101
|
O'Brien JP, Needham BD, Henderson JC, Nowicki EM, Trent MS, Brodbelt JS. 193 nm ultraviolet photodissociation mass spectrometry for the structural elucidation of lipid A compounds in complex mixtures. Anal Chem 2014; 86:2138-45. [PMID: 24446701 PMCID: PMC3958132 DOI: 10.1021/ac403796n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Here we implement ultraviolet photodissociation
(UVPD) in an online
liquid chromatographic tandem mass spectrometry (MS/MS) strategy to
support analysis of complex mixtures of lipid A combinatorially modified
during development of vaccine adjuvants. UVPD mass spectrometry at
193 nm was utilized to characterize the structures and fragment ion
types of lipid A from Escherichia coli, Vibrio
cholerae, and Pseudomonas aeruginosa using
an Orbitrap mass spectrometer. The fragment ions generated by UVPD
were compared to those from collision induced dissociation (CID) and
higher energy collision dissociation (HCD) with respect to the precursor
charge state. UVPD afforded the widest array of fragment ion types
including acyl chain C–O, C–N, and C–C bond cleavages
and glycosidic C–O and cross ring cleavages, thus providing
the most comprehensive structural analysis of the lipid A. UVPD exhibited
virtually no dependence on precursor ion charge state and was best
at determining lipid A structure including acyl chain length and composition,
giving it an advantage over collision based methods. UVPD was incorporated
into an LC–MS/MS methodology for the analysis of a number of
structural variants in a complex mixture of combinatorially engineered Escherichia coli lipid A.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
102
|
Shah MA, Mutreja A, Thomson N, Baker S, Parkhill J, Dougan G, Bokhari H, Wren BW. Genomic Epidemiology ofVibrio choleraeO1 Associated with Floods, Pakistan, 2010. Emerg Infect Dis 2014; 20:13-20. [DOI: 10.3201/.eid2001.130428] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
103
|
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4:353. [PMID: 24367355 PMCID: PMC3856679 DOI: 10.3389/fmicb.2013.00353] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Lorena da S Derengowski
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Cynthia M Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| |
Collapse
|
104
|
Ho BT, Basler M, Mekalanos JJ. Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 2013; 342:250-3. [PMID: 24115441 DOI: 10.1126/science.1243745] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria use the type VI secretion system (T6SS) to translocate toxic effector proteins into adjacent cells. The Pseudomonas aeruginosa H1-locus T6SS assembles in response to exogenous T6SS attack by other bacteria. We found that this lethal T6SS counterattack also occurs in response to the mating pair formation (Mpf) system encoded by broad-host-range IncPα conjugative plasmid RP4 present in adjacent donor cells. This T6SS response was eliminated by disruption of Mpf structural genes but not components required only for DNA transfer. Because T6SS activity was also strongly induced by membrane-disrupting natural product polymyxin B, we conclude that RP4 induces "donor-directed T6SS attacks" at sites corresponding to Mpf-mediated membrane perturbations in recipient P. aeruginosa cells to potentially block acquisition of parasitic foreign DNA.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
105
|
O'Brien JP, Brodbelt JS. Structural characterization of gangliosides and glycolipids via ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:10399-407. [PMID: 24083420 DOI: 10.1021/ac402379y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry was used to characterize the structures of amphiphilic glycosphingolipids and gangliosides in comparison to collision induced dissociation (CID) and higher energy collision dissociation (HCD) in a high performance Orbitrap mass spectrometer. UVPD produced the widest array of fragment ions diagnostic for both the ceramide base and oligosaccharide moieties. CID and HCD generated mainly glycosidic B/Y and C/Z cleavages of the oligosaccharides moieties and very few informative fragments related to the hydrophobic ceramide base. Several unique cleavages at the sphingoid base and the fatty acid chain occurred upon UVPD, as well as a wider variety of cross ring cleavages (A/X ions), thus affording differentiation of isobaric gangliosides. An LC-UVPD-MS strategy allowed the elucidation of 27 gangliosides among five different classes.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas, United States 78712
| | | |
Collapse
|
106
|
Robotham SA, Kluwe C, Cannon JR, Ellington A, Brodbelt JS. De novo sequencing of peptides using selective 351 nm ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:9832-8. [PMID: 24050806 DOI: 10.1021/ac402309h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although in silico database search methods remain more popular for shotgun proteomics methods, de novo sequencing offers the ability to identify peptides derived from proteins lacking sequenced genomes and ones with subtle splice variants or truncations. Ultraviolet photodissociation (UVPD) of peptides derivatized by selective attachment of a chromophore at the N-terminus generates a characteristic series of y ions. The UVPD spectra of the chromophore-labeled peptides are simplified and thus amenable to de novo sequencing. This method resulted in an observed sequence coverage of 79% for cytochrome C (eight peptides), 47% for β-lactoglobulin (five peptides), 25% for carbonic anhydrase (six peptides), and 51% for bovine serum albumin (33 peptides). This strategy also allowed differentiation of proteins with high sequence homology as evidenced by de novo sequencing of two variants of green fluorescent protein.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
107
|
Henderson JC, O'Brien JP, Brodbelt JS, Trent MS. Isolation and chemical characterization of lipid A from gram-negative bacteria. J Vis Exp 2013:e50623. [PMID: 24084191 DOI: 10.3791/50623] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin
| | | | | | | |
Collapse
|
108
|
D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol 2013; 195:5102-11. [PMID: 24013634 DOI: 10.1128/jb.00510-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite very high vaccine coverage, pertussis has reemerged as a serious threat in the United States and many developing countries. Thus, it is important to pursue research to discover unknown pathogenic mechanisms of B. pertussis. We have investigated a previously uncharacterized locus in B. pertussis, the dra locus, which is homologous to the dlt operons of Gram-positive bacteria. The absence of the dra locus resulted in increased sensitivity to the killing action of antimicrobial peptides (AMPs) and human phagocytes. Compared to the wild-type cells, the mutant cells bound higher levels of cationic proteins and peptides, suggesting that dra contributes to AMP resistance by decreasing the electronegativity of the cell surface. The presence of dra led to the incorporation of d-alanine into an outer membrane component that is susceptible to proteinase K cleavage. We conclude that dra encodes a virulence-associated determinant and contributes to the immune resistance of B. pertussis. With these findings, we have identified a new mechanism of surface modification in B. pertussis which may also be relevant in other Gram-negative pathogens.
Collapse
|
109
|
Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. MICROBIOLOGY-SGM 2013; 159:1868-1877. [PMID: 23858088 PMCID: PMC3783018 DOI: 10.1099/mic.0.069898-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.
Collapse
Affiliation(s)
- Nathalie T Reichmann
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Carolina Picarra Cassona
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
110
|
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467-81. [PMID: 23748343 PMCID: PMC6913092 DOI: 10.1038/nrmicro3047] [Citation(s) in RCA: 408] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
Collapse
Affiliation(s)
- Brittany D Needham
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
111
|
Escherichia coli resistance to nonbiocidal antibiofilm polysaccharides is rare and mediated by multiple mutations leading to surface physicochemical modifications. Antimicrob Agents Chemother 2013; 57:3960-8. [PMID: 23733462 DOI: 10.1128/aac.02606-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antivirulence strategies targeting bacterial behavior, such as adhesion and biofilm formation, are expected to exert low selective pressure and have been proposed as alternatives to biocidal antibiotic treatments to avoid the rapid occurrence of bacterial resistance. Here, we tested this hypothesis using group 2 capsule polysaccharide (G2cps), a polysaccharidic molecule previously shown to impair bacterium-surface interactions, and we investigated the nature of bacterial resistance to a nonbiocidal antibiofilm strategy. We screened an Escherichia coli mutant library for an increased ability to form biofilm in the presence of G2cps, and we identified several mutants displaying partial but not total resistance to this antibiofilm polysaccharide. Our genetic analysis showed that partial resistance to G2cps results from multiple unrelated mutations leading to modifications in surface physicochemical properties that counteract the changes in ionic charge and Lewis base properties induced by G2cps. Moreover, some of the identified mutants harboring improved biofilm formation in the presence of G2cps were also partially resistant to other antibiofilm molecules. This study therefore shows that alterations of bacterial surface properties mediate only partial resistance to G2cps. It also experimentally validates the potential value of nonbiocidal antibiofilm strategies, since full resistance to antibiofilm compounds is rare and potentially unlikely to arise in clinical settings.
Collapse
|
112
|
Lipopolysaccharide modifications of a cholera vaccine candidate based on outer membrane vesicles reduce endotoxicity and reveal the major protective antigen. Infect Immun 2013; 81:2379-93. [PMID: 23630951 DOI: 10.1128/iai.01382-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The causative agent of the life-threatening gastrointestinal infectious disease cholera is the Gram-negative, facultative human pathogen Vibrio cholerae. We recently started to investigate the potential of outer membrane vesicles (OMVs) derived from V. cholerae as an alternative approach for a vaccine candidate against cholera and successfully demonstrated the induction of a long-lasting, high-titer, protective immune response upon immunization with OMVs using the mouse model. In this study, we present immunization data using lipopolysaccharide (LPS)-modified OMVs derived from V. cholerae, which allowed us to improve and identify the major protective antigen of the vaccine candidate. Our results indicate that reduction of endotoxicity can be achieved without diminishing the immunogenic potential of the vaccine candidate by genetic modification of lipid A. Although the protective potential of anti-LPS antibodies has been suggested many times, this is the first comprehensive study that uses defined LPS mutants to characterize the LPS-directed immune response of a cholera vaccine candidate in more detail. Our results pinpoint the O antigen to be the essential immunogenic structure and provide a protective mechanism based on inhibition of motility, which prevents a successful colonization. In a detailed analysis using defined antisera, we can demonstrate that only anti-O antigen antibodies, but not antibodies directed against the major flagellar subunit FlaA or the most abundant outer membrane protein, OmpU, are capable of effectively blocking the motility by binding to the sheathed flagellum and provide protection in a passive immunization assay.
Collapse
|
113
|
Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013; 3:3. [PMID: 23408095 PMCID: PMC3569842 DOI: 10.3389/fcimb.2013.00003] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of almost all Gram-negative bacteria and consists of lipid A, core sugars, and O-antigen. LPS is recognized by Toll-like receptor 4 (TLR4) and MD-2 on host innate immune cells and can signal to activate the transcription factor NFκB, leading to the production of pro-inflammatory cytokines that initiate and shape the adaptive immune response. Most of what is known about how LPS is recognized by the TLR4-MD-2 receptor complex on animal cells has been studied using Escherichia coli lipid A, which is a strong agonist of TLR4 signaling. Recent work from several groups, including our own, has shown that several important pathogenic bacteria can modify their LPS or lipid A molecules in ways that significantly alter TLR4 signaling to NFκB. Thus, it has been hypothesized that expression of lipid A variants is one mechanism by which pathogens modulate or evade the host immune response. Additionally, several key differences in the amino acid sequences of human and mouse TLR4-MD-2 receptors have been shown to alter the ability to recognize these variations in lipid A, suggesting a host-specific effect on the immune response to these pathogens. In this review, we provide an overview of lipid A variants from several human pathogens, how the basic structure of lipid A is recognized by mouse and human TLR4-MD-2 receptor complexes, as well as how alteration of this pattern affects its recognition by TLR4 and impacts the downstream immune response.
Collapse
Affiliation(s)
- Nina Maeshima
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
114
|
Comparison of immune responses to the O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 in Bangladeshi adult patients with cholera. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1712-21. [PMID: 22993410 DOI: 10.1128/cvi.00321-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunity against Vibrio cholerae O1 is serogroup specific, and serogrouping is defined by the O-specific polysaccharide (OSP) part of lipopolysaccharide (LPS). Despite this, human immune responses to V. cholerae OSP have not previously been characterized. We assessed immune responses against V. cholerae OSP in adults with cholera caused by V. cholerae O1 El Tor serotype Inaba or Ogawa in Dhaka, Bangladesh, using O1 OSP-core-bovine serum albumin (OSPc:BSA) conjugates; responses targeted OSP in these conjugates. Responses of Inaba-infected patients to Inaba OSP and LPS increased significantly in IgG, IgM, and IgA isotypes from the acute to convalescent phases of illness, and the responses correlated well between OSP and LPS (R = 0.86, 0.73, and 0.91, respectively; P < 0.01). Plasma IgG, IgM, and IgA responses to Ogawa OSP and LPS in Ogawa-infected patients also correlated well with each other (R = 0.60, 0.60, and 0.92, respectively; P < 0.01). Plasma IgM responses to Inaba OSP and Ogawa OSP correlated with the respective serogroup-specific vibriocidal antibodies (R = 0.80 and 0.66, respectively; P < 0.001). Addition of either OSPc:BSA or LPS, but not BSA, to vibriocidal assays inhibited vibriocidal responses in a comparable and concentration-dependent manner. Mucosal IgA immune responses to OSP and LPS were also similar. Our study is the first to characterize anti-OSP immune responses in patients with cholera and suggests that responses targeting V. cholerae LPS, including vibriocidal responses that correlate with protection against cholera, predominantly target OSP. Induction of anti-OSP responses may be associated with protection against cholera, and our results may support the development of a vaccine targeting V. cholerae OSP.
Collapse
|
115
|
Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012; 8:e1002917. [PMID: 23028317 PMCID: PMC3441752 DOI: 10.1371/journal.ppat.1002917] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/05/2012] [Indexed: 02/05/2023] Open
Abstract
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.
Collapse
Affiliation(s)
- Kimberley D. Seed
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
116
|
Another brick in the wall. Nat Rev Microbiol 2012; 10:442. [DOI: 10.1038/nrmicro2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|