101
|
Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077-88. [PMID: 24600054 PMCID: PMC3995342 DOI: 10.1093/molbev/msu088] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies of microbial evolutionary dynamics are being transformed by the availability of affordable high-throughput sequencing technologies, which allow whole-genome sequencing of hundreds of related taxa in a single study. Reconstructing a phylogenetic tree of these taxa is generally a crucial step in any evolutionary analysis. Instead of constructing genome assemblies for all taxa, annotating these assemblies, and aligning orthologous genes, many recent studies 1) directly map raw sequencing reads to a single reference sequence, 2) extract single nucleotide polymorphisms (SNPs), and 3) infer the phylogenetic tree using maximum likelihood methods from the aligned SNP positions. However, here we show that, when using such methods to reconstruct phylogenies from sets of simulated sequences, both the exclusion of nonpolymorphic positions and the alignment to a single reference genome, introduce systematic biases and errors in phylogeny reconstruction. To address these problems, we developed a new method that combines alignments from mappings to multiple reference sequences and show that this successfully removes biases from the reconstructed phylogenies. We implemented this method as a web server named REALPHY (Reference sequence Alignment-based Phylogeny builder), which fully automates phylogenetic reconstruction from raw sequencing reads.
Collapse
Affiliation(s)
- Frederic Bertels
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | | | | |
Collapse
|
102
|
Ciccolini M, Donker T, Grundmann H, Bonten MJM, Woolhouse MEJ. Efficient surveillance for healthcare-associated infections spreading between hospitals. Proc Natl Acad Sci U S A 2014; 111:2271-6. [PMID: 24469791 PMCID: PMC3926017 DOI: 10.1073/pnas.1308062111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Early detection of new or novel variants of nosocomial pathogens is a public health priority. We show that, for healthcare-associated infections that spread between hospitals as a result of patient movements, it is possible to design an effective surveillance system based on a relatively small number of sentinel hospitals. We apply recently developed mathematical models to patient admission data from the national healthcare systems of England and The Netherlands. Relatively short detection times are achieved once 10-20% hospitals are recruited as sentinels and only modest reductions are seen as more hospitals are recruited thereafter. Using a heuristic optimization approach to sentinel selection, the same expected time to detection can be achieved by recruiting approximately half as many hospitals. Our study provides a robust evidence base to underpin the design of an efficient sentinel hospital surveillance system for novel nosocomial pathogens, delivering early detection times for reduced expenditure and effort.
Collapse
Affiliation(s)
- Mariano Ciccolini
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Tjibbe Donker
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands, and
| | - Hajo Grundmann
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands, and
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
103
|
Phylogenetic analysis of Staphylococcus aureus CC398 reveals a sub-lineage epidemiologically associated with infections in horses. PLoS One 2014; 9:e88083. [PMID: 24505386 PMCID: PMC3913741 DOI: 10.1371/journal.pone.0088083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
In the early 2000s, a particular MRSA clonal complex (CC398) was found mainly in pigs and pig farmers in Europe. Since then, CC398 has been detected among a wide variety of animal species worldwide. We investigated the population structure of CC398 through mutation discovery at 97 genetic housekeeping loci, which are distributed along the CC398 chromosome within 195 CC398 isolates, collected from various countries and host species, including humans. Most of the isolates in this collection were received from collaborating microbiologists, who had preserved them over years. We discovered 96 bi-allelic polymorphisms, and phylogenetic analyses revealed that an epidemic sub-clone within CC398 (dubbed ‘clade (C)’) has spread within and between equine hospitals, where it causes nosocomial infections in horses and colonises the personnel. While clade (C) was strongly associated with S. aureus from horses in veterinary-care settings (p = 2×10−7), it remained extremely rare among S. aureus isolates from human infections.
Collapse
|
104
|
Woappi Y, Gabani P, Singh A, Singh OV. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Crit Rev Microbiol 2014; 42:17-30. [PMID: 24495094 DOI: 10.3109/1040841x.2013.875982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Widespread overuse of antibiotics has led to the emergence of numerous antibiotic-resistant bacteria; among these are antibiotic-subsisting strains capable of surviving in environments with antibiotics as the sole carbon source. This unparalleled expansion of antibiotic resistance reveals the potent and diversified resistance abilities of certain bacterial strains. Moreover, these strains often possess hypermutator phenotypes and virulence transmissibility competent for genomic and proteomic propagation and pathogenicity. Pragmatic and prospicient approaches will be necessary to develop efficient therapeutic methods against such bacteria and to understand the extent of their genomic adaptability. This review aims to reveal the niches of these antibiotic-catabolizing microbes and assesses the underlying factors linking natural microbial antibiotic production, multidrug resistance, and antibiotic-subsistence.
Collapse
Affiliation(s)
- Yvon Woappi
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| | - Prashant Gabani
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| | - Arya Singh
- b Department of Computer Science , Texas State University , San Marcos , TX , USA
| | - Om V Singh
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| |
Collapse
|
105
|
Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:19-43. [PMID: 24820995 DOI: 10.1146/annurev-phyto-102313-045907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crop diseases emerge without warning. In many cases, diseases cross borders, or even oceans, before plant pathologists have time to identify and characterize the causative agents. Genome sequencing, in combination with intensive sampling of pathogen populations and application of population genetic tools, is now providing the means to unravel how bacterial crop pathogens emerge from environmental reservoirs, how they evolve and adapt to crops, and what international and intercontinental routes they follow during dissemination. Here, we introduce the field of population genomics and review the population genomics research of bacterial plant pathogens over the past 10 years. We highlight the potential of population genomics for investigating plant pathogens, using examples of population genomics studies of human pathogens. We also describe the complementary nature of the fields of population genomics and molecular plant-microbe interactions and propose how to translate new insights into improved disease prevention and control.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061; ,
| | | | | |
Collapse
|
106
|
Watanabe T, Nozawa T, Aikawa C, Amano A, Maruyama F, Nakagawa I. CRISPR regulation of intraspecies diversification by limiting IS transposition and intercellular recombination. Genome Biol Evol 2013; 5:1099-114. [PMID: 23661565 PMCID: PMC3698921 DOI: 10.1093/gbe/evt075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mobile genetic elements (MGEs) and genetic rearrangement are considered as major driving forces of bacterial diversification. Previous comparative genome analysis of Porphyromonas gingivalis, a pathogen related to periodontitis, implied such an important relationship. As a counterpart system to MGEs, clustered regularly interspaced short palindromic repeats (CRISPRs) in bacteria may be useful for genetic typing. We found that CRISPR typing could be a reasonable alternative to conventional methods for characterizing phylogenetic relationships among 60 highly diverse P. gingivalis isolates. Examination of genetic recombination along with multilocus sequence typing suggests the importance of such events between different isolates. MGEs appear to be strategically located at the breakpoint gaps of complicated genome rearrangements. Of these MGEs, insertion sequences (ISs) were found most frequently. CRISPR analysis identified 2,150 spacers that were clustered into 1,187 unique ones. Most of these spacers exhibited no significant nucleotide similarity to known sequences (97.6%: 1,158/1,187). Surprisingly, CRISPR spacers exhibiting high nucleotide similarity to regions of P. gingivalis genomes including ISs were predominant. The proportion of such spacers to all the unique spacers (1.6%: 19/1,187) was the highest among previous studies, suggesting novel functions for these CRISPRs. These results indicate that P. gingivalis is a bacterium with high intraspecies diversity caused by frequent insertion sequence (IS) transposition, whereas both the introduction of foreign DNA, primarily from other P. gingivalis cells, and IS transposition are limited by CRISPR interference. It is suggested that P. gingivalis CRISPRs could be an important source for understanding the role of CRISPRs in the development of bacterial diversity.
Collapse
Affiliation(s)
- Takayasu Watanabe
- Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan.
| | | | | | | | | | | |
Collapse
|
107
|
Miller RM, Price JR, Batty EM, Didelot X, Wyllie D, Golubchik T, Crook DW, Paul J, Peto TEA, Wilson DJ, Cule M, Ip CLC, Day NPJ, Moore CE, Bowden R, Llewelyn MJ. Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. J Hosp Infect 2013; 86:83-9. [PMID: 24433924 PMCID: PMC3924019 DOI: 10.1016/j.jhin.2013.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022]
Abstract
Background New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype. Aim To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England. Methods Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains. Findings By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10−6, Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006. Conclusions Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms.
Collapse
Affiliation(s)
- R M Miller
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - J R Price
- Department of Microbiology and Infectious Diseases, Brighton and Sussex University Hospital NHS Trust, Brighton, UK
| | - E M Batty
- Department of Statistics, University of Oxford, Oxford, UK
| | - X Didelot
- Department of Statistics, University of Oxford, Oxford, UK
| | - D Wyllie
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - T Golubchik
- Department of Statistics, University of Oxford, Oxford, UK
| | - D W Crook
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - J Paul
- Public Health England, Royal Sussex County Hospital, Brighton, UK
| | - T E A Peto
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - D J Wilson
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M Cule
- Department of Statistics, University of Oxford, Oxford, UK
| | - C L C Ip
- Department of Statistics, University of Oxford, Oxford, UK
| | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Rajthevee, Bangkok, Thailand; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - C E Moore
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Collaborative Laboratory, Angkor Hospital for Children, Siem Reap, Cambodia
| | - R Bowden
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK; Department of Statistics, University of Oxford, Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M J Llewelyn
- Department of Microbiology and Infectious Diseases, Brighton and Sussex University Hospital NHS Trust, Brighton, UK.
| |
Collapse
|
108
|
Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. mBio 2013; 4:e00889-13. [PMID: 24345744 PMCID: PMC3870260 DOI: 10.1128/mbio.00889-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. IMPORTANCE Over the past 15 years, methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allows S. aureus to evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.
Collapse
|
109
|
Gnanadhas DP, Ben Thomas M, Elango M, Raichur AM, Chakravortty D. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother 2013; 68:2576-2586. [PMID: 23798672 DOI: 10.1093/jac/dkt252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
|
110
|
Strommenger B, Bartels MD, Kurt K, Layer F, Rohde SM, Boye K, Westh H, Witte W, De Lencastre H, Nübel U. Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. J Antimicrob Chemother 2013; 69:616-22. [PMID: 24150844 DOI: 10.1093/jac/dkt413] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To elucidate the evolutionary history of Staphylococcus aureus clonal complex (CC) 8, which encompasses several globally distributed epidemic lineages, including hospital-associated methicillin-resistant S. aureus (MRSA) and the highly prevalent community-associated MRSA clone USA300. METHODS We reconstructed the phylogeny of S. aureus CC8 by mutation discovery at 112 genetic housekeeping loci from each of 174 isolates, sampled on five continents between 1957 and 2008. The distribution of antimicrobial resistance traits and of diverse mobile genetic elements was investigated in relation to the isolates' phylogeny. RESULTS Our analyses revealed the existence of nine phylogenetic clades within CC8. We identified at least eight independent events of methicillin resistance acquisition in CC8 and dated the origin of a methicillin-resistant progenitor of the notorious USA300 clone to the mid-1970s. Of the S. aureus isolates in our collection, 88% carried plasmidic rep gene sequences, with up to five different rep genes in individual isolates and a total of eight rep families. Mapping the plasmid content onto the isolates' phylogeny illustrated the stable carriage over decades of some plasmids and the more volatile nature of others. Strikingly, we observed trends of increasing antibiotic resistance during the evolution of several lineages, including USA300. CONCLUSIONS We propose a model for the evolution of S. aureus CC8, involving a split into at least nine phylogenetic lineages and a subsequent series of acquisitions and losses of mobile genetic elements that carry diverse virulence and antimicrobial resistance traits. The evolution of MRSA USA300 towards resistance to additional antibiotic classes is of major concern.
Collapse
Affiliation(s)
- Birgit Strommenger
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Maiden MCJ, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 2013; 11:728-36. [PMID: 23979428 PMCID: PMC3980634 DOI: 10.1038/nrmicro3093] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multilocus sequence typing (MLST) was proposed in 1998 as a portable sequence-based method for identifying clonal relationships among bacteria. Today, in the whole-genome era of microbiology, the need for systematic, standardized descriptions of bacterial genotypic variation remains a priority. Here, to meet this need, we draw on the successes of MLST and 16S rRNA gene sequencing to propose a hierarchical gene-by-gene approach that reflects functional and evolutionary relationships and catalogues bacteria 'from domain to strain'. Our gene-based typing approach using online platforms such as the Bacterial Isolate Genome Sequence Database (BIGSdb) allows the scalable organization and analysis of whole-genome sequence data.
Collapse
Affiliation(s)
- Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
112
|
Donker T, Wallinga J, Grundmann H. Dispersal of antibiotic-resistant high-risk clones by hospital networks: changing the patient direction can make all the difference. J Hosp Infect 2013; 86:34-41. [PMID: 24075292 DOI: 10.1016/j.jhin.2013.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients who seek treatment in hospitals can introduce high-risk clones of hospital-acquired, antibiotic-resistant pathogens from previous admissions. In this manner, different healthcare institutions become linked epidemiologically. All links combined form the national patient referral network, through which high-risk clones can propagate. AIM To assess the influence of changes in referral patterns and network structure on the dispersal of these pathogens. METHODS Hospital admission data were mapped to reconstruct the English patient referral network, and 12 geographically distinct healthcare collectives were identified. The number of patients admitted and referred to hospitals outside their collective was measured. Simulation models were used to assess the influence of changing network structure on the spread of hospital-acquired pathogens. FINDINGS Simulation models showed that decreasing the number of between-collective referrals by redirecting, on average, just 1.5 patients/hospital/day had a strong effect on dispersal. By decreasing the number of between-collective referrals, the spread of high-risk clones through the network can be reduced by 36%. Conversely, by creating supra-regional specialist centres that provide specialist care at national level, the rate of dispersal can increase by 48%. CONCLUSION The structure of the patient referral network has a profound effect on the epidemic behaviour of high-risk clones. Any changes that affect the number of referrals between healthcare collectives, inevitably affect the national dispersal of these pathogens. These effects should be taken into account when creating national specialist centres, which may jeopardize control efforts.
Collapse
Affiliation(s)
- T Donker
- Department of Medical Microbiology, University Medical Centre Groningen, University of Groningen, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - J Wallinga
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - H Grundmann
- Department of Medical Microbiology, University Medical Centre Groningen, University of Groningen, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
113
|
Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 2013; 19:803-13. [DOI: 10.1111/1469-0691.12217] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
|
114
|
Price J, Claire Gordon N, Crook D, Llewelyn M, Paul J. The usefulness of whole genome sequencing in the management of Staphylococcus aureus infections. Clin Microbiol Infect 2013; 19:784-9. [DOI: 10.1111/1469-0691.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/14/2012] [Accepted: 11/18/2012] [Indexed: 01/23/2023]
|
115
|
Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H, Aarestrup FM, Kearns AM, Larsen AR, Skov RL, Fitzgerald JR. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 2013; 4:e00356-13. [PMID: 23943757 PMCID: PMC3747577 DOI: 10.1128/mbio.00356-13%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2023] Open
Abstract
UNLABELLED The importance of livestock as a source of bacterial pathogens with the potential for epidemic spread in human populations is unclear. In recent years, there has been a global increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections of healthy humans, but an understanding of the different evolutionary origins of CA-MRSA clones and the basis for their recent expansion is lacking. Here, using a high-resolution phylogenetic approach, we report the discovery of two emergent clones of human epidemic CA-MRSA which resulted from independent livestock-to-human host jumps by the major bovine S. aureus complex, CC97. Of note, one of the new clones was isolated from human infections on four continents, demonstrating its global dissemination since the host jump occurred over 40 years ago. The emergence of both human S. aureus clones coincided with the independent acquisition of mobile genetic elements encoding antimicrobial resistance and human-specific mediators of immune evasion, consistent with an important role for these genetic events in the capacity to survive and transmit among human populations. In conclusion, we provide evidence that livestock represent a reservoir for the emergence of new human-pathogenic S. aureus clones with the capacity for pandemic spread. These findings have major public health implications highlighting the importance of surveillance for early identification of emergent clones and improved transmission control measures at the human-livestock interface. IMPORTANCE Animals are the major source of new pathogens affecting humans. However, the potential for pathogenic bacteria that originally were found in animals to switch hosts and become widely established in human populations is not clear. Here, we report the discovery of emergent clones of methicillin-resistant Staphylococcus aureus (MRSA) that originated in livestock and switched to humans, followed by host-adaptive evolution and epidemic spread in global human populations. Our findings demonstrate that livestock can act as a reservoir for the emergence of new human bacterial clones with potential for pandemic spread, highlighting the potential role of surveillance and biosecurity measures in the agricultural setting for preventing the emergence of new human pathogens.
Collapse
Affiliation(s)
- Laura E. Spoor
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Paul R. McAdam
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Lucy A. Weinert
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Henrik Hasman
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Angela M. Kearns
- Microbiology Services, Colindale, Health Protection Agency, London, United Kingdom
| | - Anders R. Larsen
- Department of Antimicrobial Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark
| | - Robert L. Skov
- Department of Antimicrobial Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark
| | - J. Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
116
|
Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 2013; 4:mBio.00356-13. [PMID: 23943757 PMCID: PMC3747577 DOI: 10.1128/mbio.00356-13] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The importance of livestock as a source of bacterial pathogens with the potential for epidemic spread in human populations is unclear. In recent years, there has been a global increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections of healthy humans, but an understanding of the different evolutionary origins of CA-MRSA clones and the basis for their recent expansion is lacking. Here, using a high-resolution phylogenetic approach, we report the discovery of two emergent clones of human epidemic CA-MRSA which resulted from independent livestock-to-human host jumps by the major bovine S. aureus complex, CC97. Of note, one of the new clones was isolated from human infections on four continents, demonstrating its global dissemination since the host jump occurred over 40 years ago. The emergence of both human S. aureus clones coincided with the independent acquisition of mobile genetic elements encoding antimicrobial resistance and human-specific mediators of immune evasion, consistent with an important role for these genetic events in the capacity to survive and transmit among human populations. In conclusion, we provide evidence that livestock represent a reservoir for the emergence of new human-pathogenic S. aureus clones with the capacity for pandemic spread. These findings have major public health implications highlighting the importance of surveillance for early identification of emergent clones and improved transmission control measures at the human-livestock interface. Animals are the major source of new pathogens affecting humans. However, the potential for pathogenic bacteria that originally were found in animals to switch hosts and become widely established in human populations is not clear. Here, we report the discovery of emergent clones of methicillin-resistant Staphylococcus aureus (MRSA) that originated in livestock and switched to humans, followed by host-adaptive evolution and epidemic spread in global human populations. Our findings demonstrate that livestock can act as a reservoir for the emergence of new human bacterial clones with potential for pandemic spread, highlighting the potential role of surveillance and biosecurity measures in the agricultural setting for preventing the emergence of new human pathogens.
Collapse
|
117
|
Reuter S, Ellington MJ, Cartwright EJP, Köser CU, Török ME, Gouliouris T, Harris SR, Brown NM, Holden MTG, Quail M, Parkhill J, Smith GP, Bentley SD, Peacock SJ. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 2013; 173:1397-404. [PMID: 23857503 PMCID: PMC4001082 DOI: 10.1001/jamainternmed.2013.7734] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens. OBJECTIVE To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens. DESIGN, SETTING, AND PARTICIPANTS A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information. MAIN OUTCOMES AND MEASURES Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data. RESULTS We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of carbapenemases or other resistance mechanisms. Whole-genome sequencing was used to recapitulate reference laboratory typing of clinical isolates of Neisseria meningitidis and to provide extended phylogenetic analyses of these. CONCLUSIONS AND RELEVANCE The speed, accuracy, and depth of information provided by WGS platforms to confirm or refute outbreaks in hospitals and the community, and to accurately define transmission of multidrug-resistant and other organisms, represents an important advance.
Collapse
|
118
|
Holmes A, McAllister G, McAdam PR, Hsien Choi S, Girvan K, Robb A, Edwards G, Templeton K, Fitzgerald JR. Genome-wide single nucleotide polymorphism-based assay for high-resolution epidemiological analysis of the methicillin-resistant Staphylococcus aureus hospital clone EMRSA-15. Clin Microbiol Infect 2013; 20:O124-31. [PMID: 23927001 DOI: 10.1111/1469-0691.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Abstract
The EMRSA-15 clone is a major cause of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK and elsewhere but existing typing methodologies have limited capacity to discriminate closely related strains, and are often poorly reproducible between laboratories. Here, we report the design, development and validation of a genome-wide single nucleotide polymorphism (SNP) typing method and compare it to established methods for typing of EMRSA-15. In order to identify discriminatory SNPs, the genomes of 17 EMRSA-15 strains, selected to represent the breadth of genotypic and phenotypic diversity of EMRSA-15 isolates in Scotland, were determined and phylogenetic reconstruction was carried out. In addition to 17 phylogenetically informative SNPs, five binary markers were included to form the basis of an EMRSA-15 genotyping assay. The SNP-based typing assay was as discriminatory as pulsed-field gel electrophoresis, and significantly more discriminatory than staphylococcal protein A (spa) typing for typing of a representative panel of diverse EMRSA-15 strains, isolates from two EMRSA-15 hospital outbreak investigations, and a panel of bacteraemia isolates obtained in healthcare facilities in the east of Scotland during a 12-month period. The assay is a rapid, and reproducible approach for epidemiological analysis of EMRSA-15 clinical isolates in Scotland. Unlike established methods the DNA sequence-based method is ideally suited for inter-laboratory comparison of identified genotypes, and its flexibility lends itself to supplementation with additional SNPs or markers for the identification of novel S. aureus strains in other regions of the world.
Collapse
Affiliation(s)
- A Holmes
- The Roslin Institute and Edinburgh Infectious Diseases, Easter Bush Campus, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Lindsay JA. Hospital-associated MRSA and antibiotic resistance—What have we learned from genomics? Int J Med Microbiol 2013; 303:318-23. [DOI: 10.1016/j.ijmm.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
120
|
Missiakas DM, Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. CURRENT PROTOCOLS IN MICROBIOLOGY 2013; Chapter 9:Unit 9C.1. [PMID: 23408134 DOI: 10.1002/9780471729259.mc09c01s28] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is a facultative anaerobic Gram-positive coccus and a member of the normal skin flora as well as the nasal passages of humans. S. aureus is also the etiological agent of suppurative abscesses, as first described by Sir Alexander Ogston in 1880. Ever since, studies on S. aureus have focused on the complex battery of virulence factors and regulators that allow for its swift transition between commensalism and pathogenic states and escape from host immune defenses. The success of this pathogen is further evidenced by its ability to acquire antibiotic resistance traits through mechanisms that often remain poorly understood.
Collapse
|
121
|
Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 2013; 57:4945-55. [PMID: 23877702 DOI: 10.1128/aac.00152-13] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Collapse
|
122
|
Lindsay JA. Evolution of Staphylococcus aureus and MRSA during outbreaks. INFECTION GENETICS AND EVOLUTION 2013; 21:548-53. [PMID: 23665384 DOI: 10.1016/j.meegid.2013.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 01/24/2023]
Abstract
Investigation of Staphylococcus aureus outbreaks, and particularly those due to methicillin-resistant S. aureus (MRSA) in hospitals, can identify infection reservoirs and prevent further colonization and infection. During outbreaks, S. aureus genomes develop single nucleotide polymorphisms (SNPs), small genetic rearrangements, and/or acquire and lose mobile genetic elements (MGE) encoding resistance and virulence genes. Whole genome sequencing (WGS) is the most powerful method for discriminating between related isolates and deciding which are involved in an outbreak. Isolates with only minor variations are detectable and can identify MRSA transmission routes and identify reservoirs. Some patients may carry 'clouds' of related isolates, and this has consequences for how we interpret the data from outbreak investigations. Different clones of MRSA are evolving at different rates, influencing their typability. S. aureus genome variation reveals the importance of antibiotic resistance in the long term evolution of successful hospital clones, contributing to strategies to prevent the spread of successful MRSA clones.
Collapse
Affiliation(s)
- Jodi A Lindsay
- Infection and Immunity Research Centre, Division of Clinical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
123
|
Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2013; 21:563-74. [PMID: 23648426 DOI: 10.1016/j.meegid.2013.04.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 11/23/2022]
Abstract
Staphylococcus aureus is a prominent cause of human infections globally. The high prevalence of infections is compounded by antibiotic resistance--a significant problem for treatment. Methicillin-resistant S. aureus (MRSA) is endemic in hospitals and healthcare facilities worldwide, and is an increasingly common cause of community-associated bacterial infections in industrialized countries. Although much focus is placed on the role of S. aureus as a human pathogen, it is in fact a human commensal organism that has had a relatively long coexistence with the human host. Many S. aureus infections can be explained by host susceptibility or other predisposing risk factors. On the other hand, the emergence/re-emergence of successful S. aureus clones (referred to as epidemic waves) suggests a rapid bacterial adaption and evolution, which includes the emergence of antibiotic resistance and increased virulence and/or transmissibility. It is within this context that we review our understanding of selected S. aureus epidemic waves, and highlight the use of genome sequencing as a means to better understand the evolution of each lineage.
Collapse
|
124
|
Chua KYL, Howden BP, Jiang JH, Stinear T, Peleg AY. Population genetics and the evolution of virulence in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2013; 21:554-62. [PMID: 23628638 DOI: 10.1016/j.meegid.2013.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is one of the most important human pathogens, causing life-threatening infection in the community and hospital setting. The population genetics of S. aureus and the evolution of virulence is the focus of this review. We describe the various techniques in determining S. aureus population structure and discuss the insights gained from whole genome sequencing of various S. aureus strains. The emergence of community-acquired, methicillin-resistant S. aureus provides a framework for the discussion on evolution of virulence, and the role of horizontal gene transfer in the development of virulence and antibiotic resistance is explored. The knowledge generated from population genetics has the potential to inform strategies to assist in the prevention or treatment of this highly successful human pathogen.
Collapse
Affiliation(s)
- Kyra Y L Chua
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia; Austin Centre for Infection Research (ACIR), Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia; Microbiology Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Austin Centre for Infection Research (ACIR), Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia; Microbiology Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Jhih-Hang Jiang
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy Stinear
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3181, Australia; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
125
|
Tong SYC, Sharma-Kuinkel BK, Thaden JT, Whitney AR, Yang SJ, Mishra NN, Rude T, Lilliebridge RA, Selim MA, Ahn SH, Holt DC, Giffard PM, Bayer AS, Deleo FR, Fowler VG. Virulence of endemic nonpigmented northern Australian Staphylococcus aureus clone (clonal complex 75, S. argenteus) is not augmented by staphyloxanthin. J Infect Dis 2013; 208:520-7. [PMID: 23599317 DOI: 10.1093/infdis/jit173] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus clonal complex 75 (herein referred to as S. argenteus) lacks the carotenoid pigment operon, crtOPQMN, responsible for production of the putative virulence factor, staphyloxanthin. Although a common cause of community-onset skin infections among Indigenous populations in northern Australia, this clone is infrequently isolated from hospital-based patients with either bacteremic or nonbacteremic infections. We hypothesized that S. argenteus would have attenuated virulence compared to other S. aureus strains due to its staphyloxanthin "deficiency." Compared to prototypical S. aureus strains, S. argenteus was more susceptible to oxidative stress and neutrophil killing in vitro and had reduced virulence in murine sepsis and skin infection models. Transformation with pTX-crtOPQMN resulted in staphyloxanthin expression and increased resistance to oxidative stress in vitro. However, neither resistance to neutrophil killing nor in vivo virulence was increased. Thus, reduced virulence of S. argenteus in these models is due to mechanisms unrelated to lack of staphyloxanthin production.
Collapse
|
126
|
McNally A, Alhashash F, Collins M, Alqasim A, Paszckiewicz K, Weston V, Diggle M. Genomic analysis of extra-intestinal pathogenic Escherichia coli urosepsis. Clin Microbiol Infect 2013; 19:E328-34. [PMID: 23573792 DOI: 10.1111/1469-0691.12202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/05/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022]
Abstract
Urosepsis is a bacteraemia infection caused by an organism previously causing an infection in the urinary tract of a patient, a diagnosis which has been classically confirmed by culture of the same species of bacteria from both blood and urine samples. Given the new insights afforded by sequencing technologies into the complicated population structures of infectious agents affecting humans, we sought to investigate urosepsis by comparing the genome sequences of blood and urine isolates of Escherichia coli from five patients with urosepsis. The results confirm the classical urosepsis hypothesis in four of the five cases, but also show the complex nature of extra-intestinal E. coli infection in the fifth case, where three distinct strains caused two distinct infections. Additionally, we show there is little to no variation in the bacterial genome as it progressed from urine to blood, and also present a minimal set of virulence genes required for bacteraemia in E. coli based on gene association. These suggest that most E. coli have the genetic propensity to cause bacteraemia.
Collapse
Affiliation(s)
- A McNally
- Pathogen Research Group, Nottingham Trent University, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
127
|
Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins--their functions and genetics. INFECTION GENETICS AND EVOLUTION 2013; 21:583-92. [PMID: 23541411 DOI: 10.1016/j.meegid.2013.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
The outcome of encounters between Staphylococcus (S.) aureus and its human host ranges from life-threatening infection through allergic reactions to symptom-free colonization. The pan-genome of this bacterial species encodes numerous toxins, known or strongly suspected to cause specific diseases or symptoms. Three toxin families are in the focus of this review, namely (i) pore-forming toxins, (ii) exfoliative toxins and (iii) superantigens. The majority of toxin-encoding genes are located on mobile genetic elements (MGEs), resulting in a pronounced heterogeneity in the endowment with toxin genes of individual S. aureus strains. Recent population genomic analysis have provided a framework for an improved understanding of the temporal and spatial scales of the motility of MGEs and their associated toxin genes. The distribution of toxin genes among clonal lineages within the species S. aureus is not random, and phylogenetic (sub-)lineages within clonal complexes feature characteristic toxin signatures. When studying pathogenesis, this lineage association, which is caused by the clonal nature of S. aureus makes it difficult to discriminate effects of specific toxins from contributions of the genetic background and/or other associated genetic factors.
Collapse
Affiliation(s)
- Dorothee Grumann
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany
| | | | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
128
|
Ciccolini M, Donker T, Köck R, Mielke M, Hendrix R, Jurke A, Rahamat-Langendoen J, Becker K, Niesters HGM, Grundmann H, Friedrich AW. Infection prevention in a connected world: the case for a regional approach. Int J Med Microbiol 2013; 303:380-7. [PMID: 23499307 DOI: 10.1016/j.ijmm.2013.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Results from microbiological and epidemiological investigations, as well as mathematical modelling, show that the transmission dynamics of nosocomial pathogens, especially of multiple antibiotic-resistant bacteria, is not exclusively amenable to single-hospital infection prevention measures. Crucially, their extent of spread depends on the structure of an underlying "healthcare network", as determined by inter-institutional referrals of patients. The current trend towards centralized healthcare systems favours the spread of hospital-associated pathogens, and must be addressed by coordinated regional or national approaches to infection prevention in order to maintain patient safety. Here we review recent advances that support this hypothesis, and propose a "next-generation" network-approach to hospital infection prevention and control.
Collapse
Affiliation(s)
- Mariano Ciccolini
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities. PLoS One 2013; 8:e58155. [PMID: 23505464 PMCID: PMC3591430 DOI: 10.1371/journal.pone.0058155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/04/2013] [Indexed: 12/28/2022] Open
Abstract
We investigated the population structure of Staphylococcus aureus clonal complex CC121 by mutation discovery at 115 genetic housekeeping loci from each of 154 isolates, sampled on five continents between 1953 and 2009. In addition, we pyro-sequenced the genomes from ten representative isolates. The genome-wide SNPs that were ascertained revealed the evolutionary history of CC121, indicating at least six major clades (A to F) within the clonal complex and dating its most recent common ancestor to the pre-antibiotic era. The toxin gene complement of CC121 isolates was correlated with their SNP-based phylogeny. Moreover, we found a highly significant association of clinical phenotypes with phylogenetic affiliations, which is unusual for S. aureus. All isolates evidently sampled from superficial infections (including staphylococcal scalded skin syndrome, bullous impetigo, exfoliative dermatitis, conjunctivitis) clustered in clade F, which included the European epidemic fusidic-acid resistant impetigo clone (EEFIC). In comparison, isolates from deep-seated infections (abscess, furuncle, pyomyositis, necrotizing pneumonia) were disseminated in several clades, but not in clade F. Our results demonstrate that phylogenetic lineages with distinct clinical properties exist within an S. aureus clonal complex, and that SNPs serve as powerful discriminatory markers, able to identify these lineages. All CC121 genomes harboured a 41-kilobase prophage that was dissimilar to S. aureus phages sequenced previously. Community-associated MRSA and MSSA from Cambodia were extremely closely related, suggesting this MRSA arose in the region.
Collapse
|
130
|
|
131
|
Chua KYL, Stinear TP, Howden BP. Functional genomics of Staphylococcus aureus. Brief Funct Genomics 2013; 12:305-15. [PMID: 23430683 DOI: 10.1093/bfgp/elt006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus remains a major opportunistic human pathogen, and while in many individuals it is associated with asymptomatic colonization, it is also capable of causing a range of clinical syndromes from minor skin infections to life-threatening septicemia. Staphylococcus aureus has also demonstrated a remarkable capacity to acquire antimicrobial resistance. Recent technological advances in genomics have led to an avalanche of studies providing deep insights into how S. aureus is evolving globally and within the human host. However, there are still significant experimental barriers in using these insights to try and better understand the biology of S. aureus. Here, we summarize recent advances in the understanding of S. aureus through the use of genomic approaches, and contemplate what the near future holds for truly functional genomics that will allow us to better understand the biology of this pathogen.
Collapse
|
132
|
Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2013; 16:38-53. [PMID: 23357583 DOI: 10.1016/j.meegid.2013.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data, analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect to whole genome sequence typing approaches that are moving into the research arena at an ever-increasing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to include enough references in a variety of key areas to introduce the reader to the broad applications and complications of MLST data.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | | | | | | |
Collapse
|
133
|
Infectious keratitis: secreted bacterial proteins that mediate corneal damage. J Ophthalmol 2013; 2013:369094. [PMID: 23365719 PMCID: PMC3556867 DOI: 10.1155/2013/369094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022] Open
Abstract
Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.
Collapse
|
134
|
Holden MTG, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlicková H, Coombs G, Kearns AM, Hill RLR, Edgeworth J, Gould I, Gant V, Cooke J, Edwards GF, McAdam PR, Templeton KE, McCann A, Zhou Z, Castillo-Ramírez S, Feil EJ, Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Parkhill J, Achtman M, Bentley SD, Nübel U. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23:653-64. [PMID: 23299977 PMCID: PMC3613582 DOI: 10.1101/gr.147710.112] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB19 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Genetic variation among Panton-Valentine leukocidin-encoding bacteriophages in Staphylococcus aureus clonal complex 30 strains. J Clin Microbiol 2013; 51:914-9. [PMID: 23284024 DOI: 10.1128/jcm.03015-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonal complex 30 (CC30), one of the major Staphylococcus aureus lineages, has caused extensive hospital-acquired and community-acquired infections worldwide. Recent comparative genomics studies have demonstrated that three CC30 clones-phage type 80/81, Southwest Pacific (SWP), and contemporary EMRSA-16 associated (Con) strains-shared a recent common ancestor more than 100 years ago. Panton-Valentine leukocidin (PVL), a bacteriophage encoded toxin that has been epidemiologically linked with community-associated methicillin-resistant S. aureus (CA-MRSA), has frequently been identified in CC30 clones, although the pvl gene variation and distribution of PVL-encoding phages are poorly understood. We determined here the distribution of PVL phages, PVL gene sequences, and chromosomal phage insertion sites in 52 S. aureus CC30 PVL-harboring isolates, collected from four continents over a 75-year period. Our results indicate that PVL phages with icosahedral heads, including Φ108PVL and ΦPVL, were mainly associated with phage 80/81 strains, whereas phages with elongated heads were predominantly found in SWP (ΦSa2958 and ΦTCH60) and Con (ΦSa2USA) strains. Nine single-nucleotide polymorphisms were identified in the lukSF-PV gene, with six isolates harboring the R variant that has been previously associated with CA-MRSA strains. Interestingly, all six R variant strains belonged to the same Con CC30 clone and carried a ΦSa2USA-like phage. Similar chromosomal phage insertion sites were also identified in all 52 PVL-harboring CC30 strains. These analyses provide important insights into the microepidemiology of PVL-harboring CC30 strains, while the discovery of ΦSa2USA-associated R variant strains sheds further light on the evolution of PVL-positive CA-MRSA.
Collapse
|
136
|
Castillo-Ramírez S, Corander J, Marttinen P, Aldeljawi M, Hanage WP, Westh H, Boye K, Gulay Z, Bentley SD, Parkhill J, Holden MT, Feil EJ. Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biol 2012; 13:R126. [PMID: 23270620 PMCID: PMC3803117 DOI: 10.1186/gb-2012-13-12-r126] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/15/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is a powerful tool for understanding both patterns of descent over time and space (phylogeography) and the molecular processes underpinning genome divergence in pathogenic bacteria. Here, we describe a synthesis between these perspectives by employing a recently developed Bayesian approach, BRATNextGen, for detecting recombination on an expanded NGS dataset of the globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clone ST239. RESULTS The data confirm strong geographical clustering at continental, national and city scales and demonstrate that the rate of recombination varies significantly between phylogeographic sub-groups representing independent introductions from Europe. These differences are most striking when mobile non-core genes are included, but remain apparent even when only considering the stable core genome. The monophyletic ST239 sub-group corresponding to isolates from South America shows heightened recombination, the sub-group predominantly from Asia shows an intermediate level, and a very low level of recombination is noted in a third sub-group representing a large collection from Turkey. CONCLUSIONS We show that the rapid global dissemination of a single pathogenic bacterial clone results in local variation in measured recombination rates. Possible explanatory variables include the size and time since emergence of each defined sub-population (as determined by the sampling frame), variation in transmission dynamics due to host movement, and changes in the bacterial genome affecting the propensity for recombination.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, PO Box 68 (Gustaf Hällströmin katu 2b), University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Marttinen
- Department of Information and Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, PO Box 15400 (Konemiehentie 2), FI-00076 Aalto, Finland
- Department of Biomedical Engineering and Computational Science, Aalto University, PO Box 12200 (Rakentajanaukio 2c), FI-00076 Aalto, Finland
| | - Mona Aldeljawi
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Henrik Westh
- Department of Clinical Microbiology 445, Hvidovre Hospital, DK-2650 Hvidovre, Denmark
- Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kit Boye
- Department of Clinical Microbiology 445, Hvidovre Hospital, DK-2650 Hvidovre, Denmark
| | - Zeynep Gulay
- Dokuz Eylul University School of Medicine, Department of Clinical Microbiology, Mithatpaşa cad., Inciralti, Izmir 35340, Turkey
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Matthew T Holden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| |
Collapse
|
137
|
Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, Lund O, Larsen MV, Aarestrup FM. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2012; 68:771-7. [PMID: 23233485 DOI: 10.1093/jac/dks496] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Antimicrobial susceptibility testing of bacterial isolates is essential for clinical diagnosis, to detect emerging problems and to guide empirical treatment. Current phenotypic procedures are sometimes associated with mistakes and may require further genetic testing. Whole-genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures. METHODS Antimicrobial susceptibility tests were performed on 200 isolates originating from Danish pigs, covering four bacterial species. Genomic DNA was purified from all isolates and sequenced as paired-end reads on the Illumina platform. The web servers ResFinder and MLST (www.genomicepidemiology.org) were used to identify acquired antimicrobial resistance genes and MLST types (where MLST stands for multilocus sequence typing). ResFinder results were compared with phenotypic antimicrobial susceptibility testing results using EUCAST epidemiological cut-off values and MLST types. RESULTS A total of 3051 different phenotypic tests were performed; 482 led to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella Typhimurium, where isolates belonging to sequence type (ST) 34 were more resistant than ST19 isolates. CONCLUSIONS High concordance (99.74%) between phenotypic and predicted antimicrobial susceptibility was observed. Thus, antimicrobial resistance testing based on WGS is an alternative to conventional phenotypic methods.
Collapse
Affiliation(s)
- Ea Zankari
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Shigella sonnei is an important cause of bacterial dysentery in the developed world and has also recently emerged in transitional countries. Phylogenetic analysis based on whole-genome sequencing of a global sample has detailed the recent evolutionary history of this pathogen and shed light on the genetic changes associated with this epidemiological shift.
Collapse
Affiliation(s)
- Edward J Feil
- Department of Biology and Biochemistry, University of Bath, UK.
| |
Collapse
|
139
|
Whole genome sequencing in the prevention and control of Staphylococcus aureus infection. J Hosp Infect 2012; 83:14-21. [PMID: 23164609 PMCID: PMC7132511 DOI: 10.1016/j.jhin.2012.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Staphylococcus aureus remains a leading cause of hospital-acquired infection but weaknesses inherent in currently available typing methods impede effective infection prevention and control. The high resolution offered by whole genome sequencing has the potential to revolutionise our understanding and management of S. aureus infection. AIM To outline the practicalities of whole genome sequencing and discuss how it might shape future infection control practice. METHODS We review conventional typing methods and compare these with the potential offered by whole genome sequencing. FINDINGS In contrast with conventional methods, whole genome sequencing discriminates down to single nucleotide differences and allows accurate characterisation of transmission events and outbreaks and additionally provides information about the genetic basis of phenotypic characteristics, including antibiotic susceptibility and virulence. However, translating its potential into routine practice will depend on affordability, acceptable turnaround times and on creating a reliable standardised bioinformatic infrastructure. CONCLUSION Whole genome sequencing has the potential to provide a universal test that facilitates outbreak investigation, enables the detection of emerging strains and predicts their clinical importance.
Collapse
|
140
|
Priest NK, Rudkin JK, Feil EJ, van den Elsen JMH, Cheung A, Peacock SJ, Laabei M, Lucks DA, Recker M, Massey RC. From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence? Nat Rev Microbiol 2012; 10:791-7. [PMID: 23070558 PMCID: PMC7097209 DOI: 10.1038/nrmicro2880] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
With the advent of high-throughput whole-genome sequencing, it is now possible to sequence a bacterial genome in a matter of hours. However, although the presence or absence of a particular gene can be determined, we do not yet have the tools to extract information about the true virulence potential of an organism from sequence data alone. Here, we focus on the important human pathogen Staphylococcus aureus and present a framework for the construction of a broad systems biology-based tool that could be used to predict virulence phenotypes from S. aureus genomic sequences using existing technology.
Collapse
Affiliation(s)
- Nicholas K. Priest
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Justine K. Rudkin
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Edward J. Feil
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Jean M. H. van den Elsen
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Ambrose Cheung
- Ambrose Cheung is at Dartmouth Medical School, Vail Building - HB 7550, Hanover, New Hampshire 03755, USA.,
| | - Sharon J. Peacock
- Sharon J. Peacock is at the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.,
| | - Maisem Laabei
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - David A. Lucks
- David A. Lucks is at Western Infectious Disease Consultants, PC, 3885 Upham Street Suite 200, Wheat Ridge, Colorado 80033, USA.,
| | - Mario Recker
- Mario Recker is at the Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,
| | - Ruth C. Massey
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| |
Collapse
|
141
|
Arsic B, Zhu Y, Heinrichs DE, McGavin MJ. Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus. PLoS One 2012; 7:e45952. [PMID: 23029337 PMCID: PMC3454333 DOI: 10.1371/journal.pone.0045952] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/23/2012] [Indexed: 01/31/2023] Open
Abstract
Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA), and the USA300 strain of CA-MRSA in particular, are known for their rapid community transmission, and propensity to cause aggressive skin and soft tissue infections. To assess factors that contribute to these hallmark traits of CA-MRSA, we evaluated how growth of USA300 and production of secreted virulence factors was influenced on exposure to physiologic levels of unsaturated free fatty acids that would be encountered on the skin or anterior nares, which represent the first sites of contact with healthy human hosts. There was a sharp threshold between sub-inhibitory and inhibitory concentrations, such that 100 µM sapienic acid (C16∶1) and linoleic acid (C18∶1) were sufficient to prevent growth after 24 h incubation, while 25 µM allowed unrestricted growth, and 50 µM caused an approximate 10–12 h lag, followed by unimpeded exponential growth. Conversely, saturated palmitic or stearic acids did not affect growth at 100 µM. Although growth was not affected by 25 µM sapienic or linoleic acid, these and other unsaturated C16 and C18 fatty acids, but not their saturated counterparts, promoted robust production of secreted proteases comprising the Staphylococcal proteolytic cascade. This trait was also manifested to varying degrees in other CA-MRSA, and in genetically diverse methicillin susceptible S. aureus strains. Therefore, induction of the Staphylococcal proteolytic cascade by unsaturated fatty acids is another feature that should now be evaluated as a potential contributing factor in the aggressive nature of skin and soft tissue infections caused by USA300, and as a general virulence mechanism of S. aureus.
Collapse
Affiliation(s)
- Benjamin Arsic
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Yue Zhu
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Martin J. McGavin
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
142
|
Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, Holden MTG, Dougan G, Bentley SD, Parkhill J, Peacock SJ. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 2012; 8:e1002824. [PMID: 22876174 PMCID: PMC3410874 DOI: 10.1371/journal.ppat.1002824] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Claudio U Köser
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|