101
|
Moore JK, Mackinnon AC, Wojtacha D, Pope C, Fraser AR, Burgoyne P, Bailey L, Pass C, Atkinson A, Mcgowan NWA, Manson L, Turner ML, Campbell JDM, Forbes SJ. Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy 2015; 17:1604-16. [PMID: 26342993 PMCID: PMC4596388 DOI: 10.1016/j.jcyt.2015.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AIMS Macrophages have complex roles in the liver. The aim of this study was to compare profiles of human monocyte-derived macrophages between controls and cirrhotic patients, to determine whether chronic inflammation affects precursor number or the phenotype, with the eventual aim to develop a cell therapy for cirrhosis. METHODS Infusion of human macrophages in a murine liver fibrosis model demonstrated a decrease in markers of liver injury (alanine transaminase, bilirubin, aspartate transaminase) and fibrosis (transforming growth factor-β, α-smooth muscle actin, phosphatidylserine receptor) and an increase in markers of liver regeneration (matrix metalloproteinases [MMP]-9, MMP-12 and TNF-related weak inducer of apoptosis). CD14+ monocytes were then isolated from controls. Monocytes were matured into macrophages for 7 days using a Good Manufacturing Practice-compatible technique. RESULTS There was no significant difference between the mean number of CD14+ monocytes isolated from cirrhotic patients (n = 9) and controls (n = 10); 2.8 ± SEM 0.54 × 10(8) and 2.5 ± 0.56 × 10(8), respectively. The mean yield of mature macrophages cultured was also not significantly different between cirrhotic patients and controls (0.9 × 10(8) ± 0.38 × 10(8), with more than 90% viability and 0.65 × 10(8) ± 0.16 × 10(8), respectively. Maturation to macrophages resulted in up-regulation of a number of genes (MMP-9, CCL2, interleukin [IL]-10 and TNF-related weak inducer of apoptosis). A cytokine and chemokine polymerase chain reaction array, comparing the control and cirrhotic macrophages, revealed no statistically significant differences. CONCLUSIONS Macrophages can be differentiated from cirrhotic patients' apheresis-derived CD14 monocytes and develop the same pro-resolution phenotype as control macrophages, indicating their suitability for clinical therapy.
Collapse
Affiliation(s)
- Joanna K Moore
- MRC Centre for Regenerative Medicine, Max Born Crescent, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison C Mackinnon
- MRC Centre for Regenerative Medicine, Max Born Crescent, University of Edinburgh, Edinburgh, United Kingdom
| | - Dvina Wojtacha
- MRC Centre for Regenerative Medicine, Max Born Crescent, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Pope
- Scottish Universities Life Sciences Alliance (SULSA), Max Born Crescent, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair R Fraser
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Paul Burgoyne
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Laura Bailey
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Chloe Pass
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Anne Atkinson
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Neil W A Mcgowan
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Lynn Manson
- Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, United Kingdom
| | - Mark L Turner
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom; Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, United Kingdom
| | - John D M Campbell
- Research, Development and Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, Max Born Crescent, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
102
|
Irvine KM, Clouston AD, Gadd VL, Miller GC, Wong WY, Melino M, Maradana MR, MacDonald K, Lang RA, Sweet MJ, Blumenthal A, Powell EE. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. FIBROGENESIS & TISSUE REPAIR 2015; 8:19. [PMID: 26473015 PMCID: PMC4606475 DOI: 10.1186/s13069-015-0036-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022]
Abstract
Background Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro- and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice). Results Fibrosis and HPC activation were exacerbated in LysM-Wls mice compared to littermate controls, in the absence of an apparent increase in myofibroblast activation or interstitial collagen mRNA expression, in both the TAA and CDE models of chronic liver disease. Increased Epcam mRNA levels paralleled the increased HPC activation and more mature ductular reactions, in LysM-Wls mice. Increased Epcam expression in LysM-Wls HPC was also observed, consistent with a more cholangiocytic phenotype. No differences in the mRNA expression levels of key pro-inflammatory and pro-fibrotic cytokines or the macrophage-derived HPC mitogen, Tweak, were observed. LysM-Wls mice exhibited increased expression of Timp1, encoding the key Mmp inhibitor Timp1 that blocks interstitial collagen degradation, and, in the TAA model, reduced expression of the anti-fibrotic matrix metalloproteinases, Mmp12 and Mmp13, suggesting a role for macrophage-derived Wnt proteins in restraining fibrogenesis during ongoing liver injury. Conclusion In summary, these data suggest that macrophage-derived Wnt proteins possess anti-fibrogenic potential in chronic liver disease, which may be able to be manipulated for therapeutic benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0036-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharine M Irvine
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Andrew D Clouston
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Victoria L Gadd
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Gregory C Miller
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Weng-Yew Wong
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Michelle Melino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Muralidhara Rao Maradana
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Richard A Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Matthew J Sweet
- Institute for Molecular Bioscience and the Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| |
Collapse
|
103
|
Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells 2015; 34:135-47. [PMID: 26389810 DOI: 10.1002/stem.2210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is strongly associated with chronic inflammation. As an alternative to conventional treatments for fibrosis, mesenchymal stem cells (MSCs) therapy is found to be attractive due to its immunomodulatory functions. However, low survival rate and profibrogenic properties of MSCs remain the major concerns, leading to skepticism in many investigators. Here, we have asked the question whether bone marrow (BM)-derived CD45 cells is the better candidate than MSCs to treat fibrosis, if so, what are the molecular mechanisms that make such distinction. Using CCl4 -induced liver fibrosis mouse model of a Metavir fibrosis score 3, we showed that BM-CD45 cells have better antifibrotic effect than adipose-derived (AD)-MSCs. In fact, our study revealed that antifibrotic potential of CD45 cells are compromised by the presence of MSCs. This difference was apparently due to significantly high level expressions of matrix metalloproteinases-9 and 13, and the suppression of hepatic stellate cells' (HpSCs) activation in the CD45 cells transplantation group. Mechanism dissection studied in vitro supported the above opposing results and revealed that CD45 cell-secreted FasL induced apoptotic death of activated HpSCs. Further analyses suggest that MSC-secreted transforming growth factor β and insulin-like growth factor-1 promoted myofibroblastic differentiation of HpSCs and their proliferation. Additionally, the transplantation of CD45 cells led to functional improvement of the liver through repair and regeneration. Thus, BM-derived CD45 cells appear as a superior candidate for the treatment of liver fibrosis due to structural and functional improvement of CCl4 -induced fibrotic liver, which were much lower in case of AD-MSC therapy.
Collapse
Affiliation(s)
- Prakash Baligar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Snehasish Mukherjee
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena Kochat
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver & Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
104
|
Elsegood CL, Chan CW, Degli-Esposti MA, Wikstrom ME, Domenichini A, Lazarus K, van Rooijen N, Ganss R, Olynyk JK, Yeoh GCT. Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 2015; 62:1272-84. [PMID: 26173184 DOI: 10.1002/hep.27977] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/10/2015] [Accepted: 07/04/2015] [Indexed: 12/27/2022]
Abstract
UNLABELLED Liver progenitor cells (LPCs) are necessary for repair in chronic liver disease because the remaining hepatocytes cannot replicate. However, LPC numbers also correlate with disease severity and hepatocellular carcinoma risk. Thus, the progenitor cell response in diseased liver may be regulated to optimize liver regeneration and minimize the likelihood of tumorigenesis. How this is achieved is currently unknown. Human and mouse diseased liver contain two subpopulations of macrophages with different ontogenetic origins: prenatal yolk sac-derived Kupffer cells and peripheral blood monocyte-derived macrophages. We examined the individual role(s) of Kupffer cells and monocyte-derived macrophages in the induction of LPC proliferation using clodronate liposome deletion of Kupffer cells and adoptive transfer of monocytes, respectively, in the choline-deficient, ethionine-supplemented diet model of liver injury and regeneration. Clodronate liposome treatment reduced initial liver monocyte numbers together with the induction of injury and LPC proliferation. Adoptive transfer of monocytes increased the induction of liver injury, LPC proliferation, and tumor necrosis factor-α production. CONCLUSION Kupffer cells control the initial accumulation of monocyte-derived macrophages. These infiltrating monocytes are in turn responsible for the induction of liver injury, the increase in tumor necrosis factor-α, and the subsequent proliferation of LPCs.
Collapse
Affiliation(s)
- Caryn L Elsegood
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Chun Wei Chan
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle, Western Australia, Australia.,School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Matthew E Wikstrom
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Alice Domenichini
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Kyren Lazarus
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nico van Rooijen
- Department of Molecular Cell Biology, VU Medical Center, Amsterdam, The Netherlands
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - John K Olynyk
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia.,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, South Metropolitan Health Service, Western Australia, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - George C T Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
105
|
Rachakonda V, Jadeja RN, Urrunaga NH, Shah N, Ahmad D, Cheng K, Twaddell WS, Raufman JP, Khurana S. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 2015; 5:14110. [PMID: 26374068 PMCID: PMC4571652 DOI: 10.1038/srep14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit.
Collapse
Affiliation(s)
- Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Nirish Shah
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Daniel Ahmad
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
106
|
Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, Wojtacha D, Man TY, Mackinnon A, Ridgway RA, Kendall T, Williams MJ, Jamieson T, Raven A, Hay DC, Iredale JP, Clarke AR, Sansom OJ, Forbes SJ. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 2015; 17:971-983. [PMID: 26192438 PMCID: PMC4612439 DOI: 10.1038/ncb3203] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.
Collapse
Affiliation(s)
- Wei-Yu Lu
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Thomas G Bird
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Alicia M Cole
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, CF24 4HQ
| | - Rachel V Guest
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Davina Wojtacha
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Alison Mackinnon
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Rachel A Ridgway
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Timothy Kendall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU
| | - Michael J Williams
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Thomas Jamieson
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Alex Raven
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - David C Hay
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - John P Iredale
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, CF24 4HQ
| | - Owen J Sansom
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| |
Collapse
|
107
|
Iredale JP, Sci FM, Pellicoro A. Liver fibrosis: Therapeutic armory 40 years on. Clin Liver Dis (Hoboken) 2015; 6:1-4. [PMID: 31040974 PMCID: PMC6490631 DOI: 10.1002/cld.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/14/2015] [Indexed: 02/04/2023] Open
Affiliation(s)
- John P. Iredale
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - F Med Sci
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Antonella Pellicoro
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
108
|
Govaere O, Roskams T. Pathogenesis and prognosis of hepatocellular carcinoma at the cellular and molecular levels. Clin Liver Dis 2015; 19:261-76. [PMID: 25921662 DOI: 10.1016/j.cld.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Different approaches predict the outcome for patients with hepatocellular carcinoma (HCC). The expression of biliary-hepatic progenitor cell markers generally correlates with poor prognosis. This article focuses on the pathogenesis of HCC, how differentiation or dedifferentiation leads to a phenotype switch, and heterogeneity in the same tumor. A tumor cell decides its fate based on a complex interplay of signaling pathways. Interaction with the microenvironment decides whether it will invade, proliferate, or enter survival mode. Several signaling pathways contribute to stemness features, reflecting a small chemoresistant subpopulation of the tumor that expresses biliary-hepatic progenitor cell markers.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Minderbroedersstraat 12, Leuven B3000, Belgium.
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Minderbroedersstraat 12, Leuven B3000, Belgium.
| |
Collapse
|
109
|
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol 2015; 62:S157-69. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023]
Abstract
Work over several decades has laid solid foundations for the advancement of liver cell therapy. To date liver cell therapy in people has taken the form of hepatocyte transplantation for metabolic disorders with a hepatic basis, and for acute or chronic liver failure. Although clinical trials using various types of autologous cells have been implemented to promote liver regeneration or reduce liver fibrosis, clear evidence of therapeutic benefits have so far been lacking. Cell types that have shown efficacy in preclinical models include hepatocytes, liver sinusoidal endothelial cells, mesenchymal stem cells, endothelial progenitor cells, and macrophages. However, positive results in animal models have not always translated through to successful clinical therapies and more realistic preclinical models need to be developed. Studies defining the optimal repopulation by transplanted cells, including routes of cell transplantation, superior engraftment and proliferation of transplanted cells, as well as optimal immunosuppression regimens are required. Tissue engineering approaches to transplant cells in extrahepatic locations have also been proposed. The derivation of hepatocytes from pluripotent or reprogrammed cells raises hope that donor organ and cell shortages could be overcome in the future. Critical hurdles to be overcome include the production of hepatocytes from pluripotent cells with equal functional capacity to primary hepatocytes and long-term phenotypic stability in vivo.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 625, Bronx, NY 10461, United States
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and NIHR/Wellcome Cell Therapy Unit, King's College Hospital at King's College, London SE59RS, United Kingdom
| |
Collapse
|
110
|
Best J, Manka P, Syn WK, Dollé L, van Grunsven LA, Canbay A. Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 2015; 4:48-58. [PMID: 25713804 DOI: 10.3978/j.issn.2304-3881.2015.01.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Collapse
Affiliation(s)
- Jan Best
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Paul Manka
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Wing-Kin Syn
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Laurent Dollé
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Leo A van Grunsven
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Ali Canbay
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| |
Collapse
|
111
|
Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G233-50. [PMID: 25477371 PMCID: PMC4329473 DOI: 10.1152/ajpgi.00069.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell-cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Neil D. Theise
- 2Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York;
| | - Eva Schmelzer
- 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Luke Boulter
- 4Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, Scotland; and
| | - Olivier Gires
- 5Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Leo A. van Grunsven
- 1Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
112
|
Karaca G, Xie G, Moylan C, Swiderska-Syn M, Guy CD, Krüger L, Machado MV, Choi SS, Michelotti GA, Burkly LC, Diehl AM. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G325-34. [PMID: 25524063 PMCID: PMC4329478 DOI: 10.1152/ajpgi.00429.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-like weak inducer of apoptosis (TWEAK) is a growth factor for bipotent liver progenitors that express its receptor, fibroblast growth factor-inducible 14 (Fn14), a TNF receptor superfamily member. Accumulation of Fn14(+) progenitors occurs in severe acute alcoholic steatohepatitis (ASH) and correlates with acute mortality. In patients with severe ASH, inhibition of TNF-α increases acute mortality. The aim of this study was to determine whether deletion of Fn14 improves the outcome of liver injury in alcohol-consuming mice. Wild-type (WT) and Fn14 knockout (KO) mice were fed control high-fat Lieber deCarli diet or high-fat Lieber deCarli diet with 2% alcohol (ETOH) and injected intraperitoneally with CCl₄ for 2 wk to induce liver injury. Mice were euthanized 3 or 10 days after CCl₄ treatment. Survival was assessed. Liver tissues were analyzed for cell death, inflammation, proliferation, progenitor accumulation, and fibrosis by quantitative RT-PCR, immunoblot, hydroxyproline content, and quantitative immunohistochemistry. During liver injury, Fn14 expression, apoptosis, inflammation, hepatocyte replication, progenitor and myofibroblast accumulation, and fibrosis increased in WT mice fed either diet. Mice fed either diet expressed similar TWEAK/Fn14 levels, but ETOH-fed mice had higher TNF-α expression. The ETOH-fed group developed more apoptosis, inflammation, fibrosis, and regenerative responses. Fn14 deletion did not reduce hepatic TNF-α expression but improved all injury parameters in mice fed the control diet. In ETOH-fed mice, Fn14 deletion inhibited TNF-α induction and increased acute mortality, despite improvement in liver injury. Fn14 mediates wound-healing responses that are necessary to survive acute liver injury during alcohol exposure.
Collapse
Affiliation(s)
- Gamze Karaca
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Guanhua Xie
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Cynthia Moylan
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Marzena Swiderska-Syn
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Cynthia D. Guy
- 2Department of Pathology, Duke University Medical Center, Durham, North Carolina;
| | - Leandi Krüger
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Mariana Verdelho Machado
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Steve S. Choi
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; ,3Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina; and
| | - Gregory A. Michelotti
- 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| | - Linda C. Burkly
- 4Department of Immunology, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina;
| |
Collapse
|
113
|
Hsieh WC, Mackinnon AC, Lu WY, Jung J, Boulter L, Henderson NC, Simpson KJ, Schotanus B, Wojtacha D, Bird TG, Medine CN, Hay DC, Sethi T, Iredale JP, Forbes SJ. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut 2015; 64:312-21. [PMID: 24837171 DOI: 10.1136/gutjnl-2013-306290] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Following chronic liver injury or when hepatocyte proliferation is impaired, ductular reactions containing hepatic progenitor cells (HPCs) appear in the periportal regions and can regenerate the liver parenchyma. HPCs exist in a niche composed of myofibroblasts, macrophages and laminin matrix. Galectin-3 (Gal-3) is a β-galactoside-binding lectin that binds to laminin and is expressed in injured liver in mice and humans. DESIGN We examined the role of Gal-3 in HPC activation. HPC activation was studied following dietary induced hepatocellular (choline-deficient ethionine-supplemented diet) and biliary (3,5-diethoxycarbonyl-1,4-dihydrocollidine supplemented diet) injury in wild type and Gal-3(-/-) mice. RESULTS HPC proliferation was significantly reduced in Gal-3(-/-) mice. Gal-3(-/-) mice failed to form a HPC niche, with reduced laminin formation. HPCs isolated from wild type mice secrete Gal-3 which enhanced adhesion and proliferation of HPCs on laminin in an undifferentiated form. These effects were attenuated in Gal3(-/-) HPCs and in wild type HPCs treated with the Gal-3 inhibitor lactose. Gal-3(-/-) HPCs in vitro showed increased hepatocyte function and prematurely upregulated both biliary and hepatocyte differentiation markers and regulated cell cycle genes leading to arrest in G0/G1. CONCLUSIONS We conclude that Gal-3 is required for the undifferentiated expansion of HPCs in their niche in injured liver.
Collapse
Affiliation(s)
- Wei-Chen Hsieh
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Alison C Mackinnon
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Yu Lu
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jonathan Jung
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luke Boulter
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- MRC/Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Baukje Schotanus
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Davina Wojtacha
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Tom G Bird
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Claire N Medine
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Tariq Sethi
- Department of Respiratory Medicine and Allergy, Kings College Denmark Hill Campus, London, UK
| | - John P Iredale
- Department of Hepatology, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
114
|
Verhulst S, Best J, van Grunsven LA, Dollé L. Advances in hepatic stem/progenitor cell biology. EXCLI JOURNAL 2015; 14:33-47. [PMID: 26600740 PMCID: PMC4650945 DOI: 10.17179/excli2014-576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration.
Collapse
Affiliation(s)
- Stefaan Verhulst
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Best
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
115
|
Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol 2014; 61:1397-406. [PMID: 25157983 DOI: 10.1016/j.jhep.2014.08.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/07/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible transcription factors (HIFs) activate diverse pathways that regulate cellular metabolism, angiogenesis, proliferation, and migration, enabling a cell to respond to a low oxygen or hypoxic environment. HIFs are regulated by oxygen-dependent and independent signals including: mitochondrial dysfunction, reactive oxygen species, endoplasmic reticular stress, and viral infection. HIFs have been reported to play a role in the pathogenesis of liver disease of diverse aetiologies. This review explores the impact of HIFs on hepatocellular biology and inflammatory responses, highlighting the therapeutic potential of targeting HIFs for an array of liver pathologies.
Collapse
Affiliation(s)
- Garrick K Wilson
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
116
|
Katoonizadeh A, Poustchi H, Malekzadeh R. Hepatic progenitor cells in liver regeneration: current advances and clinical perspectives. Liver Int 2014; 34:1464-72. [PMID: 24750779 DOI: 10.1111/liv.12573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
When there is a massive loss of hepatocytes and/or an inhibition in the proliferative capacity of the mature hepatocytes, activation of a dormant cell population of resident hepatic progenitor cells (HPCs) occurs. Depending on the type of liver damage HPCs generate new hepatocytes and biliary cells to repopulate the liver placing them as potential candidates for cell therapy in human liver failure. Liver injury specific mechanisms through which HPCs differentiate towards mature epithelial cell types are recently become understood. Such new insights will enable us not only to direct HPCs behaviour for therapeutic purposes, but also to develop clinically feasible methods for in vivo differentiation of other stem cell types towards functional hepatocytes. This review aimed to provide the current improved knowledge of the role of HPCs niche and its signals in directing the behaviour and fate of HPCs and to translate this basic knowledge of HPCs activation/differentiation into its clinical applications.
Collapse
Affiliation(s)
- Aezam Katoonizadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
117
|
Tsuchiya A, Lu WY, Weinhold B, Boulter L, Stutchfield BM, Williams MJ, Guest RV, Minnis-Lyons SE, MacKinnon AC, Schwarzer D, Ichida T, Nomoto M, Aoyagi Y, Gerardy-Schahn R, Forbes SJ. Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury. Hepatology 2014; 60:1727-40. [PMID: 24585441 DOI: 10.1002/hep.27099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/25/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED In severe liver injury, ductular reactions (DRs) containing bipotential hepatic progenitor cells (HPCs) branch from the portal tract. Neural cell adhesion molecule (NCAM) marks bile ducts and DRs, but not mature hepatocytes. NCAM mediates interactions between cells and surrounding matrix; however, its role in liver development and regeneration is undefined. Polysialic acid (polySia), a unique posttranslational modifier of NCAM, is produced by the enzymes, ST8SiaII and ST8SiaIV, and weakens NCAM interactions. The role of polySia with NCAM synthesizing enzymes ST8SiaII and ST8SiaIV were examined in HPCs in vivo using the choline-deficient ethionine-supplemented and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet models of liver injury and regeneration, in vitro using models of proliferation, differentiation, and migration, and by use of mouse models with gene defects in the polysialyltransferases (St8sia 2+/-4+/-, and St8sia2-/-4-/-). We show that, during liver development, polySia is required for the correct formation of bile ducts because gene defects in both the polysialyltransferases (St8sia2+/-4+/- and St8sia2-/-4-/- mice) caused abnormal bile duct development. In normal liver, there is minimal polySia production and few ductular NCAM+ cells. Subsequent to injury, NCAM+ cells expand and polySia is produced by DRs/HPCs through ST8SiaIV. PolySia weakens cell-cell and cell-matrix interactions, facilitating HGF-induced migration. Differentiation of HPCs to hepatocytes in vitro results in both transcriptional down-regulation of polySia and cleavage of polySia-NCAM. Cleavage of polySia by endosialidase (endoN) during liver regeneration reduces migration of DRs into parenchyma. CONCLUSION PolySia modification of NCAM+ ductules weakens cell-cell and cell-matrix interactions, allowing DRs/HPCs to migrate for normal development and regeneration. Modulation of polySia levels may provide a therapeutic option in liver regeneration.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Medical Research Council Center for Regenerative Medicine, The University of Edinburgh, Edinburgh bioQuarter, Edinburgh, United Kingdom; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20:857-69. [PMID: 25100531 DOI: 10.1038/nm.3653] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Chronic diseases confer tissue and organ damage that reduce quality of life and are largely refractory to therapy. Although stem cells hold promise for treating degenerative diseases by 'seeding' injured tissues, the regenerative capacity of stem cells is influenced by regulatory networks orchestrated by local immune responses to tissue damage, with macrophages being a central component of the injury response and coordinator of tissue repair. Recent research has turned to how cellular and signaling components of the local stromal microenvironment (the 'soil' to the stem cells' seed), such as local inflammatory reactions, contribute to successful tissue regeneration. This Review discusses the basic principles of tissue regeneration and the central role locally acting components may play in the process. Application of seed-and-soil concepts to regenerative medicine strengthens prospects for developing cell-based therapies or for promotion of endogenous repair.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Nadia Rosenthal
- 1] National Heart and Lung Institute, Imperial College London, London, UK. [2] Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
119
|
Swiderska-Syn M, Syn WK, Xie G, Krüger L, Machado MV, Karaca G, Michelotti GA, Choi SS, Premont RT, Diehl AM. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut 2014; 63:1333-44. [PMID: 24173292 PMCID: PMC4006344 DOI: 10.1136/gutjnl-2013-305962] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Smoothened (SMO), a coreceptor of the Hedgehog (Hh) pathway, promotes fibrogenic repair of chronic liver injury. We investigated the roles of SMO+ myofibroblast (MF) in liver regeneration by conditional deletion of SMO in α smooth muscle actin (αSMA)+ cells after partial hepatectomy (PH). DESIGN αSMA-Cre-ER(T2)×SMO/flox mice were treated with vehicle (VEH) or tamoxifen (TMX), and sacrificed 24-96 h post-PH. Regenerating livers were analysed for proliferation, progenitors and fibrosis by qRT-PCR and quantitative immunohistochemistry (IHC). Results were normalised to liver segments resected at PH. For lineage-tracing studies, αSMA-Cre-ER(T2)×ROSA-Stop-flox-yellow fluorescent protein (YFP) mice were treated with VEH or TMX; livers were stained for YFP, and hepatocytes isolated 48 and 72 h post-PH were analysed for YFP by flow cytometric analysis (FACS). RESULTS Post-PH, VEH-αSMA-SMO mice increased expression of Hh-genes, transiently accumulated MF, fibrosis and liver progenitors, and ultimately exhibited proliferation of hepatocytes and cholangiocytes. In contrast, TMX-αSMA-SMO mice showed loss of whole liver SMO expression, repression of Hh-genes, enhanced accumulation of quiescent HSC but reduced accumulation of MF, fibrosis and progenitors, as well as inhibition of hepatocyte and cholangiocyte proliferation, and reduced recovery of liver weight. In TMX-αSMA-YFP mice, many progenitors, cholangiocytes and up to 25% of hepatocytes were YFP+ by 48-72 h after PH, indicating that liver epithelial cells were derived from αSMA-YFP+ cells. CONCLUSIONS Hh signalling promotes transition of quiescent hepatic stellate cells to fibrogenic MF, some of which become progenitors that regenerate the liver epithelial compartment after PH. Hence, scarring is a component of successful liver regeneration.
Collapse
Affiliation(s)
- M Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - WK Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC,Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - L Krüger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - MV Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - G Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - GA Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - SS Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC,Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, NC
| | - RT Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - AM Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC,Corresponding author: Anna Mae Diehl, MD, Division of Gastroenterology, Duke University Medical Center, 595 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710, 919-684-4173,
| |
Collapse
|
120
|
Abstract
Liver disease is a rising cause of mortality and morbidity, and treatment options remain limited. Liver transplantation is curative but limited by donor organ availability, operative risk and long-term complications. The contribution of bone marrow (BM)-derived stem cells to tissue regeneration has been recognised and there is considerable interest in the potential benefits of BM stem cells in patients with liver disease. In chronic liver disease, deposition of fibrous scar tissue inhibits hepatocyte proliferation and leads to portal hypertension. Although initial reports had suggested transdifferentiation of stem cells into hepatocytes, the beneficial effects of BM stem cells are more likely derived from the ability to breakdown scar tissue and stimulate hepatocyte proliferation. Studies in animal models have yielded promising results, although the exact mechanisms and cell type responsible have yet to be determined. Small-scale clinical studies have quickly followed and, although primarily designed to examine safety and feasibility of this approach, have reported improvements in liver function in treated patients. Well-designed, controlled studies are required to fully determine the benefits of BM stem cell therapy.
Collapse
Affiliation(s)
- Andrew King
- NIHR Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
121
|
Tsolaki E, Athanasiou E, Gounari E, Zogas N, Siotou E, Yiangou M, Anagnostopoulos A, Yannaki E. Hematopoietic stem cells and liver regeneration: differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury. Blood Cells Mol Dis 2014; 53:124-32. [PMID: 24923531 DOI: 10.1016/j.bcmd.2014.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Bone marrow (BM) could serve as a source of cells facilitating liver repopulation in case of hepatic damage. Currently available hematopoietic stem cell (HSC) mobilizing agents, were comparatively tested for healing potential in liver fibrosis. Carbon tetrachloride (CCl4)-injured mice previously reconstituted with Green Fluorescent Protein BM were mobilized with Granulocyte-Colony Stimulating Factor (G-CSF), Plerixafor or G-CSF+Plerixafor. Hepatic fibrosis, stellate cell activation and oval stem cell frequency were measured by Gomori and by immunohistochemistry for a-Smooth Muscle Actin and Cytokeratin-19, respectively. Angiogenesis was evaluated by ELISA and immunohistochemistry. Quantitative real-time PCR was used to determine the mRNA levels of liver Peroxisome Proliferator-Activated Receptor gamma (PPAR-γ), Interleukin-6 (IL-6) and Tumor Necrosis-alpha (TNFα). BM-derived cells were tracked by double immunofluorescence. The spontaneous migration of mobilized HSCs towards injured liver and its cytokine secretion profile was determined in transwell culture systems. Either single-agent mobilization or the combination of agents significantly ameliorated hepatic damage by decreasing fibrosis and restoring the abnormal vascular network in the liver of mobilized mice compared to CCl4-only mice. The degree of fibrosis reduction was similar among all mobilized mice despite that G-CSF+Plerixafor yielded significantly higher numbers of circulating HSCs over other agents. The liver homing potential of variously mobilized HSCs differed among the agents. An extended G-CSF treatment provided the highest anti-fibrotic effect over all tested modalities, induced by the proliferation of hepatic stem cells and decreased hepatic inflammation. Plerixafor-mobilized HSCs, despite their reduced liver homing potential, reversed fibrosis mainly by increasing hepatic PPAR-γ and VEGF expression. In all groups, BM-derived mature hepatocytes as well as liver-committed BM stem cells were detected only at low frequencies, further supporting the concept that alternative mechanisms rather than direct HSC effects regulate liver recovery. Overall, our data suggest that G-CSF, Plerixafor and G-CSF+Plerixafor act differentially during the wound healing process, ultimately providing a potent anti-fibrotic effect.
Collapse
Affiliation(s)
- Eleftheria Tsolaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Athanasiou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Eleni Gounari
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Siotou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece.
| |
Collapse
|
122
|
Forbes SJ, Alison MR. Regenerative medicine. Knocking on the door to successful hepatocyte transplantation. Nat Rev Gastroenterol Hepatol 2014; 11:277-8. [PMID: 24662276 DOI: 10.1038/nrgastro.2014.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
With the ongoing shortage of livers available for transplantation, attention has turned to cell-based approaches to support liver function and enable liver regeneration. However, hepatocyte transplantation is beset with problems and a clinically adoptable strategy is lacking. How can a plentiful supply of hepatocyte-like cells with long-term proliferation be generated?
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
123
|
Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, Irvine K, Clouston AD. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59:1393-405. [PMID: 24254368 DOI: 10.1002/hep.26937] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/15/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Although nonalcoholic fatty liver disease (NAFLD) is conventionally assessed histologically for lobular features of inflammation, development of portal fibrosis appears to be associated with disease progression. We investigated the composition of the portal inflammatory infiltrate and its relationship to the ductular reaction (DR), a second portal phenomenon implicated in fibrogenesis. The portal inflammatory infiltrate may contribute directly to fibrogenesis as well as influence the fate of the DR hepatic progenitor cells (HPCs), regulating the balance between liver repair and fibrosis. The presence of portal inflammation in NAFLD was strongly correlated with disease severity (fibrosis stage) and the DR. The portal infiltrate was characterized by immunostaining NAFLD liver biopsy sections (n = 33) for broad leukocyte subset markers (CD68, CD3, CD8, CD4, CD20, and neutrophil elastase) and selected inflammatory markers (matrix metalloproteinase 9 and interleukin [IL]-17). Cells expressing all markers examined were identified throughout the liver lobules and in portal tracts, although portal tracts were more densely populated (P < 0.01), and dominated by CD68(+) macrophages and CD8(+) lymphocytes, at all stages of disease. An increase in portal macrophages in NAFLD patients with steatosis alone (P < 0.01) was the earliest change detected, even before elevated expression of the proinflammatory cytokines, IL1B and TNF, in patients with early NASH (P < 0.05). Portal and periductal accumulation of all other cell types examined occurred in progressed NASH (all P < 0.05). CONCLUSION Knowledge of the complex cellular composition of the portal inflammatory infiltrate and HPC/DR niche in NAFLD will shape future functional studies to elucidate the contribution of portal inflammation to HPC differentiation and NAFLD pathogenesis.
Collapse
Affiliation(s)
- Victoria L Gadd
- Center for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology 2014; 59:1617-26. [PMID: 24115180 DOI: 10.1002/hep.26753] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED The liver is renowned for its strong, robust regenerative capacity, employing different modes of regeneration according to type and extent of injury. The process of compensatory hypertrophy of the liver upon partial hepatectomy has been standing as a classical model for studying organ regeneration in mammals and a subject of exhaustive analyses. Meanwhile, in view of the physiological relevance for many of the human liver pathologies induced upon toxic insults or hepatitis, other injury models have recently drawn increasing attention. In those damaged livers where hepatocyte proliferation is compromised, adult liver stem/progenitor cells (LPCs) are activated and differentiate to hepatocytes and cholangiocytes, leading to functional recovery of the organ. Here, we summarize and discuss recent findings on the mechanisms underlying the regeneration process of the liver. Whereas the primary focus of this article is on those related to LPC-mediated regeneration, we also introduce topics on compensatory hypertrophy, where application of new technologies and molecular genetics approaches in mice has gained a paradigm shift. Identification of various markers for LPC populations has expedited their characterization and enabled us to examine their differentiation potential in vivo using genetic lineage-tracing approaches. Comprehensive studies regarding intercellular signaling pathways and their modes of action have succeeded in elucidating novel frameworks for the LPC-niche interaction functioning in the regenerating liver. CONCLUSION Advancing our understanding of the cellular and molecular mechanisms for liver regeneration should provide a basis for developing therapeutic strategies to treat patients with liver disease.
Collapse
Affiliation(s)
- Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
125
|
Tirnitz-Parker JEE, Olynyk JK, Ramm GA. Role of TWEAK in coregulating liver progenitor cell and fibrogenic responses. Hepatology 2014; 59:1198-201. [PMID: 24038142 DOI: 10.1002/hep.26701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/09/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Janina E E Tirnitz-Parker
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Australia; School of Medicine and Pharmacology, University of Western Australia, Fremantle, Australia
| | | | | |
Collapse
|
126
|
Dwyer BJ, Olynyk JK, Ramm GA, Tirnitz-Parker JEE. TWEAK and LTβ Signaling during Chronic Liver Disease. Front Immunol 2014; 5:39. [PMID: 24592262 PMCID: PMC3923149 DOI: 10.3389/fimmu.2014.00039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
Chronic liver diseases (CLD) such as hepatitis B and C virus infection, alcoholic liver disease, and non-alcoholic steatohepatitis are associated with hepatocellular necrosis, continual inflammation, and hepatic fibrosis. The induced microenvironment triggers the activation of liver-resident progenitor cells (LPCs) while hepatocyte replication is inhibited. In the early injury stages, LPCs regenerate the liver by proliferation, migration to sites of injury, and differentiation into functional biliary epithelial cells or hepatocytes. However, when this process becomes dysregulated, wound healing can progress to pathological fibrosis, cirrhosis, and eventually hepatocellular carcinoma. The other key mediators in the pathogenesis of progressive CLD are fibrosis-driving, activated hepatic stellate cells (HSCs) that usually proliferate in very close spatial association with LPCs. Recent studies from our group and others have suggested the potential for cytokine and chemokine cross-talk between LPCs and HSCs, which is mainly driven by the tumor necrosis factor (TNF) family members, TNF-like weak inducer of apoptosis (TWEAK) and lymphotoxin-β, potentially dictating the pathological outcomes of chronic liver injury.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University , Bentley, WA , Australia
| | - John K Olynyk
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University , Bentley, WA , Australia ; School of Medicine and Pharmacology, University of Western Australia , Fremantle, WA , Australia ; Department of Gastroenterology, Fremantle Hospital , Fremantle, WA , Australia ; Institute for Immunology and Infectious Diseases, Murdoch University , Murdoch, WA , Australia
| | - Grant A Ramm
- Faculty of Medicine and Biomedical Sciences, The University of Queensland , Brisbane, QLD , Australia ; QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Janina E E Tirnitz-Parker
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University , Bentley, WA , Australia ; School of Medicine and Pharmacology, University of Western Australia , Fremantle, WA , Australia
| |
Collapse
|
127
|
Karaca G, Swiderska-Syn M, Xie G, Syn WK, Krüger L, Machado MV, Garman K, Choi SS, Michelotti GA, Burkly LC, Ochoa B, Diehl AM. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS One 2014; 9:e83987. [PMID: 24416188 PMCID: PMC3886973 DOI: 10.1371/journal.pone.0083987] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022] Open
Abstract
Background & Aims Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. Methods To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. Results In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. Conclusions TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.
Collapse
Affiliation(s)
- Gamze Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marzena Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wing-Kin Syn
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Department of Hepatology, Barts Health NHS Trust, London, United Kingdom
| | - Leandi Krüger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Katherine Garman
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gregory A. Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Linda C. Burkly
- Departments of Exploratory Science, Discovery Biology, and Validation Biology, Biogen Idec Inc., Cambridge, Massachusetts, United States of America
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Bilbao, Spain
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
128
|
Trebing J, Lang I, Chopra M, Salzmann S, Moshir M, Silence K, Riedel SS, Siegmund D, Beilhack A, Otto C, Wajant H. A novel llama antibody targeting Fn14 exhibits anti-metastatic activity in vivo. MAbs 2014; 6:297-308. [PMID: 24135629 PMCID: PMC3929451 DOI: 10.4161/mabs.26709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022] Open
Abstract
Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis(TWEA K) binding at low concentrations (0.2–2 μg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RE NCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEA K-Fn14 interaction in some cases
Collapse
Affiliation(s)
- Johannes Trebing
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Martin Chopra
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Steffen Salzmann
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | | | | | - Simone S Riedel
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Andreas Beilhack
- IZKF Research Laboratory for Experimental Stem Cell Transplantation; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Vascular, and Paediatric Surgery; University Hospital of Würzburg; Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine; Department of Internal Medicine II; University Hospital of Würzburg; Würzburg, Germany
| |
Collapse
|
129
|
Szkolnicka D, Farnworth SL, Lucendo-Villarin B, Storck C, Zhou W, Iredale JP, Flint O, Hay DC. Accurate prediction of drug-induced liver injury using stem cell-derived populations. Stem Cells Transl Med 2013; 3:141-8. [PMID: 24375539 DOI: 10.5966/sctm.2013-0146] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom; FibromEd Products Ltd., Edinburgh Bio-Quarter, Edinburgh, United Kingdom; Medical Research Council Centre for Inflammation, Edinburgh, United Kingdom; Discovery Toxicology, Bristol-Myers Squibb, Princeton, New Jersey, USA; Department of Oncology, Second Military Medical University, Shanghai Changzheng Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Fischer Y. Stem cells in translation: impression of the ISSCR Regional Meeting in Florence. Stem Cell Reports 2013; 1:486-90. [PMID: 25847521 PMCID: PMC3871384 DOI: 10.1016/j.stemcr.2013.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The International Society for Stem Cell Research hosted an exciting meeting on stem cell-based translational medicine in Florence, Italy in September 2013. This report gives an overview of recent advances and breakthroughs presented at the meeting.
Collapse
Affiliation(s)
- Yvonne Fischer
- Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
131
|
Weng HL, Feng DC, Radaeva S, Kong XN, Wang L, Liu Y, Li Q, Shen H, Gao YP, Müllenbach R, Munker S, Huang T, Chen JL, Zimmer V, Lammert F, Mertens PR, Cai WM, Dooley S, Gao B. IFN-γ inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. J Hepatol 2013; 59:738-45. [PMID: 23747755 PMCID: PMC3779479 DOI: 10.1016/j.jhep.2013.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Proliferation of liver progenitor cells (LPCs) is associated with inflammation and fibrosis in chronic liver diseases. However, how inflammation and fibrosis affect LPCs remains obscure. METHODS We examined the role of interferon (IFN)-γ, an important pro-inflammatory and anti-fibrotic cytokine, in LPC expansion in HBV-infected patients and in mice challenged with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- or choline-deficient, ethionine-supplemented (CDE) diet as well as in primary LPCs and LPC cell line. RESULTS The CK19 staining scores correlated with inflammation and fibrosis grades in the livers from 110 HBV-infected patients. Nine-month IFN-γ treatment decreased LPC numbers, inflammation, and fibrosis in these HBV-infected patients. Similarly, a two-week IFN-γ treatment also decreased LPC activation in DDC-treated mice. Disruption of IFN-γ or its signaling components (e.g., IFNGR, STAT1, and IRF-1) increased LPC proliferation and liver fibrosis in DDC-fed mice. In contrast, deletion of IFN-γ did not increase, but rather slightly reduced LPC proliferation in CDE-fed mice. In vitro, IFN-γ attenuated proliferation of the LPC cell line BMOL and of primary LPCs from wild type mice, but not STAT1(-/-) or IRF-1(-/-) mice. Furthermore, co-culture assays suggest that IFN-γ can indirectly promote LPC proliferation via the activation of macrophages but attenuate it via the inhibition of hepatic stellate cells. CONCLUSIONS IFN-γ inhibits LPC expansion via the direct inhibition of LPC proliferation and indirect attenuation of liver fibrosis in the DDC model, but it may also enhance LPC expansion via the promotion of inflammation in the CDE model; thereby playing dual roles in regulating LPC proliferation in vivo.
Collapse
Affiliation(s)
- Hong-lei Weng
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - De-chun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| | - Svetlana Radaeva
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| | - Xiao-ni Kong
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| | - Lei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| | - Yan Liu
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Qi Li
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hong Shen
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yun-peng Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| | - Roman Müllenbach
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Stefan Munker
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tong Huang
- Department of Cardiac Vascular Medicine, Li Hui Li Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Jia-lin Chen
- Department of Pathology, First Hospital of Jiaxing, College of Jiaxing, Jiaxing, China
| | - Vincent Zimmer
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Otto-von-Guericke-University, Magdeburg, Germany
| | - Wei-min Cai
- Institute of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Steven Dooley
- Molecular Hepatology - Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, USA
| |
Collapse
|