101
|
Pierella Karlusich JJ, Carrillo N. Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP + oxidoreductase. PHOTOSYNTHESIS RESEARCH 2017; 134:235-250. [PMID: 28150152 DOI: 10.1007/s11120-017-0338-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 05/21/2023]
Abstract
The development of oxygenic photosynthesis by primordial cyanobacteria ~2.7 billion years ago led to major changes in the components and organization of photosynthetic electron transport to cope with the challenges of an oxygen-enriched atmosphere. We review herein, following the seminal contributions as reported by Jaganathan et al. (Functional genomics and evolution of photosynthetic systems, vol 33, advances in photosynthesis and respiration, Springer, Dordrecht, 2012), how these changes affected carriers and enzymes at the acceptor side of photosystem I (PSI): the electron shuttle ferredoxin (Fd), its isofunctional counterpart flavodoxin (Fld), their redox partner ferredoxin-NADP+ reductase (FNR), and the primary PSI acceptors F x and F A/F B. Protection of the [4Fe-4S] centers of these proteins from oxidative damage was achieved by strengthening binding between the F A/F B polypeptide and the reaction center core containing F x, therefore impairing O2 access to the clusters. Immobilization of F A/F B in the PSI complex led in turn to the recruitment of new soluble electron shuttles. This function was fulfilled by oxygen-insensitive [2Fe-2S] Fd, in which the reactive sulfide atoms of the cluster are shielded from solvent by the polypeptide backbone, and in some algae and cyanobacteria by Fld, which employs a flavin as prosthetic group and is tolerant to oxidants and iron limitation. Tight membrane binding of FNR allowed solid-state electron transfer from PSI bridged by Fd/Fld. Fine tuning of FNR catalytic mechanism led to formidable increases in turnover rates compared with FNRs acting in heterotrophic pathways, favoring Fd/Fld reduction instead of oxygen reduction.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, 2000, Rosario, Argentina.
| |
Collapse
|
102
|
Draft Genome Sequence of Chloracidobacterium sp. CP2_5A, a Phototrophic Member of the Phylum Acidobacteria Recovered from a Japanese Hot Spring. GENOME ANNOUNCEMENTS 2017; 5:5/40/e00821-17. [PMID: 28982986 PMCID: PMC5629043 DOI: 10.1128/genomea.00821-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phylum Acidobacteria contains a single known phototrophic member, Chloracidobacterium thermophilum, which was recovered from a hot spring metagenome from Yellowstone National Park. Here, we expand the diversity of the genus Chloracidobacterium with a genome recovered from a hot spring in Japan, extending the known range of this lineage to a new continent.
Collapse
|
103
|
Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples. J Microbiol Methods 2017; 141:10-16. [DOI: 10.1016/j.mimet.2017.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
|
104
|
Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc Natl Acad Sci U S A 2017; 114:10749-10754. [PMID: 28923961 DOI: 10.1073/pnas.1710798114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Various lines of evidence from both comparative biology and the geologic record make it clear that the biochemical machinery for anoxygenic photosynthesis was present on early Earth and provided the evolutionary stock from which oxygenic photosynthesis evolved ca. 2.3 billion years ago. However, the taxonomic identity of these early anoxygenic phototrophs is uncertain, including whether or not they remain extant. Several phototrophic bacterial clades are thought to have evolved before oxygenic photosynthesis emerged, including the Chloroflexi, a phylum common across a wide range of modern environments. Although Chloroflexi have traditionally been thought to be an ancient phototrophic lineage, genomics has revealed a much greater metabolic diversity than previously appreciated. Here, using a combination of comparative genomics and molecular clock analyses, we show that phototrophic members of the Chloroflexi phylum are not particularly ancient, having evolved well after the rise of oxygen (ca. 867 million years ago), and thus cannot be progenitors of oxygenic photosynthesis. Similarly, results show that the carbon fixation pathway that defines this clade-the 3-hydroxypropionate bicycle-evolved late in Earth history as a result of a series of horizontal gene transfer events, explaining the lack of geological evidence for this pathway based on the carbon isotope record. These results demonstrate the role of horizontal gene transfer in the recent metabolic innovations expressed within this phylum, including its importance in the development of a novel carbon fixation pathway.
Collapse
|
105
|
Tahon G, Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 2017; 40:357-369. [DOI: 10.1016/j.syapm.2017.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
|
106
|
Bill N, Tomasch J, Riemer A, Müller K, Kleist S, Schmidt-Hohagen K, Wagner-Döbler I, Schomburg D. Fixation of CO 2 using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae. Environ Microbiol 2017; 19:2645-2660. [PMID: 28371065 DOI: 10.1111/1462-2920.13746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 01/26/2023]
Abstract
The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12T during transition from heterotrophy to photoheterotrophy (growth on succinate). Growth in light was characterized by reduced respiration, a decreased metabolic flux through the tricarboxylic acid (TCA) cycle and the assimilation of CO2 via an enhanced flux through the ethylmalonyl-CoA (EMC) pathway, which was shown to be connected to the serine metabolism. Adaptation to photoheterotrophy is mainly characterized by metabolic reactions caused by a surplus of reducing potential and might depend on genes located in one operon, encoding branching point enzymes of the EMC pathway, serine metabolism and the TCA cycle.
Collapse
Affiliation(s)
- Nelli Bill
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Jürgen Tomasch
- Department of Microbial Communication, Helmholtz-Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, D-38124, Germany
| | - Alexander Riemer
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Katrin Müller
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Sarah Kleist
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Irene Wagner-Döbler
- Department of Microbial Communication, Helmholtz-Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, D-38124, Germany
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| |
Collapse
|
107
|
Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27. Appl Environ Microbiol 2017; 83:AEM.00502-17. [PMID: 28389533 DOI: 10.1128/aem.00502-17] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2 The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia.IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N2O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N2O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N2O dynamics in environments with frequent transitions between oxic and anoxic conditions.
Collapse
|
108
|
Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc Natl Acad Sci U S A 2017; 114:6280-6285. [PMID: 28559347 DOI: 10.1073/pnas.1701687114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O2-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O2-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in ycf54 display impaired function of the O2-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O2-dependent enzyme. AcsF from the purple betaproteobacterium Rubrivivax (Rvi.) gelatinosus rescues the loss not only of its cyanobacterial ortholog, cycI, in Synechocystis sp. PCC 6803, but also of ycf54; conversely, coexpression of cyanobacterial cycI and ycf54 is required to complement the loss of acsF in Rvi. gelatinosus These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in Rvi. gelatinosus, whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O2-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
Collapse
|
109
|
Khadka B, Adeolu M, Blankenship RE, Gupta RS. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. PHOTOSYNTHESIS RESEARCH 2017; 131:159-171. [PMID: 27638319 DOI: 10.1007/s11120-016-0307-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants likely contained only a single RC (RC-I or RC-II), and the presence of both RC-I and RC-II in a linked state, as found in the modern Cyanobacteria, is a derivation from these earlier phototrophs.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Robert E Blankenship
- Department of Biology and Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
110
|
Tahon G, Tytgat B, Willems A. Diversity of Phototrophic Genes Suggests Multiple Bacteria May Be Able to Exploit Sunlight in Exposed Soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol 2016; 7:2026. [PMID: 28066352 PMCID: PMC5165242 DOI: 10.3389/fmicb.2016.02026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
111
|
Sato-Takabe Y, Nakao H, Kataoka T, Yokokawa T, Hamasaki K, Ohta K, Suzuki S. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area. Front Microbiol 2016; 7:1996. [PMID: 28018324 PMCID: PMC5156720 DOI: 10.3389/fmicb.2016.01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10–53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.
Collapse
Affiliation(s)
- Yuki Sato-Takabe
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Hironori Nakao
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Takafumi Kataoka
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Taichi Yokokawa
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo Kashiwa, Japan
| | - Kohei Ohta
- South Ehime Fisheries Research Center, Ehime University Ainan, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| |
Collapse
|
112
|
Lehours AC, Jeune AHL, Aguer JP, Céréghino R, Corbara B, Kéraval B, Leroy C, Perrière F, Jeanthon C, Carrias JF. Unexpectedly high bacteriochlorophyll a concentrations in neotropical tank bromeliads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:689-698. [PMID: 27264016 DOI: 10.1111/1758-2229.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.
Collapse
Affiliation(s)
- Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Jean-Pierre Aguer
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Régis Céréghino
- Toulouse Université, INP, Université Paul Sabatier, EcoLab, Toulouse, F31062, France
- UMR CNRS 5245, EcoLab, Toulouse, 31062, France
| | - Bruno Corbara
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Benoit Kéraval
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Céline Leroy
- IRD, UMR AMAP (botAnique et Modélisation de l'Architecture des Plantes et des végétations), Boulevard de la Lironde, TA A-51/PS2, Montpellier, 34398, France
- EcofoG (Ecologie des Forêts de Guyane, UMR 8172), Campus Agronomique, 97379 Kourou, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| | - Christian Jeanthon
- Marine Phototrophic Prokaryotes Team 29680 Roscoff, CNRS, Station Biologique de Roscoff, France
- Oceanic Plankton Group, Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Jean-François Carrias
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, 63178, Aubière, France
| |
Collapse
|
113
|
Luna GM, Chiggiato J, Quero GM, Schroeder K, Bongiorni L, Kalenitchenko D, Galand PE. Dense water plumes modulate richness and productivity of deep sea microbes. Environ Microbiol 2016; 18:4537-4548. [DOI: 10.1111/1462-2920.13510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/19/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Gian Marco Luna
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR); Ancona Italy
| | - Jacopo Chiggiato
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR); Venezia Italy
| | - Grazia Marina Quero
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR); Venezia Italy
| | - Katrin Schroeder
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR); Venezia Italy
| | - Lucia Bongiorni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR); Venezia Italy
| | - Dimitri Kalenitchenko
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique; Banyuls sur Mer France
| | - Pierre E. Galand
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique; Banyuls sur Mer France
| |
Collapse
|
114
|
Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China). Appl Environ Microbiol 2016; 82:5587-94. [PMID: 27401973 DOI: 10.1128/aem.01063-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Anoxygenic phototrophs represent an environmentally important and phylogenetically diverse group of organisms. They harvest light using bacteriochlorophyll-containing reaction centers. Recently, a novel phototrophic bacterium, Gemmatimonas phototrophica, belonging to a rarely studied phylum, Gemmatimonadetes, was isolated from a freshwater lake in the Gobi Desert. To obtain more information about the environmental distribution of phototrophic Gemmatimonadetes, we collected microbial samples from the water column, upper sediment, and deeper anoxic sediment of Lake Taihu, China. MiSeq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria Our results showed that most of the phototrophic species in Lake Taihu belong to Alpha- and Betaproteobacteria Sequences of green sulfur and green nonsulfur bacteria (phototrophic Chlorobi and Chloroflexi, respectively) were found in the sediment. Using the newly designed primers, we identified a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was <1%. IMPORTANCE Photosynthesis is one of the most fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers were used to identify phototrophic Gemmatimonadetes from planktonic and sediment samples collected in Lake Taihu, China. The Gemmatimonadetes sequences were found mostly in the upper sediments, documenting the preference of Gemmatimonadetes for semiaerobic conditions. Our results also show that the phototrophic Gemmatimonadetes present in Lake Taihu were relatively diverse, encompassing 30 operational taxonomic units.
Collapse
|
115
|
Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs. Front Microbiol 2016; 7:984. [PMID: 27446024 PMCID: PMC4919336 DOI: 10.3389/fmicb.2016.00984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are bacteriochlorophyll a (Bchl a)-containing microbial functional population. Erythrobacter is the first genus that was identified to contain AAPB species. Here, we compared 14 Erythrobacter genomes: seven phototrophic strains and seven non- phototrophic strains. Interestingly, AAPB strains are scattered in this genus based on their phylogenetic relationships. All 14 strains could be clustered into three groups based on phylo-genomic analysis, average genomic nucleotide identity and the phylogeny of signature genes (16S rRNA and virB4 genes). The AAPB strains were distributed in three groups, and gain and loss of phototrophic genes co-occurred in the evolutionary history of the genus Erythrobacter. The organization and structure of photosynthesis gene clusters (PGCs) in seven AAPB genomes displayed high synteny of major regions except for few insertions. The 14 Erythrobacter genomes had a large range of genome sizes, from 2.72 to 3.60 M, and the sizes of the core and pan- genomes were 1231 and 8170 orthologous clusters, respectively. Integrative and conjugative elements (ICEs) were frequently identified in genomes we studied, which might play significant roles in shaping or contributing to the pan-genome of Erythrobacter. Our findings suggest the ongoing evolutionary divergence of Erythrobacter genomes and the scattered distribution characteristic of PGC.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Wenxin Lin
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Yanting Liu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Chang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
- Xisha Deep Sea Marine Environment Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of SciencesSansha, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| |
Collapse
|
116
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
117
|
Dong C, Sheng H, Wang W, Zhou H, Shao Z. Bacterial distribution pattern in the surface sediments distinctive among shelf, slope and basin across the western Arctic Ocean. Polar Biol 2016. [DOI: 10.1007/s00300-016-1970-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
118
|
Yang C, Powell CA, Duan Y, Shatters R, Fang J, Zhang M. Deciphering the Bacterial Microbiome in Huanglongbing-Affected Citrus Treated with Thermotherapy and Sulfonamide Antibiotics. PLoS One 2016; 11:e0155472. [PMID: 27171468 PMCID: PMC4865244 DOI: 10.1371/journal.pone.0155472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022] Open
Abstract
Huanglongbing (HLB) is a serious citrus disease that threatens the citrus industry. In previous studies, sulfonamide antibiotics and heat treatment suppressed ‘Candidatus Liberibacter asiaticus’ (Las), but did not completely eliminate the Las. Furthermore, there are few reports studying the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics. In this study, combinations of heat (45°C or 40°C) and sulfonamide treatment (sulfathiazole sodium–STZ, or sulfadimethoxine sodium—SDX) were applied to HLB-affected citrus. The bacterial microbiome of HLB-affected citrus following thermotherapy and/or chemotherapy was characterized by PhyloChipTMG3-based metagenomics. Our results showed that the combination of thermotherapy at 45°C and chemotherapy with STZ and SDX was more effective against HLB than thermotherapy alone, chemotherapy alone, or a combination of thermotherapy at 40°C and chemotherapy. The PhyloChipTMG3-based results indicated that 311 empirical Operational Taxonomic Units (eOTUs) were detected in 26 phyla. Cyanobacteria (18.01%) were dominant after thermo-chemotherapy. Thermotherapy at 45°C decreased eOTUs (64.43%) in leaf samples, compared with thermotherapy at 40°C (73.96%) or without thermotherapy (90.68%) and it also reduced bacterial family biodiversity. The eOTU in phylum Proteobacteria was reduced significantly and eOTU_28, representing “Candidatus Liberibacter,” was not detected following thermotherapy at 45°C. Following antibiotic treatment with SDX and STZ, there was enhanced abundance of specific eOTUs belonging to the families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, and Xanthomonadaceae, which may be implicated in increased resistance to plant pathogens. Our study further develops an integrated strategy for combating HLB, and also provides new insight into the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chuanyu Yang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Charles A. Powell
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
| | - Yongping Duan
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Robert Shatters
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Jingping Fang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- * E-mail:
| |
Collapse
|
119
|
Pascual J, García-López M, Bills GF, Genilloud O. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int J Syst Evol Microbiol 2016; 66:1976-1985. [DOI: 10.1099/ijsem.0.000974] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Javier Pascual
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Marina García-López
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Gerald F. Bills
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
120
|
Teramura M, Harada J, Mizoguchi T, Yamamoto K, Tamiaki H. In Vitro Assays of BciC Showing C132-Demethoxycarbonylase Activity Requisite for Biosynthesis of Chlorosomal Chlorophyll Pigments. PLANT & CELL PHYSIOLOGY 2016; 57:1048-1057. [PMID: 26936794 DOI: 10.1093/pcp/pcw045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
A BciC enzyme is related to the removal of the C13(2)-methoxycarbonyl group in biosynthesis of bacteriochlorophylls (BChls) c, d and e functioning in green sulfur bacteria, filamentous anoxygenic phototrophs and phototrophic acidobacteria. These photosynthetic bacteria have the largest and the most efficient light-harvesting antenna systems, called chlorosomes, containing unique self-aggregates of BChl c, d or e pigments, that lack the C13(2)-methoxycarbonyl group which disturbs chlorosomal self-aggregation. In this study, we characterized the BciC derived from the green sulfur bacterium Chlorobaculum tepidum, and examined the in vitro enzymatic activities of its recombinant protein. The BciC-catalyzing reactions of various substrates showed that the enzyme recognized chlorophyllide (Chlide) a and 3,8-divinyl(DV)-Chlide a as chlorin substrates to give 3-vinyl-bacteriochlorophyllide (3V-BChlide) d and DV-BChlide d, respectively. Since the BciC afforded a higher activity with Chlide a than that with DV-Chlide a and no activity with (DV-)protoChlides a (porphyrin substrates) and 3V-BChlide a (a bacteriochlorin substrate), this enzyme was effective for diverting the chlorosomal pigment biosynthetic pathway at the stage of Chlide a away from syntheses of other pigments such as BChl a and Chl a The addition of methanol to the reaction mixture did not prevent the BciC activity, and we identified this enzyme as Chlide a demethoxycarbonylase, not methylesterase.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
121
|
Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification. ISME JOURNAL 2016; 10:2669-2678. [PMID: 27093047 DOI: 10.1038/ismej.2016.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/09/2022]
Abstract
Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.
Collapse
|
122
|
Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, Schupp PJ. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 2016; 4:e1936. [PMID: 27114882 PMCID: PMC4841226 DOI: 10.7717/peerj.1936] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 01/03/2023] Open
Abstract
Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.
Collapse
Affiliation(s)
- Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Wilhelmshaven, Germany; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Peter Deines
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Rachel L Simister
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | - Michael Hoggard
- School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg , Wilhelmshaven , Germany
| |
Collapse
|
123
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
124
|
Cao H, Dong C, Bougouffa S, Li J, Zhang W, Shao Z, Bajic VB, Qian PY. Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge. Sci Rep 2016; 6:22842. [PMID: 26953077 PMCID: PMC4782131 DOI: 10.1038/srep22842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 02/23/2016] [Indexed: 11/17/2022] Open
Abstract
In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far.
Collapse
Affiliation(s)
- Huiluo Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chunming Dong
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Weipeng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
125
|
Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis. PLoS One 2016; 11:e0151250. [PMID: 26953697 PMCID: PMC4783071 DOI: 10.1371/journal.pone.0151250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 11/20/2022] Open
Abstract
Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait.
Collapse
|
126
|
Zeng Y, Baumbach J, Barbosa EGV, Azevedo V, Zhang C, Koblížek M. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:139-149. [PMID: 26636755 DOI: 10.1111/1758-2229.12363] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Gemmatimonadetes represents a poorly understood bacterial phylum with only a handful of cultured species. Recently, one of its few representatives, Gemmatimonas phototrophica, was found to contain purple bacterial photosynthetic reaction centres. However, almost nothing is known about the environmental distribution of phototrophic Gemmatimonadetes bacteria. To fill this gap, we took advantage of fast-growing public metagenomic databases and performed an extensive survey of metagenomes deposited into the NCBI's WGS database, the JGI's IMG webserver and the MG-RAST webserver. By employing Mg protoporphyrin IX monomethyl ester oxidative cyclase (AcsF) as a marker gene, we identified 291 AcsF fragments (24-361 amino acids long) that are closely related to G. phototrophica from 161 metagenomes originating from various habitats, including air, river waters/sediment, estuarine waters, lake waters, biofilms, plant surfaces, intertidal sediment, soils, springs and wastewater treatment plants, but none from marine waters or sediment. Based on AcsF hit counts, phototrophic Gemmatimonadetes bacteria make up 0.4-11.9% of whole phototrophic microbial communities in these habitats. Unexpectedly, an almost complete 37.9 kb long photosynthesis gene cluster with identical gene composition and arrangement to those in G. phototrophica was reconstructed from the Odense wastewater metagenome, only differing in a 7.2 kb long non-photosynthesis-gene insert. These data suggest that phototrophic Gemmatimonadetes bacteria are much more widely distributed in the environment and exhibit a higher genetic diversity than previously thought.
Collapse
Affiliation(s)
- Yonghui Zeng
- Nordic Center for Earth Evolution (NordCEE) & Institute of Biology, University of Southern Denmark, Odense, 5230, Denmark
- Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 5230, Denmark
| | - Eudes Guilherme Vieira Barbosa
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 5230, Denmark
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Chuanlun Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic
| |
Collapse
|
127
|
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 127:201-18. [PMID: 26174026 DOI: 10.1007/s11120-015-0177-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Bijendra Khadka
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
128
|
Cardona T. Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? FRONTIERS IN PLANT SCIENCE 2016; 7:257. [PMID: 26973693 PMCID: PMC4773611 DOI: 10.3389/fpls.2016.00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 05/21/2023]
Abstract
Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis.
Collapse
|
129
|
Frigaard NU. Biotechnology of Anoxygenic Phototrophic Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:139-154. [DOI: 10.1007/10_2015_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
130
|
Hamilton TL, Bryant DA, Macalady JL. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 2015; 18:325-40. [PMID: 26549614 PMCID: PMC5019231 DOI: 10.1111/1462-2920.13118] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022]
Abstract
Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center (PSARC), Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
131
|
Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep 2015; 5:15607. [PMID: 26499760 PMCID: PMC4620479 DOI: 10.1038/srep15607] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Daniela-Lee Smith
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, USA
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Brendan P. Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| |
Collapse
|
132
|
Badhai J, Ghosh TS, Das SK. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Front Microbiol 2015; 6:1166. [PMID: 26579081 PMCID: PMC4620158 DOI: 10.3389/fmicb.2015.01166] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40–58°C; pH: 7.2–7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| | | | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| |
Collapse
|
133
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
134
|
Gan F, Bryant DA. Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 2015; 17:3450-65. [DOI: 10.1111/1462-2920.12992] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Fei Gan
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
- Department of Chemistry and Biochemistry; Montana State University; Bozeman MT 59717 USA
| |
Collapse
|
135
|
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39:854-70. [DOI: 10.1093/femsre/fuv032] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
|
136
|
Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 2015; 65:2410-2419. [PMID: 25899503 DOI: 10.1099/ijs.0.000272] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A red-pigmented, bacteriochlorophyll (BChl) a-producing strain, AP64T, was isolated previously from the freshwater Swan Lake located in the western Gobi Desert. Based on its 16S rRNA gene sequence identity (96.1%) to the type strain Gemmatimonas aurantiaca T-27T, the new isolate was tentatively classified as a member of the bacterial phylum Gemmatimonadetes. Here, we report its formal description and polyphasic characterization. Strain AP64T grew best on agar media under 9.8-15.2% atmospheric oxygen. The cells were rods, dividing by symmetrical or asymmetrical binary fission. Budding structures were also observed. Its genomic DNA G+C content was 64.4% (from the draft genome sequence). Phylogenetic analysis based on the 16S rRNA gene sequence clearly separated AP64T from related species. Its genotypic differentiation from phylogenetically close relatives was further supported by performing in silico DNA-DNA hybridization and calculating average nucleotide identity, whereas the high percentage (67.3%) of shared conserved proteins between strain AP64T and Gemmatimonas aurantiaca T-27T supports the classification of the two strains into the same genus. Strain AP64T contained C16 : 1, C14 : 1 and C18 : 1ω9c as predominant fatty acids. The main respiratory quinone was menaquinone 8 (MK-8). The most distinctive feature of strain AP64T was the presence of fully functional purple bacterial photosynthetic reaction centres. The main CO2-fixation pathways were absent. Strain AP64T was capable of growth and BChl production in constant darkness. Thus, strain AP64T is a facultatively photoheterotrophic organism. It represents a novel species of the genus Gemmatimonas, for which the name Gemmatimonasphototrophica sp. nov. is proposed. The type strain is AP64T ( = DSM 29774T = MCCC 1K00454T). Emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca are also provided.
Collapse
Affiliation(s)
- Yonghui Zeng
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Vadim Selyanin
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Martin Lukeš
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Jason Dean
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - David Kaftan
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Fuying Feng
- Institute for Applied & Environmental Microbiology, Inner Mongolia Agricultural University, 306 Zhaowuda Road, 010 018 Huhhot, PR China
| | - Michal Koblížek
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.,Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
137
|
Tank M, Bryant DA. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 2015; 6:226. [PMID: 25870589 PMCID: PMC4376005 DOI: 10.3389/fmicb.2015.00226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B(T), was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 μmol photons m(-2) s(-1). C. thermophilum is unable to synthesize branched-chain amino acids (AAs), l-lysine, and vitamin B12, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutarate stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51(∘)C (Topt; range 44-58(∘)C) in the pH range 5.5-9.5 (pHopt = ∼7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot spring mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.
Collapse
Affiliation(s)
- Marcus Tank
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| |
Collapse
|
138
|
Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements. Front Microbiol 2015; 6:233. [PMID: 25859246 PMCID: PMC4373377 DOI: 10.3389/fmicb.2015.00233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced.
Collapse
Affiliation(s)
- Maya Soora
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Victoria Michael
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
139
|
Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 2015; 39:203-21. [DOI: 10.1093/femsre/fuu011] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
140
|
Rime T, Hartmann M, Brunner I, Widmer F, Zeyer J, Frey B. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol 2015; 24:1091-108. [DOI: 10.1111/mec.13051] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Rime
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Martin Hartmann
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
- Molecular Ecology; Institute for Sustainability Sciences; Agroscope 8046 Zürich Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Franco Widmer
- Molecular Ecology; Institute for Sustainability Sciences; Agroscope 8046 Zürich Switzerland
| | - Josef Zeyer
- Institute of Biogeochemistry and Pollutant Dynamics; Federal Institute of Technology (ETH Zürich); 8092 Zürich Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| |
Collapse
|
141
|
Gan F, Shen G, Bryant DA. Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria. Life (Basel) 2014; 5:4-24. [PMID: 25551681 PMCID: PMC4390838 DOI: 10.3390/life5010004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria have evolved a number of acclimation strategies to sense and respond to changing nutrient and light conditions. Leptolyngbya sp. JSC-1 was recently shown to photoacclimate to far-red light by extensively remodeling its photosystem (PS) I, PS II and phycobilisome complexes, thereby gaining the ability to grow in far-red light. A 21-gene photosynthetic gene cluster (rfpA/B/C, apcA2/B2/D2/E2/D3, psbA3/D3/C2/B2/H2/A4, psaA2/B2/L2/I2/F2/J2) that is specifically expressed in far-red light encodes the core subunits of the three major photosynthetic complexes. The growth responses to far-red light were studied here for five additional cyanobacterial strains, each of which has a gene cluster similar to that in Leptolyngbya sp. JSC-1. After acclimation all five strains could grow continuously in far-red light. Under these growth conditions each strain synthesizes chlorophylls d, f and a after photoacclimation, and each strain produces modified forms of PS I, PS II (and phycobiliproteins) that absorb light between 700 and 800 nm. We conclude that these photosynthetic gene clusters are diagnostic of the capacity to photoacclimate to and grow in far-red light. Given the diversity of terrestrial environments from which these cyanobacteria were isolated, it is likely that FaRLiP plays an important role in optimizing photosynthesis in terrestrial environments.
Collapse
Affiliation(s)
- Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|