101
|
Zografou S, Basagiannis D, Papafotika A, Shirakawa R, Horiuchi H, Auerbach D, Fukuda M, Christoforidis S. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J Cell Sci 2012; 125:4780-90. [PMID: 22899725 DOI: 10.1242/jcs.104174] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are endothelial-cell-specific organelles that, upon fusion with the plasma membrane, release cargo molecules that are essential in blood vessel abnormalities, such as thrombosis and inflammation, as well as in angiogenesis. Despite the importance of WPBs, the basic mechanisms that mediate their secretion are only poorly understood. Rab GTPases play fundamental role in the trafficking of intracellular organelles. Yet, the only known WPB-associated Rabs are Rab27a and Rab3d. To determine the full spectrum of WPB-associated Rabs we performed a complete Rab screening by analysing the localisation of all Rabs in WPBs and their involvement in the secretory process in endothelial cells. Apart from Rab3 and Rab27, we identified three additional Rabs, Rab15 (a previously reported endocytic Rab), Rab33 and Rab37, on the WPB limiting membrane. A knockdown approach using siRNAs showed that among these five WPB Rabs only Rab3, Rab27 and Rab15 are required for exocytosis. Intriguingly, we found that Rab15 cooperates with Rab27a in WPB secretion. Furthermore, a specific effector of Rab27, Munc13-4, appears to be also an effector of Rab15 and is required for WPB exocytosis. These data indicate that WPB secretion requires the coordinated function of a specific group of Rabs and that, among them, Rab27a and Rab15, as well as their effector Munc13-4, cooperate to drive exocytosis.
Collapse
Affiliation(s)
- Sofia Zografou
- Institute of Molecular Biology and Biotechnology, Department of Ioannina/Foundation for Research and Technology Hellas, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 2012; 27:85-99. [PMID: 22505665 DOI: 10.1152/physiol.00043.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.
Collapse
Affiliation(s)
- Anand Sitaram
- Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
103
|
Ishida M, Ohbayashi N, Maruta Y, Ebata Y, Fukuda M. Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J Cell Sci 2012; 125:5177-87. [PMID: 22854043 DOI: 10.1242/jcs.109314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanosomes are transported to the cell periphery of melanocytes by coordination between bidirectional microtubule-dependent movements and unidirectional actin-dependent movement. Although both the mechanism of the actin-dependent melanosome transport and the mechanism of the microtubule-dependent retrograde melanosome transport in mammalian skin melanocytes have already been determined, almost nothing is known about the mechanism of the microtubule-dependent anterograde melanosome transport. Small GTPase Rab proteins are common regulators of membrane traffic in all eukaryotes, and in this study we performed genome-wide screening for Rab proteins that are involved in anterograde melanosome transport by expressing 60 different constitutive active (and negative) mutants, and succeeded in identifying Rab1A, originally described as a Golgi-resident Rab, as a prime candidate. Endogenous Rab1A protein was found to be localized to mature melanosomes in melanocytes, and its functional ablation either by siRNA-mediated knockdown or by overexpression of a cytosolic form of Rab1A-GTPase-activating protein/TBC1D20 induced perinuclear melanosome aggregation. The results of time-lapse imaging further revealed that long-range anterograde melanosome movements were specifically suppressed in Rab1A-deficient melanocytes, whereas retrograde melanosome transport occurred normally. Taken together, these findings indicate that Rab1A is the first crucial component of the anterograde melanosome transport machinery to be identified in mammalian skin melanocytes.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
104
|
Fontanesi L, Scotti E, Dall'Olio S, Oulmouden A, Russo V. Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit. WORLD RABBIT SCIENCE 2012. [DOI: 10.4995/wrs.2012.1033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
105
|
Ohbayashi N, Fukuda M. Role of Rab family GTPases and their effectors in melanosomal logistics. J Biochem 2012; 151:343-51. [DOI: 10.1093/jb/mvs009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
106
|
Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 2012; 119:3879-89. [PMID: 22308290 DOI: 10.1182/blood-2011-09-382556] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1-dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.
Collapse
|
107
|
Li G. Rab GTPases, membrane trafficking and diseases. Curr Drug Targets 2012; 12:1188-93. [PMID: 21561417 DOI: 10.2174/138945011795906561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
Abstract
The Rab family of GTPases contains over 60 genes in the human genome and contributes to regulation of intracellular membrane trafficking along endocytic and exocytic pathways as well as specialized pathways in specific cell types. It has become increasingly clear that disruption of the intracellular membrane trafficking system at different stages can cause various diseases. In the past decade, altered expression levels and mutations of Rab GTPases have been associated with such diseases as cancer, Alzheimer's disease, and various genetic disorders. This review discusses the specific Rab GTPases and their involvement in the diseases.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
108
|
Abstract
Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system. Attracted by factors released from damaged cells, microglia are recruited towards the damaged or infected site, where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris. ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury. However, the mechanisms of the long-range migration of microglia remain to be clarified. Here, we found that lysosomes in microglia contain abundant ATP and exhibit Ca(2+)-dependent exocytosis in response to various stimuli. By establishing an efficient in vitro chemotaxis assay, we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia, a response that was significantly inhibited in microglia treated with an agent inducing lysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice), a small GTPase required for the trafficking and exocytosis of secretory lysosomes. These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis, thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.
Collapse
|
109
|
Kasraee B, Nikolic DS, Salomon D, Carraux P, Fontao L, Piguet V, Omrani GR, Sorg O, Saurat JH. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer. Exp Dermatol 2011; 21:19-24. [DOI: 10.1111/j.1600-0625.2011.01394.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
110
|
Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, Duan S, Gu X. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 2011; 60:295-305. [PMID: 22042600 DOI: 10.1002/glia.21263] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca(2+) -dependent exocytosis in response to various stimuli. Downregulation of Rab27a, a small GTPase required for the trafficking of the secretory lysosomes to the plasma membrane, largely blocked lysosomal exocytosis in Schwann cells and reduced the remyelination of regenerated sciatic nerve. These findings highlight a novel role for lysosomes in Schwann cells and suggest that the regulated lysosome exocytosis in Schwann cells may have important physiological and pathological significance in the peripheral nervous system.
Collapse
Affiliation(s)
- Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Choroideremia (CHM) is an X-linked retinal dystrophy belonging to the family of blinding disorders. It is characterized by progressive degeneration of the choriocapillaris, retinal pigment epithelium and photoreceptors. CHM is caused by mutations in the Rab Escort Protein 1 (REP-1) gene, which encodes a protein involved in vesicular trafficking. This paper gives an overview of the clinical features, visual function, biochemistry, histology, molecular genetics, pathogenesis, diagnosis and treatment of CHM.
Collapse
|
112
|
Abstract
Advances in live-cell microscopy have revealed the extraordinarily dynamic nature of intracellular organelles. Moreover, movement appears to be critical in establishing and maintaining intracellular organization and organellar and cellular function. Motility is regulated by the activity of organelle-associated motor proteins, kinesins, dyneins and myosins, which move cargo along polar MT (microtubule) and actin tracks. However, in most instances, the motors that move specific organelles remain mysterious. Over recent years, pigment granules, or melanosomes, within pigment cells have provided an excellent model for understanding the molecular mechanisms by which motor proteins associate with and move intracellular organelles. In the present paper, we discuss recent discoveries that shed light on the mechanisms of melanosome transport and highlight future prospects for the use of pigment cells in unravelling general molecular mechanisms of intracellular transport.
Collapse
|
113
|
Zhang L, Yu K, Robert KW, DeBolt KM, Hong N, Tao JQ, Fukuda M, Fisher AB, Huang S. Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L461-77. [PMID: 21764986 DOI: 10.1152/ajplung.00056.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.
Collapse
Affiliation(s)
- Linghui Zhang
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6068, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Increased survival and reduced neutrophil infiltration of the liver in Rab27a- but not Munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infect Immun 2011; 79:3607-18. [PMID: 21746860 DOI: 10.1128/iai.05043-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.
Collapse
|
115
|
Kimura T, Niki I. Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:219-23. [PMID: 21762718 DOI: 10.1016/j.pbiomolbio.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
The small GTPases have the 'active' GTP-bound and 'inactive' GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 8795593, Japan
| | | |
Collapse
|
116
|
Tarafder AK, Wasmeier C, Figueiredo AC, Booth AEG, Orihara A, Ramalho JS, Hume AN, Seabra MC. Rab27a targeting to melanosomes requires nucleotide exchange but not effector binding. Traffic 2011; 12:1056-66. [PMID: 21554507 PMCID: PMC3509405 DOI: 10.1111/j.1600-0854.2011.01216.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rab GTPases are important determinants of organelle identity and regulators of vesicular transport pathways. Consequently, each Rab occupies a highly specific subcellular localization. However, the precise mechanisms governing Rab targeting remain unclear. Guanine nucleotide exchange factors (GEFs), putative membrane-resident targeting factors and effector binding have all been implicated as critical regulators of Rab targeting. Here, we address these issues using Rab27a targeting to melanosomes as a model system. Rab27a regulates motility of lysosome-related organelles and secretory granules. Its effectors have been characterized extensively, and we have identified Rab3GEP as the non-redundant Rab27a GEF in melanocytes (Figueiredo AC et al. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 2008;283:23209–23216). Using Rab27a mutants that show impaired binding to representatives of all four Rab27a effector subgroups, we present evidence that effector binding is not essential for targeting of Rab27a to melanosomes. In contrast, we observed that knockdown of Rab3GEP resulted in mis-targeting of Rab27a, suggesting that Rab3GEP activity is required for correct targeting of Rab27a. However, the identification of Rab27a mutants that undergo efficient GDP/GTP exchange in the presence of Rab3GEP in vitro but are mis-targeted in a cellular context indicates that nucleotide loading is not the sole determinant of subcellular targeting of Rab27a. Our data support a model in which exchange activity, but not effector binding, represents one essential factor that contributes to membrane targeting of Rab proteins.
Collapse
Affiliation(s)
- Abul K Tarafder
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Beaumont KA, Hamilton NA, Moores MT, Brown DL, Ohbayashi N, Cairncross O, Cook AL, Smith AG, Misaki R, Fukuda M, Taguchi T, Sturm RA, Stow JL. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic 2011; 12:627-43. [PMID: 21291502 DOI: 10.1111/j.1600-0854.2011.01172.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rab GTPases including Rab27a, Rab38 and Rab32 function in melanosome maturation or trafficking in melanocytes. A screen to identify additional Rabs involved in these processes revealed the localization of GFP-Rab17 on recycling endosomes (REs) and melanosomes in melanocytic cells. Rab17 mRNA expression is regulated by microphthalmia transcription factor (MITF), a characteristic of known pigmentation genes. Rab17 siRNA knockdown in melanoma cells quantitatively increased melanosome concentration at the cell periphery. Rab17 knockdown did not inhibit melanosome maturation nor movement, but it caused accumulation of melanin inside cells. Double knockdown of Rab17 and Rab27a indicated that Rab17 acts on melanosomes downstream of Rab27a. Filopodia are known to play a role in melanosome transfer, and in Rab17 knockdown cells filopodia formation was inhibited. Furthermore, we show that stimulation of melanoma cells with α-melanocyte-stimulating hormone induces filopodia formation, supporting a role for filopodia in melanosome release. Cell stimulation also caused redistribution of REs to the periphery, and knockdown of additional RE-associated Rabs 11a and 11b produced a similar accumulation of melanosomes and melanin to that seen after loss of Rab17. Our findings reveal new functions for RE and Rab17 in pigmentation through a distal step in the process of melanosome release via filopodia.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072 QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011; 9:383-91. [PMID: 21129147 PMCID: PMC3030649 DOI: 10.1111/j.1538-7836.2010.04154.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet factor 4 (PF4) is an abundant protein stored in platelet α-granules. Several patients have been described with platelet PF4 deficiency, including the gray platelet syndrome, characterized by a deficiency of α-granule proteins. Defective granule formation and protein targeting are considered to be the predominant mechanisms. We have reported on a patient with thrombocytopenia and impaired platelet aggregation, secretion, and protein phosphorylation, associated with a mutation in the transcription factor RUNX1. Platelet expression profiling showed decreased transcript expression of PF4 and its non-allelic variant PF4V1. OBJECTIVES To understand the mechanism leading to PF4 deficiency associated with RUNX1 haplodeficiency, we addressed the hypothesis that PF4 is a transcriptional target of RUNX1. METHODS/RESULTS Chromatin immunoprecipitation and gel-shift assays with phorbol 12-myristate 13-acetate-treated human erythroleukemia (HEL) cells revealed RUNX1 binding to RUNX1 consensus sites at -1774/-1769 and -157/-152 on the PF4 promoter. In luciferase reporter studies in HEL cells, mutation of each site markedly reduced activity. PF4 promoter activity and PF4 protein level were decreased by small interfering RNA RUNX1 knockdown and increased by RUNX1 overexpression. CONCLUSIONS Our results provide the first evidence that PF4 is regulated by RUNX1 and that impaired transcriptional regulation leads to the PF4 deficiency associated with RUNX1 haplodeficiency. Because our patient had decreased platelet albumin and IgG (not synthesized by megakaryocytes) levels, we postulate additional defects in RUNX1-regulated genes involved in vesicular trafficking. These studies advance our understanding of the mechanisms in α-granule deficiency.
Collapse
Affiliation(s)
- Kawalpreet Aneja
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Anamika Singh
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
119
|
Bolasco G, Tracey-White DC, Tolmachova T, Thorley AJ, Tetley TD, Seabra MC, Hume AN. Loss of Rab27 function results in abnormal lung epithelium structure in mice. Am J Physiol Cell Physiol 2010; 300:C466-76. [PMID: 21160031 PMCID: PMC3063958 DOI: 10.1152/ajpcell.00446.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium.
Collapse
Affiliation(s)
- Giulia Bolasco
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
120
|
Johnson JL, Hong H, Monfregola J, Kiosses WB, Catz SD. Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis in neutrophils. J Biol Chem 2010; 286:5647-56. [PMID: 21148308 DOI: 10.1074/jbc.m110.184762] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
121
|
Abstract
Human cytomegalovirus (HCMV) completes its final envelopment on intracellular membranes before it is released from the cell. The mechanisms underlying these processes are not understood. Here we studied the role of Rab27a, a regulator of lysosome-related organelle transport, in HCMV production. HCMV infection increased Rab27a expression, and recruitment of Rab27a to membranous strutures at the assembly site. Immuno-gold labelling demonstrated association of Rab27a with viral envelopes. CMV production was reduced after knock-down of Rab27a, and in Rab27a-deficient ashen melanocytes. This study shows a requirement for Rab27a in the CMV life cycle and suggests that CMV and LRO biogenesis share common molecular mechanisms.
Collapse
|
122
|
Anderson KE, Chessa TAM, Davidson K, Henderson RB, Walker S, Tolmachova T, Grys K, Rausch O, Seabra MC, Tybulewicz VLJ, Stephens LR, Hawkins PT. PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood 2010; 116:4978-89. [PMID: 20813901 PMCID: PMC3368544 DOI: 10.1182/blood-2010-03-275602] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/14/2010] [Indexed: 11/20/2022] Open
Abstract
The generation of reactive oxygen species (ROS) by the nicotinamide adenine dinucleotide phosphate oxidase is an important mechanism by which neutrophils kill pathogens. The oxidase is composed of a membrane-bound cytochrome and 4 soluble proteins (p67(phox), p40(phox), p47(phox), and GTP-Rac). These components form an active complex at the correct time and subcellular location through a series of incompletely understood mutual interactions, regulated, in part, by GTP/GDP exchange on Rac, protein phosphorylation, and binding to lipid messengers. We have used a variety of assays to follow the spatiotemporal assembly of the oxidase in genetically engineered primary mouse neutrophils, during phagocytosis of both serum- and immunoglobulin G-opsonized targets. The oxidase assembles directly on serum-Staphylococcus aureus-containing phagosomes within seconds of phagosome formation; this process is only partially dependent (∼ 30%) on PtdIns3P binding to p40(phox), but totally dependent on Rac1/2 binding to p67(phox). In contrast, in response to immunoglobulin G-targets, the oxidase first assembles on a tubulovesicular compartment that develops at sites of granule fusion to the base of the emerging phagosome; oxidase assembly and activation is highly dependent on both PtdIns3P-p40(phox) and Rac2-p67(phox) interactions and delivery to the phagosome is regulated by Rab27a. These results define a novel pathway for oxidase assembly downstream of FcR-activation.
Collapse
Affiliation(s)
- Karen E Anderson
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010; 107:19973-8. [PMID: 21045126 DOI: 10.1073/pnas.1014051107] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite their low frequency, plasmacytoid dendritic cells (pDCs) produce most of the type I IFN that is detectable in the blood following viral infection. The endosomal Toll-like receptors (TLRs) TLR7 and TLR9 are required for pDCs, as well as other cell types, to sense viral nucleic acids, but the mechanism by which signaling through these shared receptors results in the prodigious production of type I IFN by pDCs is not understood. We designed a genetic screen to identify proteins required for the development and specialized function of pDCs. One phenovariant, which we named feeble, showed abrogation of both TLR-induced type I IFN and proinflammatory cytokine production by pDCs, while leaving TLR responses intact in other cells. The feeble phenotype was mapped to a mutation in Slc15a4, which encodes the peptide/histidine transporter 1 (PHT1) and has not previously been implicated in pDC function. The identification of the feeble mutation led to our subsequent observations that AP-3, as well as the BLOC-1 and BLOC-2 Hermansky-Pudlak syndrome proteins are essential for pDC signaling through TLR7 and TLR9. These proteins are not necessary for TLR7 or TLR9 signaling in conventional DCs and thus comprise a membrane trafficking pathway uniquely required for endosomal TLR signaling in pDCs.
Collapse
|
124
|
Abstract
The completed sequencing of genomes has forced upon us the challenge of understanding how the detailed information in the genome gives rise to the specific characteristics--phenotype--of the individual. This is crucial for understanding not only normal development but also, from a medical perspective, the genetic basis of disease. Much of the mammalian genome-to-phenotype relationship will be worked out in the mouse, for which powerful genetic-manipulation tools are available. Mouse imaging combined with powerful statistical methods has a unique and growing role to play in phenotyping genetically modified mice. This review outlines the challenges for image-based phenotyping, summarizes the current state of three-dimensional imaging technologies for the mouse, and highlights new opportunities in systems biology that are opened by imaging mice.
Collapse
Affiliation(s)
- R Mark Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
125
|
Liu D, Meckel T, Long EO. Distinct role of rab27a in granule movement at the plasma membrane and in the cytosol of NK cells. PLoS One 2010; 5:e12870. [PMID: 20877725 PMCID: PMC2943471 DOI: 10.1371/journal.pone.0012870] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Protocols were developed to automate image analysis and to track the movement of thousands of vesicular compartments in live cells. Algorithms were used to discriminate among different types of movement (e.g. random, caged, and directed). We applied these tools to investigate the steady-state distribution and movement of lytic granules (LG) in live natural killer (NK) cells by high-speed 3-dimensional (3D) spinning disc confocal and 2-dimensional total internal reflection fluorescence microscopy. Both mouse NK cells and a human NK cell line deficient in the small GTPase Rab27a were examined. The unbiased analysis of large datasets led to the following observations and conclusions. The majority of LG in the cytosol and at the plasma membrane of unstimulated NK cells are mobile. The use of inhibitors indicated that movement in the cytosol required microtubules but not actin, whereas movement at the plasma membrane required both. Rab27a deficiency resulted in fewer LG, and in a reduced fraction of mobile LG, at the plasma membrane. In contrast, loss of Rab27a increased the fraction of mobile LG and the extent of their movement in the cytosol. Therefore, in addition to its documented role in LG delivery to the plasma membrane, Rab27a may restrict LG movement in the cytosol.
Collapse
Affiliation(s)
- Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tobias Meckel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
126
|
Sandrock K, Zieger B. Current Strategies in Diagnosis of Inherited Storage Pool Defects. ACTA ACUST UNITED AC 2010; 37:248-258. [PMID: 21113247 DOI: 10.1159/000320279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/17/2010] [Indexed: 01/24/2023]
Abstract
Inherited platelet defects lead to bleeding symptoms of varying severity. Typically, easy bruising, petechiae, epistaxis, and mucocutaneous bleeding are observed in affected patients. The platelet defects are classified into disorders affecting either platelet surface receptors or intracellular organelles of platelets. The latter are represented by platelet storage pool diseases (SPD) which share a defect of platelet granules. Platelet α-granules, δ-granules, or both may be affected resulting in the clinical picture of α-SPD (e.g. Gray platelet syndrome, Quebec platelet disorder, arthrogryposis, renal dysfunction, and cholestasis syndrome), δ-SPD (e.g. Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, Griscelli syndrome), or αδ-SPD (e.g. X-linked thrombocytopenia, Wiskott-Aldrich syndrome). Diagnosis of SPD is very extensive and requires platelet aggregation and flow cytometry analyses with interpretation from a specialist. Many of these disorders share common treatments, however, efficacy can vary between different patients. Therapy regiments with tranexamic acid, DDAVP, activated FVIIa, and platelet transfusions have been published. Stem cell or bone marrow transplantations are preserved for severe defects. Here, we describe the pathophysiology, clinical manifestations, and diagnosis of the major human SPDs.
Collapse
Affiliation(s)
- Kirstin Sandrock
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | | |
Collapse
|
127
|
Abstract
The majority of cells of the immune system are specialized secretory cells, whose function depends on regulated exocytosis. The latter is mediated by vesicular transport involving the sorting of specialized cargo into the secretory granules (SGs), thereby generating the transport vesicles; their transport along the microtubules and eventually their signal-dependent fusion with the plasma membrane. Each of these steps is tightly controlled by mechanisms, which involve the participation of specific sorting signals on the cargo proteins and their recognition by cognate adaptor proteins, posttranslational modifications of the cargo proteins and multiple GTPases and SNARE proteins. In some of the cells (i.e. mast cells, T killer cells) an intimate connection exists between the secretory system and the endocytic one, whereby the SGs are lysosome related organelles (LROs) also referred to as secretory lysosomes. Herein, we discuss these mechanisms in health and disease states.
Collapse
Affiliation(s)
- Anat Benado
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
128
|
de Saint Basile G, Ménasché G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 2010; 10:568-79. [PMID: 20634814 DOI: 10.1038/nri2803] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic T cells and natural killer cells are crucial for immune surveillance against virus-infected cells and tumour cells. Molecular studies of individuals with inherited defects that impair lymphocyte cytotoxic function have also highlighted the importance of cytotoxicity in the regulation and termination of immune responses. As discussed in this Review, characterization of these defects has contributed to our understanding of the key steps that are required for the maturation of cytotoxic granules and the secretion of their contents at the immunological synapse during target cell killing. This has revealed a marked similarity between cytotoxic granule exocytosis at the immunological synapse and synaptic vesicle exocytosis at the neurological synapse. We explore the possibility that comparison of these two kinetically and spatially regulated secretory pathways will provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.
Collapse
Affiliation(s)
- Geneviève de Saint Basile
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | |
Collapse
|
129
|
Xu X, Kedlaya R, Higuchi H, Ikeda S, Justice MJ, Setaluri V, Ikeda A. Mutation in archain 1, a subunit of COPI coatomer complex, causes diluted coat color and Purkinje cell degeneration. PLoS Genet 2010; 6:e1000956. [PMID: 20502676 PMCID: PMC2873907 DOI: 10.1371/journal.pgen.1000956] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)-induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the delta subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Rajendra Kedlaya
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
130
|
Ohbayashi N, Mamishi S, Ishibashi K, Maruta Y, Pourakbari B, Tamizifar B, Mohammadpour M, Fukuda M, Parvaneh N. Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res 2010; 23:365-74. [PMID: 20370853 DOI: 10.1111/j.1755-148x.2010.00705.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Kimura T, Taniguchi S, Toya K, Niki I. Glucose-induced translocation of coronin 3 regulates the retrograde transport of the secretory membrane in the pancreatic beta-cells. Biochem Biophys Res Commun 2010; 395:318-23. [PMID: 20362548 DOI: 10.1016/j.bbrc.2010.03.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
GTP-Rab27a is known to regulate insulin exocytosis. We have recently reported that coronin 3, which paradoxically binds GDP-Rab27a, participates in endocytosis of the insulin secretory membrane. Here, we demonstrate that glucose stimulation caused redistribution of coronin 3 in the vicinity of the plasma membrane, which was mimicked by overexpression of the GDP-Rab27a mutant or the Rab27a GAP. Glucose-induced translocation of coronin 3 was inhibited by Rab27a knock-down. The internalized phogrin, an insulin granule associated protein, located near the plasma membrane by the dominant-negative coronin 3, but the protein at the outer surface of the plasma membrane was decreased. These results indicate that glucose recruits coronin 3 near the plasma membrane, and that it regulates the retrograde transport of the secretory membrane in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | | | | | | |
Collapse
|
132
|
Vesicle traffic to the immunological synapse: a multifunctional process targeted by lymphotropic viruses. Curr Top Microbiol Immunol 2010; 340:191-207. [PMID: 19960315 DOI: 10.1007/978-3-642-03858-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The site of contact between T lymphocytes and antigen-presenting cells becomes, upon antigen recognition, an organized junction named the immunological synapse. Various T cell organelles polarize, together with microtubules, toward the antigen-presenting cell. Among them, intracellular vesicular compartments, such as the Golgi apparatus, the recycling endosomal compartment, or cytotoxic granules help to build the immunological synapse and ensure effector functions, such as polarized secretion of cytokines by helper T cells, or exocytosis of lytic granules by cytotoxic T cells. Lymphotropic retroviruses, such as the human immunodeficiency virus type 1, the human T cell leukemia virus type 1, or the Herpesvirus saimiri, can subvert some of the vesicle traffic mechanisms impeding the generation and function of the immunological synapses. This review focuses on the polarization of vesicle traffic, its regulation, and its role in maintaining the structure and function of the immunological synapse. We discuss how some lymphotropic viruses target the vesicle traffic in T lymphocytes, inhibiting the formation of immunological synapses and modulating the response of infected T cells.
Collapse
|
133
|
KURAMOTO T, YOKOE M, YAGASAKI K, KAWAGUCHI T, KUMAFUJI K, SERIKAWA T. Genetic Analyses of Fancy Rat-Derived Mutations. Exp Anim 2010; 59:147-55. [DOI: 10.1538/expanim.59.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Takashi KURAMOTO
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| | - Mayuko YOKOE
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| | - Kayoko YAGASAKI
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| | - Tatsuya KAWAGUCHI
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| | - Kenta KUMAFUJI
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| | - Tadao SERIKAWA
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
| |
Collapse
|
134
|
Thomas DDH, Martin CL, Weng N, Byrne JA, Groblewski GE. Tumor protein D52 expression and Ca2+-dependent phosphorylation modulates lysosomal membrane protein trafficking to the plasma membrane. Am J Physiol Cell Physiol 2009; 298:C725-39. [PMID: 20032513 DOI: 10.1152/ajpcell.00455.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor protein D52 (also known as CRHSP-28) is highly expressed in multiple cancers and tumor-derived cell lines; however, it is normally abundant in secretory epithelia throughout the digestive system, where it has been implicated in Ca(2+)-dependent digestive enzyme secretion (41). Here we demonstrate, using site-specific mutations, that Ca(2+)-sensitive phosphorylation at serine 136 modulates the accumulation of D52 at the plasma membrane within 2 min of cell stimulation. When expressed in Chinese hamster ovary CHO-K1 cells, D52 colocalized with adaptor protein AP-3, Rab27A, vesicle-associated membrane protein VAMP7, and lysosomal-associated membrane protein LAMP1, all of which are present in lysosome-like secretory organelles. Overexpression of D52 resulted in a marked accumulation of LAMP1 on the plasma membrane that was further enhanced following elevation of cellular Ca(2+). Strikingly, mutation of serine 136 to alanine abolished the Ca(2+)-stimulated accumulation of LAMP1 at the plasma membrane whereas phosphomimetic mutants constitutively induced LAMP1 plasma membrane accumulation independent of elevated Ca(2+). Identical results were obtained for endogenous D52 in normal rat kidney and HeLA cells, where both LAMP1 and D52 rapidly accumulated on the plasma membrane in response to elevated cellular Ca(2+). Finally, D52 induced the uptake of LAMP1 antibodies from the cell surface in accordance with both the level of D52 expression and phosphorylation at serine 136 demonstrating that D52 altered the plasma membrane recycling of LAMP1-associated secretory vesicles. These findings implicate both D52 expression and Ca(2+)-dependent phosphorylation at serine 136 in lysosomal membrane trafficking to and from the plasma membrane providing a novel Ca(2+)-sensitive pathway modulating the lysosome-like secretory pathway.
Collapse
Affiliation(s)
- Diana D H Thomas
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
135
|
Johnson JL, Brzezinska AA, Tolmachova T, Munafo DB, Ellis BA, Seabra MC, Hong H, Catz SD. Rab27a and Rab27b regulate neutrophil azurophilic granule exocytosis and NADPH oxidase activity by independent mechanisms. Traffic 2009; 11:533-47. [PMID: 20028487 DOI: 10.1111/j.1600-0854.2009.01029.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils rely on exocytosis to mobilize receptors and adhesion molecules and to release microbicidal factors. This process should be strictly regulated because uncontrolled release of toxic proteins would be injurious to the host. In vivo studies showed that the small GTPase Rab27a regulates azurophilic granule exocytosis. Using mouse neutrophils deficient in Rab27a (Rab27a(ash/ash)), Rab27b [Rab27b knockout (KO)] or both [Rab27a/b double KO (DoKo)], we investigated the role of the Rab27 isoforms in neutrophils. We found that both Rab27a and Rab27b deficiencies impaired azurophilic granule exocytosis. Rab27a(ash/ash) neutrophils showed upregulation of Rab27b expression which did not compensate for the secretory defects observed in Rab27a-deficient cells, suggesting that Rab27 isoforms play independent roles in neutrophil exocytosis. Total internal reflection fluorescence microscopy analysis showed that Rab27a(ash/ash) and Rab27b KO neutrophils have a decreased number of azurophilic granules near the plasma membrane. The effect was exacerbated in Rab27a/b DoKo neutrophils. Rab27-deficient neutrophils showed impaired activation of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase at the plasma membrane although intraphagosomal reactive oxygen species (ROS) production was not affected. Exocytosis of secretory vesicles in Rab27-deficient neutrophils was functional, suggesting that Rab27 GTPases selectively control the exocytosis of neutrophil granules.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Natural killer (NK) cells target and kill aberrant cells, such as virally infected and tumorigenic cells. Killing is mediated by cytotoxic molecules which are stored within secretory lysosomes, a specialized exocytic organelle found in NK cells. Target cell recognition induces the formation of a lytic immunological synapse between the NK cell and its target. The polarized exocytosis of secretory lysosomes is then activated and these organelles release their cytotoxic contents at the lytic synapse, specifically killing the target cell. The essential role that secretory lysosome exocytosis plays in the cytotoxic function of NK cells is highlighted by immune disorders that are caused by the mutation of critical components of the exocytic machinery. This review will discuss recent studies on the molecular basis for NK cell secretory lysosome exocytosis and the immunological consequences of defects in the exocytic machinery.
Collapse
Affiliation(s)
- Nicola J Topham
- Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
137
|
Identification of Mouse Cytomegalovirus Resistance Loci by ENU Mutagenesis. Viruses 2009; 1:460-83. [PMID: 21994556 PMCID: PMC3185521 DOI: 10.3390/v1030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/14/2022] Open
Abstract
Host resistance to infection depends on the efficiency with which innate immune responses keep the infectious agent in check. Innate immunity encompasses components with sensing, signaling and effector properties. These elements with non-redundant functions are encoded by a set of host genes, the resistome. Here, we review our findings concerning the resistome. We have screened randomly mutagenized mice for susceptibility to a natural opportunistic pathogen, the mouse cytomegalovirus. We found that some genes with initially no obvious functions in innate immunity may be critical for host survival to infections, falling into a newly defined category of genes of the resistome.
Collapse
|
138
|
Dorshorst BJ, Ashwell CM. Genetic mapping of the sex-linked barring gene in the chicken. Poult Sci 2009; 88:1811-7. [PMID: 19687264 DOI: 10.3382/ps.2009-00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sex-linked barring gene of the chicken (Gallus gallus), first identified in 1908, produces an alternating pattern of white and black bars in the adult plumage. More recent studies have shown that melanocytes in the developing feather follicle of the Barred Plymouth Rock experience premature cell death, whereas initially it was thought that melanocytes remained viable in the region of the feather devoid of pigmentation but were simply inhibited from synthesizing melanin. In an attempt to reconcile these 2 different hypotheses at the molecular level, we have taken a gene mapping approach to isolate the sex-linked barring gene variant. We developed a mapping population consisting of 71 F2 chickens from crossing a single Barred Plymouth Rock female with a White Crested Black Polish male. Existing and novel microsatellite markers located on the chicken chromosome Z were used to genotype all individuals in our mapping population. Single marker association analysis revealed a 2.8-Mb region of the distal q arm of chicken chromosome Z to be significantly associated with the barring phenotype (P<0.001). Further analysis suggests that the causal mutation is located within a 355-kb region showing complete association with the barring phenotype and containing 5 known genes [micro-RNA 31 (miRNA-31), methylthioadenosine phosphorylase (MTAP), cyclin-dependent kinase inhibitor 2B (CDKN2B), tripartite motif 36 (TRIM36), and protein geranylgeranyltransferase type I, beta subunit (PGGT1B)], none of which have a defined role in normal melanocyte function. Although several of these genes or their homologs are known to be involved in processes that could potentially explain the barring phenotype, our results indicate that further work directed at fine-mapping this region is necessary to identify this novel mechanism of melanocyte regulation.
Collapse
Affiliation(s)
- B J Dorshorst
- Department of Poultry Science, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|
139
|
Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and Primary Immunodeficiency Diseases. Int Rev Immunol 2009; 28:335-66. [DOI: 10.1080/08830180902995645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
140
|
Munafo DB, Johnson JL, Brzezinska AA, Ellis BA, Wood MR, Catz SD. DNase I inhibits a late phase of reactive oxygen species production in neutrophils. J Innate Immun 2009; 1:527-42. [PMID: 20375609 DOI: 10.1159/000235860] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/22/2009] [Indexed: 01/09/2023] Open
Abstract
Neutrophils kill bacteria on extracellular complexes of DNA fibers and bactericidal proteins known as neutrophil extracellular traps (NETs). The NET composition and the bactericidal mechanisms they use are not fully understood. Here, we show that treatment with deoxyribonuclease (DNase I) impairs a late oxidative response elicited by Gram-positive and Gram-negative bacteria and also by phorbol ester. Isoluminol-dependent chemiluminescence elicited by opsonized Listeria monocytogenes-stimulated neutrophils was inhibited by DNase I, and the DNase inhibitory effect was also evident when phagocytosis was blocked, suggesting that DNase inhibits an extracellular mechanism of reactive oxygen species (ROS) generation. The DNase inhibitory effect was independent of actin polymerization. Phagocytosis and cell viability were not impaired by DNase I. Immunofluorescence analysis shows that myeloperoxidase is present on NETs. Furthermore, granular proteins were detected in NETs from Rab27a-deficient neutrophils which have deficient exocytosis, suggesting that exocytosis and granular protein distribution on NETs proceed by independent mechanisms. NADPH oxidase subunits were also detected on NETs, and the detection of extracellular trap-associated NADPH oxidase subunits was abolished by treatment with DNase I and dependent on cell stimulation. In vitro analyses demonstrate that MPO and NADPH oxidase activity are not directly inhibited by DNase I, suggesting that its effect on ROS production depends on NET disassembly. Altogether, our data suggest that inhibition of ROS production by microorganism-derived DNase would contribute to their ability to evade killing.
Collapse
Affiliation(s)
- Daniela B Munafo
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
141
|
Preising M, Ayuso C. Rab escort protein 1 (REP1) in intracellular traffic: a functional and pathophysiological overview. Ophthalmic Genet 2009; 25:101-10. [PMID: 15370541 DOI: 10.1080/13816810490514333] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intracellular distribution of proteins, compartments, substrates, and products is an active process called intracellular traffic. Control of intracellular traffic is established by small GTP-binding proteins (Rab proteins). Rab proteins are modified by geranyl-geranyl moieties necessary for membrane association and target-protein recognition. Geranyl-geranyl groups are transferred to Rab proteins by geranyl-geranyl transferase 2 (GGTase2). GGTase2 requires Rab escort protein 1 (REP1) to bind Rab proteins. REP1 null mutations underlie an X-linked retinal degeneration called choroideremia (CHM). This review summarizes the current biochemical and clinical knowledge on REP1 and CHM.
Collapse
Affiliation(s)
- Markus Preising
- Department of Pediatric Ophthalmology, Strabismology and Ophthalmogenetics, Klinikum, University of Regensburg, Germany.
| | | |
Collapse
|
142
|
Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 2009; 22:268-82. [DOI: 10.1111/j.1755-148x.2009.00558.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
143
|
Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell 2009; 20:2900-8. [PMID: 19403694 DOI: 10.1091/mbc.e08-12-1161] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two small GTPase Rabs, Rab32 and Rab38, have recently been proposed to regulate trafficking of melanogenic enzymes to melanosomes in mammalian epidermal melanocytes; however, the exact molecular mechanism of Rab32/38-mediated transport of melanogenic enzymes has never been clarified, because no Rab32/38-specific effector has ever been identified. In this study, we screened for a Rab32/38-specific effector by a yeast two-hybrid assay using a guanosine triphosphate (GTP)-locked Rab32/38 as bait and found that VPS9-ankyrin-repeat protein (Varp)/Ankrd27, characterized previously as a guanine nucleotide exchange factor (GEF) for Rab21, functions as a specific Rab32/38-binding protein in mouse melanocyte cell line melan-a. Deletion analysis showed that the first ankyrin-repeat (ANKR1) domain functions as a GTP-dependent Rab32/38-binding domain, but that the N-terminal VPS9 domain (i.e., Rab21-GEF domain) does not. Small interfering RNA-mediated knockdown of endogenous Varp in melan-a cells caused a dramatic reduction in Tyrp1 (tyrosinase-related protein 1) signals from melanosomes but did not cause any reduction in Pmel17 signals. Furthermore, expression of the ANKR1 domain in melan-a cells also caused a dramatic reduction of Tyrp1 signals, whereas the VPS9 domain had no effect. Based on these findings, we propose that Varp functions as the Rab32/38 effector that controls trafficking of Tyrp1 in melanocytes.
Collapse
Affiliation(s)
- Kanako Tamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Li W, Feng Y, Hao C, Guo X, Cui Y, He M, He X. The BLOC interactomes form a network in endosomal transport. J Genet Genomics 2009; 34:669-82. [PMID: 17707211 DOI: 10.1016/s1673-8527(07)60076-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/20/2023]
Abstract
With the identification of more than a dozen novel Hermansky-Pudlak Syndrome (HPS) proteins in vesicle trafficking in higher eukaryotes, a new class of trafficking pathways has been described. It mainly consists of three newly-defined protein complexes, BLOC-1, -2, and -3. Compelling evidence indicates that these complexes together with two other well-known complexes, AP3 and HOPS, play important roles in endosomal transport. The interactions between these complexes form a network in protein trafficking via endosomes and cytoskeleton. Each node of this network has intra-complex and extra-complex interactions. These complexes are connected by direct interactions between the subunits from different complexes or by indirect interactions through coupling nodes that interact with two or more subunits from different complexes. The dissection of this network facilitates the understanding of a dynamic but elaborate transport machinery in protein/membrane trafficking. The disruption of this network may lead to abnormal trafficking or defective organellar development as described in patients with Hermansky-Pudlak syndrome.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
145
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
146
|
Pachlopnik Schmid J, Ho CH, Diana J, Pivert G, Lehuen A, Geissmann F, Fischer A, de Saint Basile G. A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur J Immunol 2009; 38:3219-25. [PMID: 18991284 DOI: 10.1002/eji.200838488] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Griscelli syndrome type 2 is caused by mutations in the RAB27A gene and is a rare and potentially fatal immune disorder associated with hemophagocytic lymphohistiocytosis (HLH). Animal models could provide assistance for better understanding the mechanisms and finding new treatments. Rab27a-deficient (ashen) mice do not spontaneously develop HLH. When injected with lymphocytic choriomeningitis virus (LCMV) strain WE, Rab27a-deficient C57BL/6 mice developed wasting disease, hypothermia, splenomegaly, cytopenia (anemia, neutropenia and thrombocytopenia), hypertriglyceridemia and increased levels of IFN-gamma, TNF-alpha, GM-CSF, IL-12, CCL5 and IL-10. Activated macrophages with hemophagocytosis were found in liver sections of these mice. Compared with perforin-deficient mice, LCMV-infected Rab27a-deficient mice showed a substantially better survival rate and slightly higher viral doses were needed to trigger HLH in Rab27a-deficient mice. This study demonstrates that LCMV-infected Rab27a-deficient C57BL/6 mice develop features consistent with HLH and, therefore, represent a murine model of HLH in human Griscelli syndrome type 2.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Institut National de la Santé et de la Recherche Médicale U768, Laboratoire du Développement Normal et Pathologique du Système Immunitaire, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 2008; 112:5052-62. [DOI: 10.1182/blood-2008-02-141069] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer cells help control infections and tumors via a killing activity that is mediated by the release of cytotoxic granules. Granule secretion at the synapse formed between the CTL and the target cell leads to apoptosis of the latter. This process involves polarization of the CTL's secretory machinery and cytotoxic granules. The small GTPase Rab27a and the hMunc13-4 protein have been shown to be required for both granule maturation and granule docking and priming at the immunologic synapse. Using a tandem affinity purification technique, we identified a previously unknown hematopoietic form of Slp2a (Slp2a-hem) and determined that it is a specific effector of the active form of Rab27a. This interaction occurs in vivo in primary CTLs. We have shown that (1) Rab27a recruits Slp2a-hem on vesicular structures in peripheral CTLs and (2) following CTL-target cell conjugate formation, the Slp2a-hem/Rab27a complex colocalizes with perforin-containing granules at the immunologic synapse, where it binds to the plasma membrane through its C2 domains. The overexpression of a dominant-negative form of Slp2a-hem markedly impaired exocytosis of cytotoxic granules—indicating that Slp2a is required for cytotoxic granule docking at the immunologic synapse.
Collapse
|
148
|
Kimura T, Kaneko Y, Yamada S, Ishihara H, Senda T, Iwamatsu A, Niki I. The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines. J Cell Sci 2008; 121:3092-8. [PMID: 18768935 DOI: 10.1242/jcs.030544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rab27a is involved in the control of membrane traffic, a crucial step in the regulated secretion. Typically, the guanosine triphosphate (GTP)-bound form has been considered to be active and, therefore, searching for proteins binding to the GTP-form has been attempted to look for their effectors. Here, we have identified the actin-bundling protein coronin 3 as a novel Rab27a effector that paradoxically bound guanosine diphosphate (GDP)-Rab27a in the pancreatic beta-cell line MIN6. Coronin 3 directly bound GDP-Rab27a through its beta-propeller structure. The most important insulin secretagogue glucose promptly shifted Rab27a from the GTP- to GDP-bound form. Knockdown of coronin 3 by RNAi resulted in the inhibition of phogrin (an insulin-granule-associated protein) internalization and the uptake of FM4-64 (a marker of endocytosis). Similar results were reproduced by disruption of the coronin-3-GDP-Rab27a interaction with the dominant-negative coronin 3, and coexpression of the GDP-Rab27a mutant rescued these changes. Taken together, our results indicate that interaction of GDP-Rab27a and coronin 3 is important in stimulus-endocytosis coupling, and that GTP- and GDP-Rab27a regulates insulin membrane recycling at the distinct stages.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, Hasama, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Merrins MJ, Stuenkel EL. Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. J Physiol 2008; 586:5367-81. [PMID: 18801842 PMCID: PMC2655366 DOI: 10.1113/jphysiol.2008.158477] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/18/2008] [Indexed: 12/26/2022] Open
Abstract
The small GTPase Rab27a, along with the isoforms of Rab3, is present on insulin secretory granules and has been implicated in regulation of Ca(2+)-triggered exocytosis. We have used membrane capacitance measurements to define the role of Rab27a in regulating the size and refilling of distinct pools of insulin granules by comparison of evoked secretory responses from Rab27a-null ashen and strain-matched wild-type control pancreatic beta-cells. We find that ashen beta-cells display a kinetic defect in refilling of readily releasable and immediately releasable vesicle pools (RRP and IRP, respectively) in response to depolarization-evoked Ca(2+) influx. The deficit in IRP refilling was not observed in the presence of stimulatory glucose concentrations (16.7 mm), though incomplete refilling of the RRP persisted. Comparatively, beta-cells from Rab3a(-/-) mice exhibited complete refilling of the IRP and RRP, demonstrating that Rab27a and Rab3a exert distinct roles in the insulin granule secretory pathway. Further, depletion of the RRP in ashen beta-cells was twofold faster than that of control beta-cells. These deficits in refilling and exocytotic rate in ashen beta-cells were absent when cAMP-regulatory pathways were activated. Elevated cAMP increased the RRP pool size, and complete refilling of the RRP occurred in ashen beta-cells; responses were comparable to wild-type controls. These effects of cAMP were largely eliminated by Rp-cAMP inhibition of PKA, indicating that PKA acts on vesicle priming downstream or via pathways independent of Rab27a. In summary, Rab27a exerts dual roles in glucose-mediated insulin granule exocytosis, facilitating refilling of releasable granule pools while also limiting the rate of release from these pools.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|
150
|
Coxon FP, Taylor A. Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 2008; 19:424-33. [DOI: 10.1016/j.semcdb.2008.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/24/2022]
|