependent Modulation of the Dynamics of Intracellular Loops Dictates Functional Selectivity of 5-HT 2AR. J Chem Inf Model 2022; 62:2522-2537. [PMID: 35324173 DOI: 10.1021/acs.jcim.2c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serotonin 2A receptor (5-HT2AR) subtype of the G protein-coupled receptor (GPCR) family is involved in a plethora of neuromodulatory functions (e.g., neurogenesis, sleep, and cognitive processes). 5-HT2AR is the target of pharmacologically distinct classes of ligands, binding of which either activate or inactivate the receptor. Although high-resolution structures of 5-HT2AR as well as several other 5-HT GPCRs provided snapshots of both active and inactive conformational states, these structures, representing a truncated form of the receptor, cannot fully explain the mechanism of conformational transitions during their function. Importantly, biochemical studies have suggested the importance of intracellular loops in receptor functions. In our previous study, a model of the ligand-free form of 5-HT2AR with the third intracellular loop (ICL3) has been meticulously built. Here, we have investigated the functional regulation of 5-HT2AR with intact intracellular loops in ligand-free and five distinct ligand-bound configurations using unbiased atomistic molecular dynamics (MD) simulations. The selected ligands belong to either of the full, partial, or inverse agonist classes, which exert distinct pharmacological responses. We have observed significant structural, dynamic, and thermodynamic differences within ligand-bound complexes. Our results revealed, for the first time, that either activation or inactivation of the receptor upon specific ligand binding is primarily achieved through conformational transitions of its second and third intracellular loops (ICL2 and ICL3). A remarkable allosteric cross-talk between the ligand-binding site and the distal intracellular parts of the receptor, where binding of a specific ligand thermodynamically controls (either stabilizes or destabilizes) the intracellular region, consisting of crucial dynamic elements ICL2 and ICL3, and differential conformational transitions of these loops determine ligand-dependent functional selectivity.
Collapse
Affiliation(s)
- Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
104
|
Do HN, Wang J, Bhattarai A, Miao Y. GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling. J Chem Theory Comput 2022; 18:1423-1436. [PMID: 35200019 PMCID: PMC9773012 DOI: 10.1021/acs.jctc.1c01055] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We introduce a Gaussian-accelerated molecular dynamics (GaMD), deep learning (DL), and free energy profiling workflow (GLOW) to predict molecular determinants and map free energy landscapes of biomolecules. All-atom GaMD-enhanced sampling simulations are first performed on biomolecules of interest. Structural contact maps are then calculated from GaMD simulation frames and transformed into images for building DL models using a convolutional neural network. Important structural contacts are further determined from DL models of attention maps of the structural contact gradients, which allow us to identify the system reaction coordinates. Finally, free energy profiles are calculated for the selected reaction coordinates through energetic reweighting of the GaMD simulations. We have also successfully demonstrated GLOW for the characterization of activation and allosteric modulation of a G protein-coupled receptor, using the adenosine A1 receptor (A1AR) as a model system. GLOW findings are highly consistent with previous experimental and computational studies of the A1AR, while also providing further mechanistic insights into the receptor function. In summary, GLOW provides a systematic approach to mapping free energy landscapes of biomolecules. The GLOW workflow and its user manual can be downloaded at http://miaolab.org/GLOW.
Collapse
Affiliation(s)
- Hung N. Do
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047
| | - Jinan Wang
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047
| | - Apurba Bhattarai
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047
| | - Yinglong Miao
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047,Corresponding author:
| |
Collapse
|
105
|
Kinetic model of GPCR-G protein interactions reveals allokairic modulation of signaling. Nat Commun 2022; 13:1202. [PMID: 35260563 PMCID: PMC8904551 DOI: 10.1038/s41467-022-28789-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Established models of ternary complex formation between hormone, G protein coupled receptor (GPCR), and G protein assume that all interactions occur under equilibrium conditions. However, recent studies have established that the lifetimes of these interactions are comparable to the duration of hormone activated GPCR signaling. To simulate interactions during such non-equilibrium conditions, we propose a kinetic model wherein the receptor undergoes rate-limiting transitions between two hormone-bound active states. Simulations, using experimentally measured parameters, demonstrate transient states in ternary complex formation, and delineate the phenomenon of GPCR priming, wherein non-cognate G proteins substantially enhance cognate G protein signaling. Our model reveals that kinetic barriers of slow receptor interconversion can be overcome through allokairic modulation, a regulatory mechanism of ternary complex formation and downstream signaling. Experimentally validated kinetic simulations uncover transient enhancement of GPCR ternary complex formation by allokairic effectors.
Collapse
|
106
|
Jacquemard C, Bret G, Grutter T, Kellenberger E. Comparing transmembrane protein structures with ATOLL. Bioinformatics 2022; 38:1743-1744. [PMID: 34954796 DOI: 10.1093/bioinformatics/btab860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY The 3D structure of transmembrane helices plays a key role in the function of membrane proteins. While visual inspection can usually discern the distinctive features of a helix bundle, simply translating them into a 2D diagram can be difficult. ATOLL (Aligned Transmembrane dOmains Layout fLattening) projects the helix bundle onto the lipid bilayer plane, thereby facilitating the comparison of different structures of the same membrane protein or structures of different membrane proteins. AVAILABILITY AND IMPLEMENTATION ATOLL is a program written in Python3. The source code is freely available on the web at https://github.com/LIT-CCM-lab/ATOLL. ATOLL is implemented into a web server (https://atoll.drugdesign.unistra.fr/). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Célien Jacquemard
- UMR7200 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67400 Illkirch-Graffenstaden, France
| | - Guillaume Bret
- UMR7200 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67400 Illkirch-Graffenstaden, France
| | - Thomas Grutter
- UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch-Graffenstaden, France
| | - Esther Kellenberger
- UMR7200 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
107
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
108
|
Madhu MK, Debroy A, Murarka RK. Molecular Insights into Phosphorylation-Induced Allosteric Conformational Changes in a β 2-Adrenergic Receptor. J Phys Chem B 2022; 126:1917-1932. [PMID: 35196859 DOI: 10.1021/acs.jpcb.1c08610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The large conformational flexibility of G protein-coupled receptors (GPCRs) has been a puzzle in structural and pharmacological studies for the past few decades. Apart from structural rearrangements induced by ligands, enzymatic phosphorylations by GPCR kinases (GRKs) at the carboxy-terminal tail (C-tail) of a GPCR also make conformational alterations to the transmembrane helices and facilitates the binding of one of its transducer proteins named β-arrestin. The phosphorylation-induced conformational transition of the receptor that causes specific binding to β-arrestin but prevents the association of other transducers such as G proteins lacks atomistic understanding and is elusive to experimental studies. Using microseconds of all-atom conventional and Gaussian accelerated molecular dynamics (GaMD) simulations, we investigate the allosteric mechanism of phosphorylation induced-conformational changes in β2-adrenergic receptor, a well-characterized GPCR model system. Free energy profiles reveal that the phosphorylated receptor samples a new conformational state in addition to the canonical active state corroborating with recent nuclear magnetic resonance experimental findings. The new state has a smaller intracellular cavity that is likely to accommodate β-arrestin better than G protein. Using contact map and inter-residue interaction energy calculations, we found the phosphorylated C-tail adheres to the cytosolic surface of the transmembrane domain of the receptor. Transfer entropy calculations show that the C-tail residues drive the correlated motions of TM residues, and the allosteric signal is relayed via several residues at the cytosolic surface. Our results also illustrate how the redistribution of inter-residue nonbonding interaction couples with the allosteric communication from the phosphorylated C-tail to the transmembrane. Atomistic insight into phosphorylation-induced β-arrestin specific conformation is therapeutically important to design drugs with higher efficacy and fewer side effects. Our results, therefore, open novel opportunities to fine-tune β-arrestin bias in GPCR signaling.
Collapse
Affiliation(s)
- Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Annesha Debroy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| |
Collapse
|
109
|
Warwicker J. The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, With Application to the Spike Protein of SARS-CoV-2. Front Mol Biosci 2022; 9:834011. [PMID: 35252354 PMCID: PMC8894873 DOI: 10.3389/fmolb.2022.834011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Since pH sensitivity has a fundamental role in biology, much effort has been committed to establishing physical models to rationalize and predict pH dependence from molecular structures. Two of the key challenges are to accurately calculate ionizable group solvation and hydration and then to apply this modeling to all conformations relevant to the process in question. Explicit solvent methods coupled to molecular dynamics simulation are increasingly complementing lower resolution implicit solvent techniques, but equally, the scale of biological data acquisition leaves a role for high-throughput modeling. Additionally, determination of ranges of structures for a system allows sampling of key stages in solvation. In a review of the area, it is emphasized that pH sensors in biology beyond the most obvious candidate (histidine side chain, with an unshifted pK a near neutral pH) should be considered; that modeling can benefit from other concepts in bioinformatics, in particular modulation of interactions and function in families of homologs; and that it can also be beneficial to incorporate as many experimental structures as possible, to mitigate against small variations in conformation and to analyze larger, functional, conformational changes. These aspects are then demonstrated with new work on the spike protein of SARS-CoV-2, looking at the pH dependence of variants, including prediction of a change in the balance of locked, closed, and open forms at neutral pH for the Omicron variant spike protein.
Collapse
Affiliation(s)
- Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
110
|
Do HN, Haldane A, Levy RM, Miao Y. Unique features of different classes of G-protein-coupled receptors revealed from sequence coevolutionary and structural analysis. Proteins 2022; 90:601-614. [PMID: 34599827 PMCID: PMC8738117 DOI: 10.1002/prot.26256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and represent the primary targets of about one third of currently marketed drugs. Despite the critical importance, experimental structures have been determined for only a limited portion of GPCRs and functional mechanisms of GPCRs remain poorly understood. Here, we have constructed novel sequence coevolutionary models of the A and B classes of GPCRs and compared them with residue contact frequency maps generated with available experimental structures. Significant portions of structural residue contacts were successfully detected in the sequence-based covariational models. "Exception" residue contacts predicted from sequence coevolutionary models but not available structures added missing links that were important for GPCR activation and allosteric modulation. Moreover, we identified distinct residue contacts involving different sets of functional motifs for GPCR activation, such as the Na+ pocket, CWxP, DRY, PIF, and NPxxY motifs in the class A and the HETx and PxxG motifs in the class B. Finally, we systematically uncovered critical residue contacts tuned by allosteric modulation in the two classes of GPCRs, including those from the activation motifs and particularly the extracellular and intracellular loops in class A GPCRs. These findings provide a promising framework for rational design of ligands to regulate GPCR activation and allosteric modulation.
Collapse
Affiliation(s)
- Hung N Do
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047
| | - Allan Haldane
- Department of Chemistry, Center for Biophysics and Computational Biology, Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122,Corresponding authors: and
| | - Ronald M Levy
- Department of Chemistry, Center for Biophysics and Computational Biology, Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122
| | - Yinglong Miao
- The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047,Corresponding authors: and
| |
Collapse
|
111
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
112
|
Joshi M, Nikte SV, Sengupta D. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β 2-adrenergic receptor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:361-396. [PMID: 35034724 DOI: 10.1016/bs.apcsb.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the β2-adrenergic receptor (β2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.
Collapse
Affiliation(s)
- Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Siddhanta V Nikte
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
113
|
Cao D, Yu J, Wang H, Luo Z, Liu X, He L, Qi J, Fan L, Tang L, Chen Z, Li J, Cheng J, Wang S. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 2022; 375:403-411. [PMID: 35084960 DOI: 10.1126/science.abl8615] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drugs that target the human serotonin 2A receptor (5-HT2AR) are used to treat neuropsychiatric diseases; however, many have hallucinogenic effects, hampering their use. Here, we present structures of 5-HT2AR complexed with the psychedelic drugs psilocin (the active metabolite of psilocybin) and d-lysergic acid diethylamide (LSD), as well as the endogenous neurotransmitter serotonin and the nonhallucinogenic psychedelic analog lisuride. Serotonin and psilocin display a second binding mode in addition to the canonical mode, which enabled the design of the psychedelic IHCH-7113 (a substructure of antipsychotic lumateperone) and several 5-HT2AR β-arrestin-biased agonists that displayed antidepressant-like activity in mice but without hallucinogenic effects. The 5-HT2AR complex structures presented herein and the resulting insights provide a solid foundation for the structure-based design of safe and effective nonhallucinogenic psychedelic analogs with therapeutic effects.
Collapse
Affiliation(s)
- Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Yu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Licong He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Luyu Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lingjie Tang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
114
|
Allosteric modulation of dopamine D 2L receptor in complex with G i1 and G i2 proteins: the effect of subtle structural and stereochemical ligand modifications. Pharmacol Rep 2022; 74:406-424. [PMID: 35064921 PMCID: PMC8964653 DOI: 10.1007/s43440-021-00352-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Background Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson’s disease. Methods To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. Results Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. Conclusions Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00352-x.
Collapse
|
115
|
Wang Y, Li M, Liang W, Shi X, Fan J, Kong R, Liu Y, Zhang J, Chen T, Lu S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput Struct Biotechnol J 2022; 20:628-639. [PMID: 35140883 PMCID: PMC8801358 DOI: 10.1016/j.csbj.2022.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Class B G protein-coupled receptors (GPCRs) are important targets in the treatment of metabolic syndrome and diabetes. Although multiple structures of class B GPCRs-G protein complexes have been elucidated, the detailed activation mechanism of the receptors remains unclear. Here, we combine Gaussian accelerated molecular dynamics simulations and Markov state models (MSM) to investigate the activation mechanism of a canonical class B GPCR, human glucagon receptor-GCGR, including the negative allosteric modulator-bound inactive state, the agonist glucagon-bound active state, and both glucagon- and Gs-bound fully active state. The free-energy landscapes of GCGR show the conformational ensemble consisting of three activation-associated states: inactive, active, and fully active. The structural analysis indicates the high dynamics of GCGR upon glucagon binding with both active and inactive conformations in the ensemble. Significantly, the H8 and TM6 exhibits distinct features from the inactive to the active states. The additional simulations demonstrate the role of H8 in the recruitment of Gs. Gs binding presents a crucial function of stabilizing the glucagon binding site and MSM highlights the absolute requirement of Gs to help the GCGR reach the fully active state. Together, our results reveal the detailed activation mechanism of GCGR from the view of conformational dynamics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchao Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200023, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
116
|
Chen Y, Fleetwood O, Pérez-Conesa S, Delemotte L. Allosteric Effect of Nanobody Binding on Ligand-Specific Active States of the β2 Adrenergic Receptor. J Chem Inf Model 2021; 61:6024-6037. [PMID: 34780174 PMCID: PMC8715506 DOI: 10.1021/acs.jcim.1c00826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nanobody binding
stabilizes G-protein-coupled receptors (GPCR)
in a fully active state and modulates their affinity for bound ligands.
However, the atomic-level basis for this allosteric regulation remains
elusive. Here, we investigate the conformational changes induced by
the binding of a nanobody (Nb80) on the active-like β2 adrenergic
receptor (β2AR) via enhanced sampling molecular dynamics simulations.
Dimensionality reduction analysis shows that Nb80 stabilizes structural
features of the β2AR with an ∼14 Å outward movement
of transmembrane helix 6 and a close proximity of transmembrane (TM)
helices 5 and 7, and favors the fully active-like conformation of
the receptor, independent of ligand binding, in contrast to the conditions
under which no intracellular binding partner is bound, in which case
the receptor is only stabilized in an intermediate-active state. This
activation is supported by the residues located at hotspots located
on TMs 5, 6, and 7, as shown by supervised machine learning methods.
Besides, ligand-specific subtle differences in the conformations assumed
by intracellular loop 2 and extracellular loop 2 are captured from
the trajectories of various ligand-bound receptors in the presence
of Nb80. Dynamic network analysis further reveals that Nb80 binding
triggers tighter and stronger local communication networks between
the Nb80 and the ligand-binding sites, primarily involving residues
around ICL2 and the intracellular end of TM3, TM5, TM6, as well as
ECL2, ECL3, and the extracellular ends of TM6 and TM7. In particular,
we identify unique allosteric signal transmission mechanisms between
the Nb80-binding site and the extracellular domains in conformations
modulated by a full agonist, BI167107, and a G-protein-biased partial
agonist, salmeterol, involving mainly TM1 and TM2, and TM5, respectively.
Altogether, our results provide insights into the effect of intracellular
binding partners on the GPCR activation mechanism, which should be
taken into account in structure-based drug discovery.
Collapse
Affiliation(s)
- Yue Chen
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, SE-17121 Solna, Sweden
| | - Oliver Fleetwood
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, SE-17121 Solna, Sweden
| | - Sergio Pérez-Conesa
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, SE-17121 Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, SE-17121 Solna, Sweden
| |
Collapse
|
117
|
Biswas AD, Catte A, Mancini G, Barone V. Analysis of L-DOPA and droxidopa binding to human β 2-adrenergic receptor. Biophys J 2021; 120:5631-5643. [PMID: 34767786 PMCID: PMC8715240 DOI: 10.1016/j.bpj.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, an increasing number of studies has been devoted to a deeper understanding of the molecular process involved in the binding of various agonists and antagonists to active and inactive conformations of β2-adrenergic receptor (β2AR). The 3.2 Å x-ray crystal structure of human β2AR active state in combination with the endogenous low affinity agonist adrenaline offers an ideal starting structure for studying the binding of various catecholamines to adrenergic receptors. We show that molecular docking of levodopa (L-DOPA) and droxidopa into rigid and flexible β2AR models leads for both ligands to binding anchor sites comparable to those experimentally reported for adrenaline, namely D113/N312 and S203/S204/S207 side chains. Both ligands have a hydrogen bond network that is extremely similar to those of noradrenaline and dopamine. Interestingly, redocking neutral and protonated versions of adrenaline to rigid and flexible β2AR models results in binding poses that are more energetically stable and distinct from the x-ray crystal structure. Similarly, lowest energy conformations of noradrenaline and dopamine generated by docking into flexible β2AR models had binding free energies lower than those of best poses in rigid receptor models. Furthermore, our findings show that L-DOPA and droxidopa molecules have binding affinities comparable to those predicted for adrenaline, noradrenaline, and dopamine, which are consistent with previous experimental and computational findings and supported by the molecular dynamics simulations of β2AR-ligand complexes performed here.
Collapse
|
118
|
Smith SO. Deconstructing the transmembrane core of class A G protein-coupled receptors. Trends Biochem Sci 2021; 46:1017-1029. [PMID: 34538727 PMCID: PMC8595765 DOI: 10.1016/j.tibs.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Class A G protein-coupled receptors have evolved to recognize ligands ranging from small-molecule odorants to proteins. Although they are among the most diverse membrane receptors in eukaryotic organisms, they possess a highly conserved core within their seven-transmembrane helix framework. The conservation of the transmembrane core has led to the idea of a common mechanism by which ligand binding is coupled to the outward rotation of helix H6, the hallmark of an active receptor. Nevertheless, there is still no consensus on the mechanism of coupling or on the roles of specific residues within the core. Recent insights from crystallography and NMR spectroscopy provide a way to decompose the core into its essential structural and functional elements that shed new light on this important region.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
119
|
Chen J, Liu J, Yuan Y, Chen X, Zhang F, Pu X. Molecular Mechanisms of Diverse Activation Stimulated by Different Biased Agonists for the β2-Adrenergic Receptor. J Chem Inf Model 2021; 62:5175-5192. [PMID: 34802238 DOI: 10.1021/acs.jcim.1c01016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β2AR is an important drug target protein involving many diseases. Biased drugs induce specific signaling and provide additional clinical utility to optimize β2AR-based therapies. However, the biased signaling mechanism has not been elucidated. Motivated by the issue, we chose four agonists with divergent bias (balanced agonist, G-protein-biased agonist, and β-arrestin-biased agonists) and utilized Gaussian accelerated molecular dynamics simulation coupled with a dynamic network to probe the molecular mechanisms of distinct biased activation induced by the structural differences between the four agonists. Our simulations reveal that the G-protein-biased agonist induces an open conformation with the outward shifts of TM6 and TM7 for the intracellular domain, which will be beneficial to couple G protein. In contrast, the β-arrestin-biased agonists regulate an occluded conformation with a slightly outward movement of TM6 and an inward shift of TM7, which should favor β-arrestin signaling. The balanced agonist does not induce an observable outward shift for TM6 but, along with a slight tilt for TM7, leads to an inactive-like conformation. In addition, our results reveal the first time that ICL3 presents specific conformations with different agonists. The G-protein-biased agonist drives ICL3 to open so that the G protein-binding pocket can be available, while the β-arrestin-biased agonists induce ICL3 to form a closed conformation with a stable local α-helix. MM/PBSA analysis further reveals that the hydroxyl groups in the resorcinol of the G-protein-biased agonist form strong interactions with Y5.38 and S5.42, thus preventing tilting of the TM5 extracellular end. The catechol of the balanced agonist and the β-arrestin-biased ones induces the rearrangement of two hydrophobic residues F6.52 and W6.48. However, different from the balanced agonist, the ethyl substituent of β-arrestin-biased agonists forms additional hydrophobic interactions with W6.48 and F6.51 after the rearrangement, which should contribute to the β-arrestin bias. The shortest pathway analysis further reveals that the three residues Y7.43, N7.45, and N7.49 are crucial for allosterically regulating G-protein-biased signaling, while the two residues W6.48 and F6.44 make an important contribution to regulate β-arrestin-biased signaling. For the balanced agonist NE, the allosteric regulation pathway simultaneously involves the residue associated with G-protein-biased signaling like S5.46 and the residues related to β-arrestin-biased signaling like W6.48 and F6.44, thus producing unbiased signaling. The observations could advance our understanding of the biased activation mechanism on class A GPCRs and provide a useful guideline for the design of biased drugs.
Collapse
Affiliation(s)
- Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiangting Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
120
|
Yokoi S, Mitsutake A. Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations. Biophys Rev 2021; 14:221-231. [DOI: 10.1007/s12551-021-00862-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
|
121
|
Cong X, Maurel D, Déméné H, Vasiliauskaité-Brooks I, Hagelberger J, Peysson F, Saint-Paul J, Golebiowski J, Granier S, Sounier R. Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Mol Cell 2021; 81:4165-4175.e6. [PMID: 34433090 DOI: 10.1016/j.molcel.2021.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
Collapse
Affiliation(s)
- Xiaojing Cong
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Hélène Déméné
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054, University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | - Ieva Vasiliauskaité-Brooks
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Joanna Hagelberger
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Fanny Peysson
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Julie Saint-Paul
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice UMR7272, 06108 Nice, France; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| |
Collapse
|
122
|
Mahmood MI, Yamashita T. Influence of Lipid Bilayer on the GPCR Structure: Comparison of All-Atom Lipid Force Fields. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Iqbal Mahmood
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
123
|
Mitra A, Sarkar A, Borics A. Universal Properties and Specificities of the β 2-Adrenergic Receptor-G s Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10423. [PMID: 34638767 PMCID: PMC8508748 DOI: 10.3390/ijms221910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins of high pharmacological relevance. It has been proposed that their activity is linked to structurally distinct, dynamically interconverting functional states and the process of activation relies on an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extents of functional effect exert their actions. According to our recent hypothesis, based on indirect observations and the literature data, the transmission of the external stimulus to the intracellular surface is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of highly conserved polar motifs and the rearrangement of polar species. In this follow-up study, we have examined the β2-adrenergic receptor (β2AR) to see if our hypothesis drawn from an extensive study of the μ-opioid receptor (MOP) is fundamental and directly transferable to other class A GPCRs. We have found that there are some general similarities between the two receptors, in agreement with previous studies, and there are some receptor-specific differences that could be associated with different signaling pathways.
Collapse
Affiliation(s)
- Argha Mitra
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Arijit Sarkar
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
| |
Collapse
|
124
|
Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O'Sullivan K, Chia LY, Venugopal H, Valant C, Thal DM, Wootten D, Panel N, Carlsson J, Christie MJ, White PJ, Scammells P, May LT, Sexton PM, Danev R, Miao Y, Glukhova A, Imlach WL, Christopoulos A. Positive allosteric mechanisms of adenosine A 1 receptor-mediated analgesia. Nature 2021; 597:571-576. [PMID: 34497422 PMCID: PMC8711093 DOI: 10.1038/s41586-021-03897-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.
Collapse
Affiliation(s)
- Christopher J Draper-Joyce
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca Bhola
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Anh T N Nguyen
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - India Cowie-Kent
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kelly O'Sullivan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hariprasad Venugopal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M Thal
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicolas Panel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Macdonald J Christie
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Paul J White
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Alisa Glukhova
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia.
| | - Wendy L Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
125
|
Li M, Li M, Guo J. Molecular Mechanism of Ca 2+ in the Allosteric Regulation of Human Parathyroid Hormone Receptor-1. J Chem Inf Model 2021; 62:5110-5119. [PMID: 34464108 DOI: 10.1021/acs.jcim.1c00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parathyroid hormone (PTH) is an endogenous ligand that activates the PTH type 1 receptor (PTH1R) signaling. Ca2+, a common second messenger, acts as an allosteric regulator for prolonging the activation of PTH1R. However, a clear picture of the underlying allosteric mechanism is still missing. Herein, extensive molecular dynamics (MD) simulations are performed for PTH1R-PTH complexes with and without Ca2+ ions, allowing us to delineate the molecular details of calcium-induced allostery. Our results indicate that acidic residues in the extracellular loop 1 (ECL1) (D251, E252, E254, and E258-E260) and PTH (E19 and E22) serve as key determinants for local Ca2+-coupling structures and rigidity of ECL1. Moreover, the binding of Ca2+ induces conformational changes of transmembrane domain 6/7 (TM6/7) that are related to PTH1R activation and strengthens the residue-residue communication within PTH and TMD allosterically. Moreover, our results demonstrate that the presence of Ca2+ ions potentiates the interaction between PTH and PTH1R via steered molecular dynamics (SMD) simulations, while the point mutation in the PTH (PTHR25C) weakens the binding of PTH and PTH1R. These results support that Ca2+ ions might further prolong the residence time of PTH on PTH1R and facilitate the positive allostery of PTH1R. Together, the present work provides new insights into the allosteric regulation mechanism of GPCRs induced by ions and related drug design targeting the PTH1R allosteric pathway.
Collapse
Affiliation(s)
- Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
126
|
The G protein-first activation mechanism of opioid receptors by Gi protein and agonists. QRB DISCOVERY 2021. [PMID: 37529677 PMCID: PMC10392629 DOI: 10.1017/qrd.2021.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AbstractWe report the G protein-first mechanism for activation of G protein-coupled receptors (GPCR) for the three closest subtypes of the opioid receptors (OR), μOR, κOR and δOR. We find that they couple to the inactive Gi protein-bound guanosine diphosphate (GDP) prior to agonist binding. The inactive Gi protein forms anchors to the intracellular loops of the inactive apo-μOR, apo-κOR and apo-δOR, inducing opening of the cytoplasmic region to form a pre-activated state that holds Gi protein in place until agonist binds. Then, agonist binds to μOR, κOR and δOR already complexed with Gi protein, to trigger the Gαi to open up the tightly coupled GDP binding site, making GDP accessible for GTP exchange, an essential step for Gi signalling. We show that the agonist alone cannot open the intracellular region of μOR and κOR, requiring Gi protein to open the cytoplasmic region by itself. We consider that this G protein-first mechanism may apply to activation of other Class A GPCRs. However, for δOR, agonist binding can open up the intracellular region to encourage Gi protein recruitment. Thus, activation of Gi protein mediated by δOR favourably may proceed with either ligand-first or G protein-first activation mechanisms.
Collapse
|
127
|
Cryo-EM structure of the human MT 1-G i signaling complex. Nat Struct Mol Biol 2021; 28:694-701. [PMID: 34354246 DOI: 10.1038/s41594-021-00634-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022]
Abstract
Melatonin receptors (MT1 and MT2) transduce inhibitory signaling by melatonin (N-acetyl-5-methoxytryptamine), which is associated with sleep induction and circadian rhythm modulation. Although recently reported crystal structures of ligand-bound MT1 and MT2 elucidated the basis of ligand entry and recognition, the ligand-induced MT1 rearrangement leading to Gi-coupling remains unclear. Here we report a cryo-EM structure of the human MT1-Gi signaling complex at 3.3 Å resolution, revealing melatonin-induced conformational changes propagated to the G-protein-coupling interface during activation. In contrast to other Gi-coupled receptors, MT1 exhibits a large outward movement of TM6, which is considered a specific feature of Gs-coupled receptors. Structural comparison of Gi and Gs complexes demonstrated conformational diversity of the C-terminal entry of the Gi protein, suggesting loose and variable interactions at the end of the α5 helix of Gi protein. These notions, together with our biochemical and computational analyses, highlight variable binding modes of Gαi and provide the basis for the selectivity of G-protein signaling.
Collapse
|
128
|
Nagiri C, Kobayashi K, Tomita A, Kato M, Kobayashi K, Yamashita K, Nishizawa T, Inoue A, Shihoya W, Nureki O. Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. Mol Cell 2021; 81:3205-3215.e5. [PMID: 34314699 DOI: 10.1016/j.molcel.2021.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The β3-adrenergic receptor (β3AR) is predominantly expressed in adipose tissue and urinary bladder and has emerged as an attractive drug target for the treatment of type 2 diabetes, obesity, and overactive bladder (OAB). Here, we report the cryogenic electron microscopy structure of the β3AR-Gs signaling complex with the selective agonist mirabegron, a first-in-class drug for OAB. Comparison of this structure with the previously reported β1AR and β2AR structures reveals a receptor activation mechanism upon mirabegron binding to the orthosteric site. Notably, the narrower exosite in β3AR creates a perpendicular pocket for mirabegron. Mutational analyses suggest that a combination of both the exosite shape and the amino-acid-residue substitutions defines the drug selectivity of the βAR agonists. Our findings provide a molecular basis for βAR subtype selectivity, allowing the design of more-selective agents with fewer adverse effects.
Collapse
Affiliation(s)
- Chisae Nagiri
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiko Kato
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
129
|
Kelly B, Hollingsworth SA, Blakemore DC, Owen RM, Storer RI, Swain NA, Aydin D, Torella R, Warmus JS, Dror RO. Delineating the Ligand-Receptor Interactions That Lead to Biased Signaling at the μ-Opioid Receptor. J Chem Inf Model 2021; 61:3696-3707. [PMID: 34251810 PMCID: PMC8317888 DOI: 10.1021/acs.jcim.1c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/28/2022]
Abstract
Biased agonists, which selectively stimulate certain signaling pathways controlled by a G protein-coupled receptor (GPCR), hold great promise as drugs that maximize efficacy while minimizing dangerous side effects. Biased agonists of the μ-opioid receptor (μOR) are of particular interest as a means to achieve analgesia through G protein signaling without dose-limiting side effects such as respiratory depression and constipation. Rational structure-based design of biased agonists remains highly challenging, however, because the ligand-mediated interactions that are key to activation of each signaling pathway remain unclear. We identify several compounds for which the R- and S-enantiomers have distinct bias profiles at the μOR. These compounds serve as excellent comparative tools to study bias because the identical physicochemical properties of enantiomer pairs ensure that differences in bias profiles are due to differences in interactions with the μOR binding pocket. Atomic-level simulations of compounds at μOR indicate that R- and S-enantiomers adopt different poses that form distinct interactions with the binding pocket. A handful of specific interactions with highly conserved binding pocket residues appear to be responsible for substantial differences in arrestin recruitment between enantiomers. Our results offer guidance for rational design of biased agonists at μOR and possibly at related GPCRs.
Collapse
Affiliation(s)
- Brendan Kelly
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Scott A. Hollingsworth
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - David C. Blakemore
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert M. Owen
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - R. Ian Storer
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nigel A. Swain
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Deniz Aydin
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Rubben Torella
- Pfizer Medicine Design, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Warmus
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ron O. Dror
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| |
Collapse
|
130
|
Poudel H, Leitner DM. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J Phys Chem B 2021; 125:6522-6531. [PMID: 34106712 DOI: 10.1021/acs.jpcb.1c03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compute energy exchange networks (EENs) through the β2 adrenergic receptor (β2AR), a G-protein coupled receptor (GPCR), in inactive and active states, based on the results of molecular dynamics simulations of this membrane bound protein. We introduce a new definition for the reorganization of EENs upon activation that depends on the relative change in rates of energy transfer across noncovalent contacts throughout the protein. On the basis of the reorganized network that we obtain for β2AR upon activation, we identify a branched pathway between the agonist binding site and the cytoplasmic region, where a G-protein binds to the receptor when activated. The pathway includes all of the motifs containing molecular switches previously identified as contributing to the allosteric transition of β2AR upon agonist binding. EENs and their reorganization upon activation are compared with structure-based contact networks computed for the inactive and active states of β2AR.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
131
|
Elgeti M, Hubbell WL. DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules 2021; 11:778. [PMID: 34067265 PMCID: PMC8224605 DOI: 10.3390/biom11060778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large class of transmembrane helical proteins which are involved in numerous physiological signaling pathways and therefore represent crucial pharmacological targets. GPCR function and the action of therapeutic molecules are defined by only a few parameters, including receptor basal activity, ligand affinity, intrinsic efficacy and signal bias. These parameters are encoded in characteristic receptor conformations existing in equilibrium and their populations, which are thus of paramount interest for the understanding of receptor (mal-)functions and rational design of improved therapeutics. To this end, the combination of site-directed spin labeling and EPR spectroscopy, in particular double electron-electron resonance (DEER), is exceedingly valuable as it has access to sub-Angstrom spatial resolution and provides a detailed picture of the number and populations of conformations in equilibrium. This review gives an overview of existing DEER studies on GPCRs with a focus on the delineation of structure/function frameworks, highlighting recent developments in data analysis and visualization. We introduce "conformational efficacy" as a parameter to describe ligand-specific shifts in the conformational equilibrium, taking into account the loose coupling between receptor segments observed for different GPCRs using DEER.
Collapse
Affiliation(s)
- Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
132
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
133
|
Kapla J, Rodríguez-Espigares I, Ballante F, Selent J, Carlsson J. Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models? PLoS Comput Biol 2021; 17:e1008936. [PMID: 33983933 PMCID: PMC8186765 DOI: 10.1371/journal.pcbi.1008936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/08/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023] Open
Abstract
The determination of G protein-coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 μs of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the receptor models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.
Collapse
Affiliation(s)
- Jon Kapla
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ismael Rodríguez-Espigares
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Flavio Ballante
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
134
|
Correlated Motions of Conserved Polar Motifs Lay out a Plausible Mechanism of G Protein-Coupled Receptor Activation. Biomolecules 2021; 11:biom11050670. [PMID: 33946214 PMCID: PMC8146931 DOI: 10.3390/biom11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023] Open
Abstract
Recent advancements in the field of experimental structural biology have provided high-resolution structures of active and inactive state G protein-coupled receptors (GPCRs), a highly important pharmaceutical target family, but the process of transition between these states is poorly understood. According to the current theory, GPCRs exist in structurally distinct, dynamically interconverting functional states of which populations are shifted upon binding of ligands and intracellular signaling proteins. However, explanation of the activation mechanism, on an entirely structural basis, gets complicated when multiple activation pathways and active receptor states are considered. Our unbiased, atomistic molecular dynamics simulations of the μ opioid receptor (MOP) revealed that transmission of external stimulus to the intracellular surface of the receptor is accompanied by subtle, concerted movements of highly conserved polar amino acid side chains along the 7th transmembrane helix. This may entail the rearrangement of polar species and the shift of macroscopic polarization in the transmembrane domain, triggered by agonist binding. Based on our observations and numerous independent indications, we suggest amending the widely accepted theory that the initiation event of GPCR activation is the shift of macroscopic polarization between the ortho- and allosteric binding pockets and the intracellular G protein-binding interface.
Collapse
|
135
|
Do HN, Akhter S, Miao Y. Pathways and Mechanism of Caffeine Binding to Human Adenosine A 2A Receptor. Front Mol Biosci 2021; 8:673170. [PMID: 33987207 PMCID: PMC8111288 DOI: 10.3389/fmolb.2021.673170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Caffeine (CFF) is a common antagonist to the four subtypes of adenosine G-protein-coupled receptors (GPCRs), which are critical drug targets for treating heart failure, cancer, and neurological diseases. However, the pathways and mechanism of CFF binding to the target receptors remain unclear. In this study, we have performed all-atom-enhanced sampling simulations using a robust Gaussian-accelerated molecular dynamics (GaMD) method to elucidate the binding mechanism of CFF to human adenosine A2A receptor (A2AAR). Multiple 500–1,000 ns GaMD simulations captured both binding and dissociation of CFF in the A2AAR. The GaMD-predicted binding poses of CFF were highly consistent with the x-ray crystal conformations with a characteristic hydrogen bond formed between CFF and residue N6.55 in the receptor. In addition, a low-energy intermediate binding conformation was revealed for CFF at the receptor extracellular mouth between ECL2 and TM1. While the ligand-binding pathways of the A2AAR were found similar to those of other class A GPCRs identified from previous studies, the ECL2 with high sequence divergence serves as an attractive target site for designing allosteric modulators as selective drugs of the A2AAR.
Collapse
Affiliation(s)
- Hung N Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
136
|
Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021; 288:2461-2489. [DOI: 10.1111/febs.15841] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry Philipps‐University Marburg Germany
| |
Collapse
|
137
|
Coevolution underlies GPCR-G protein selectivity and functionality. Sci Rep 2021; 11:7858. [PMID: 33846507 PMCID: PMC8041822 DOI: 10.1038/s41598-021-87251-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate diverse physiological events, which makes them as the major targets for many approved drugs. G proteins are downstream molecules that receive signals from GPCRs and trigger cell responses. The GPCR-G protein selectivity mechanism on how they properly and timely interact is still unclear. Here, we analyzed model GPCRs (i.e. HTR, DAR) and Gα proteins with a coevolutionary tool, statistical coupling analysis. The results suggested that 5-hydroxytryptamine receptors and dopamine receptors have common conserved and coevolved residues. The Gα protein also have conserved and coevolved residues. These coevolved residues were implicated in the molecular functions of the analyzed proteins. We also found specific coevolving pairs related to the selectivity between GPCR and G protein were identified. We propose that these results would contribute to better understandings of not only the functional residues of GPCRs and Gα proteins but also GPCR-G protein selectivity mechanisms.
Collapse
|
138
|
Huang SK, Pandey A, Tran DP, Villanueva NL, Kitao A, Sunahara RK, Sljoka A, Prosser RS. Delineating the conformational landscape of the adenosine A 2A receptor during G protein coupling. Cell 2021; 184:1884-1894.e14. [PMID: 33743210 DOI: 10.1016/j.cell.2021.02.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsβ1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gβγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Nicolas L Villanueva
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adnan Sljoka
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
139
|
Xiao P, Yan W, Gou L, Zhong YN, Kong L, Wu C, Wen X, Yuan Y, Cao S, Qu C, Yang X, Yang CC, Xia A, Hu Z, Zhang Q, He YH, Zhang DL, Zhang C, Hou GH, Liu H, Zhu L, Fu P, Yang S, Rosenbaum DM, Sun JP, Du Y, Zhang L, Yu X, Shao Z. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 2021; 184:943-956.e18. [PMID: 33571432 PMCID: PMC11005940 DOI: 10.1016/j.cell.2021.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liangliang Kong
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Yuan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng Cao
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan-Cheng Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yong-Hao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gui-Hua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
140
|
Fleetwood O, Carlsson J, Delemotte L. Identification of ligand-specific G protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling. eLife 2021; 10:e60715. [PMID: 33506760 PMCID: PMC7886328 DOI: 10.7554/elife.60715] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Ligand binding stabilizes different G protein-coupled receptor states via a complex allosteric process that is not completely understood. Here, we have derived free energy landscapes describing activation of the β2 adrenergic receptor bound to ligands with different efficacy profiles using enhanced sampling molecular dynamics simulations. These reveal shifts toward active-like states at the Gprotein-binding site for receptors bound to partial and full agonists, and that the ligands modulate the conformational ensemble of the receptor by tuning protein microswitches. We indeed find an excellent correlation between the conformation of the microswitches close to the ligand binding site and in the transmembrane region and experimentally reported cyclic adenosine monophosphate signaling responses. Dimensionality reduction further reveals the similarity between the unique conformational states induced by different ligands, and examining the output of classifiers highlights two distant hotspots governing agonism on transmembrane helices 5 and 7.
Collapse
Affiliation(s)
- Oliver Fleetwood
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala UniversityUppsalaSweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
141
|
Nikte SV, Sonar K, Tandale A, Joshi M, Sengupta D. Loss of a water-mediated network results in reduced agonist affinity in a β 2-adrenergic receptor clinical variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140605. [PMID: 33453412 DOI: 10.1016/j.bbapap.2021.140605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a member of the G protein-coupled receptor (GPCR) family that is an important drug target for asthma and COPD. Clinical studies coupled with biochemical data have identified a critical receptor variant, Thr164Ile, to have a reduced response to agonist-based therapy, although the molecular mechanism underlying this seemingly "non-deleterious" substitution is not clear. Here, we couple molecular dynamics simulations with network analysis and free-energy calculations to identify the molecular determinants underlying the differential drug response. We are able to identify hydration sites in the transmembrane domain that are essential to maintain the integrity of the binding site but are absent in the variant. The loss of these hydration sites in the variant correlates with perturbations in the intra-protein interaction network and rearrangements in the orthosteric ligand binding site. In conjunction, we observe an altered binding and reduced free energy of a series of agonists, in line with experimental trends. Our work identifies a functional allosteric pathway connected by specific hydration sites in β2AR that has not been reported before and provides insight into water-mediated networks in GPCRs in general. Overall, the work is one of the first step towards developing variant-specific potent and selective agonists.
Collapse
Affiliation(s)
- Siddhanta V Nikte
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Krushna Sonar
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Aditi Tandale
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Manali Joshi
- Bioinformatics Centre, S. P. University, Pune 411 007, India.
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
142
|
Bò L, Miotto M, Di Rienzo L, Milanetti E, Ruocco G. Exploring the Association Between Sialic Acid and SARS-CoV-2 Spike Protein Through a Molecular Dynamics-Based Approach. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 2:614652. [PMID: 35047894 PMCID: PMC8757799 DOI: 10.3389/fmedt.2020.614652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Recent experimental evidence demonstrated the capability of SARS-CoV-2 Spike protein to bind sialic acid molecules, which was a trait not present in SARS-CoV and could shed light on the molecular mechanism used by the virus for the cell invasion. This peculiar feature has been successfully predicted by in-silico studies comparing the sequence and structural characteristics that SARS-CoV-2 shares with other sialic acid-binding viruses, like MERS-CoV. Even if the region of the binding has been identified in the N-terminal domain of Spike protein, so far no comprehensive analyses have been carried out on the spike-sialic acid conformations once in the complex. Here, we addressed this aspect performing an extensive molecular dynamics simulation of a system composed of the N-terminal domain of the spike protein and a sialic acid molecule. We observed several short-lived binding events, reconnecting to the avidic nature of the binding, interestingly occurring in the surface Spike region where several insertions are present with respect to the SARS-CoV sequence. Characterizing the bound configurations via a clustering analysis on the Principal Component of the motion, we identified different possible binding conformations and discussed their dynamic and structural properties. In particular, we analyze the correlated motion between the binding residues and the binding effect on the stability of atomic fluctuation, thus proposing regions with high binding propensity with sialic acid.
Collapse
Affiliation(s)
- Leonardo Bò
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| |
Collapse
|
143
|
Liao S, Tan K, Floyd C, Bong D, Pino MJ, Wu C. Probing biased activation of mu-opioid receptor by the biased agonist PZM21 using all atom molecular dynamics simulation. Life Sci 2021; 269:119026. [PMID: 33444617 DOI: 10.1016/j.lfs.2021.119026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Morphine is a commonly used opioid drug to treat acute pain by binding to the mu-opioid receptor (MOR), but its effective analgesic efficacy via triggering of the heterotrimeric Gi protein pathway is accompanied by a series of adverse side effects via triggering of the β-arrestin pathway. Recently, PZM21, a recently developed MOR biased agonist, shows preferentially activating the G protein pathway over β-arrestin pathway. However, there is no high-resolution receptor structure in complex with PZM21 and its action mechanism remains elusive. In this study, PZM21 and Morphine were docked to the active human MOR-1 homology structure and then subjected to the molecular dynamics (MD) simulations in two different situations (i.e., one situation includes the crystal waters but another does not). Detailed comparisons between the two systems were made to characterize the differences in protein-ligand interactions, protein secondary and tertiary structures and dynamics networks. PZM21 could strongly interact with Y3287.43 of TM7, besides the residues (Asp1493.32 and Tyr1503.33) of TM3. The two systems' network paths to the intracellular end of TM6 were roughly similar but the paths to the end of TM7 were different. The PZM21-bound MOR's intracellular ends of TM5-7 bent outward more along with the distance changes of the three key molecular switches (ionic lock, transmission and Tyr toggle) and the distance increase of some conserved inter-helical residue pairs. The larger intracellular opening of the receptor could potentially facilitate G protein binding.
Collapse
Affiliation(s)
- Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Kai Tan
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Cecilia Floyd
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Daegun Bong
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Michael James Pino
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
144
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
145
|
In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides. Methods Mol Biol 2021; 2315:161-182. [PMID: 34302676 DOI: 10.1007/978-1-0716-1468-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides (MAPs) are short-length peptides used for potential biomedical applications in diagnostic imaging of tissues, targeted drug delivery, gene delivery, and antimicrobials and antibiotics. The broad appeal of MAPs is that they are infinitely variable, relatively low cost, and biocompatible. However, experimentally characterizing the specific properties of a MAP or its many variants is a low-resolution and potentially time-consuming endeavor; molecular dynamics (MD) simulations have emerged as an invaluable tool in identifying the biophysical interactions that are fundamental to the function of MAPs. In this chapter, a step-by-step approach to discreetly model the binding, folding, and insertion of a membrane-active peptide to a model lipid bilayer using MD simulations is described. Detailed discussion is devoted to the critical aspects of running these types of simulations: prior knowledge of the system, understanding the strengths and weaknesses of molecular mechanics force fields, proper construction and equilibration of the system, realistically estimating both experimental and computational timescales, and leveraging analysis to make direct comparisons to experimental results as often as possible.
Collapse
|
146
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
147
|
Peters BL, Deng J, Ferguson AL. Free energy calculations of the functional selectivity of 5-HT2B G protein-coupled receptor. PLoS One 2020; 15:e0243313. [PMID: 33296400 PMCID: PMC7725398 DOI: 10.1371/journal.pone.0243313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
G Protein-Coupled Receptors (GPCRs) mediate intracellular signaling in response to extracellular ligand binding and are the target of one-third of approved drugs. Ligand binding modulates the GPCR molecular free energy landscape by preferentially stabilizing active or inactive conformations that dictate intracellular protein recruitment and downstream signaling. We perform enhanced sampling molecular dynamics simulations to recover the free energy surfaces of a thermostable mutant of the GPCR serotonin receptor 5-HT2B in the unliganded form and bound to a lysergic acid diethylamide (LSD) agonist and lisuride antagonist. LSD binding imparts a ∼110 kJ/mol driving force for conformational rearrangement into an active state. The lisuride-bound form is structurally similar to the apo form and only ∼24 kJ/mol more stable. This work quantifies ligand-induced conformational specificity and functional selectivity of 5-HT2B and presents a platform for high-throughput virtual screening of ligands and rational engineering of the ligand-bound molecular free energy landscape.
Collapse
Affiliation(s)
- Brandon L. Peters
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Jinxia Deng
- Zoetis Inc, Kalamazoo, Michigan, United States of America
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
148
|
Velazhahan V, Ma N, Pándy-Szekeres G, Kooistra AJ, Lee Y, Gloriam DE, Vaidehi N, Tate CG. Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature 2020; 589:148-153. [PMID: 33268889 PMCID: PMC7116888 DOI: 10.1038/s41586-020-2994-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are divided phylogenetically into six classes1,2, denoted A to F. More than 370 structures of vertebrate GPCRs (belonging to classes A, B, C and F) have been determined, leading to a substantial understanding of their function3. By contrast, there are no structures of class D GPCRs, which are found exclusively in fungi where they regulate survival and reproduction. Here we determine the structure of a class D GPCR, the Saccharomyces cerevisiae pheromone receptor Ste2, in an active state coupled to the heterotrimeric G protein Gpa1-Ste4-Ste18. Ste2 was purified as a homodimer coupled to two G proteins. The dimer interface of Ste2 is formed by the N terminus, the transmembrane helices H1, H2 and H7, and the first extracellular loop ECL1. We establish a class D1 generic residue numbering system (CD1) to enable comparisons with orthologues and with other GPCR classes. The structure of Ste2 bears similarities in overall topology to class A GPCRs, but the transmembrane helix H4 is shifted by more than 20 Å and the G-protein-binding site is a shallow groove rather than a cleft. The structure provides a template for the design of novel drugs to target fungal GPCRs, which could be used to treat numerous intractable fungal diseases4.
Collapse
Affiliation(s)
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark.,Medicinal Chemistry Research Group, Research Center for Natural Sciences, Budapest, Hungary
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | |
Collapse
|
149
|
Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D. The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules 2020; 25:E5489. [PMID: 33255213 PMCID: PMC7727705 DOI: 10.3390/molecules25235489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Marcel Gauglitz
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Sarah Wistuba
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Vsevolod V. Gurevich
- Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN 37232, USA;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Peter W. Hildebrand
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| |
Collapse
|
150
|
Weber DK, Veglia G. A theoretical assessment of structure determination of multi-span membrane proteins by oriented sample solid-state NMR spectroscopy. Aust J Chem 2020; 73:246-251. [PMID: 33162560 DOI: 10.1071/ch19307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oriented sample solid state NMR (OS-ssNMR) spectroscopy allows direct determination of the structure and topology of membrane proteins reconstituted into aligned lipid bilayers. While OS-ssNMR theoretically has no upper size limit, its application to multi-span membrane proteins has not been established since most studies have been restricted to single or dual span proteins and peptides. Here, we present a critical assessment of the application of this method to multi-span membrane proteins. We used molecular dynamics simulations to back-calculate [15N-1H] separated local field (SLF) spectra from a G protein-coupled receptor (GPCR) and show that fully resolved spectra can be obtained theoretically for a multi-span membrane protein with currently achievable resonance linewidths.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|