101
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
102
|
Samten B, Fannin S, Sarva K, Yi N, Madiraju M, Rajagopalan M. Modulation of human T cell cytokines by the Mycobacterium tuberculosis -secreted protein Wag31. Tuberculosis (Edinb) 2016; 101S:S99-S104. [DOI: 10.1016/j.tube.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
103
|
Singh V, Dhar N, Pató J, Kolly GS, Korduláková J, Forbak M, Evans JC, Székely R, Rybniker J, Palčeková Z, Zemanová J, Santi I, Signorino-Gelo F, Rodrigues L, Vocat A, Covarrubias AS, Rengifo MG, Johnsson K, Mowbray S, Buechler J, Delorme V, Brodin P, Knott GW, Aínsa JA, Warner DF, Kéri G, Mikušová K, McKinney JD, Cole ST, Mizrahi V, Hartkoorn RC. Identification of aminopyrimidine-sulfonamides as potent modulators of Wag31-mediated cell elongation in mycobacteria. Mol Microbiol 2016; 103:13-25. [PMID: 27677649 DOI: 10.1111/mmi.13535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/01/2022]
Abstract
There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.
Collapse
Affiliation(s)
- Vinayak Singh
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Neeraj Dhar
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - János Pató
- Vichem Chemie Research Ltd, Herman, Otto u. 15, Budapest, 1022, Hungary
| | - Gaëlle S Kolly
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jana Korduláková
- Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Martin Forbak
- Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Joanna C Evans
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Rita Székely
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan Rybniker
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Zuzana Palčeková
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - Júlia Zemanová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - Isabella Santi
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - François Signorino-Gelo
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, and Fundación ARAID, Zaragoza, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Zaragoza, Spain
| | - Anthony Vocat
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adrian S Covarrubias
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Monica G Rengifo
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sherry Mowbray
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Joseph Buechler
- Alere (San Diego), Summer Ridge Road, San Diego, CA, 92121, USA
| | - Vincent Delorme
- Center for Infection and Immunity, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Priscille Brodin
- Center for Infection and Immunity, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Graham W Knott
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, and Fundación ARAID, Zaragoza, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Zaragoza, Spain
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - György Kéri
- Vichem Chemie Research Ltd, Herman, Otto u. 15, Budapest, 1022, Hungary
| | - Katarína Mikušová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - John D McKinney
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Stewart T Cole
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Ruben C Hartkoorn
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
104
|
Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis (Edinb) 2016; 100:32-45. [DOI: 10.1016/j.tube.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
105
|
Howell M, Brown PJ. Building the bacterial cell wall at the pole. Curr Opin Microbiol 2016; 34:53-59. [PMID: 27504539 DOI: 10.1016/j.mib.2016.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023]
Abstract
Polar growth is the predominant mode of cell wall extension in the Actinobacteria and the alphaproteobacterial clade Rhizobiales. The observation of polar elongation in taxonomically diverse bacteria suggests that polar growth may have evolved independently. Indeed, the regulatory mechanisms governing the assembly of cell wall biosynthesis machinery at the pole are distinct in the Actinobacteria and Rhizobiales. Here we highlight recent advances in our understanding of polar growth mechanisms in bacteria, with an emphasis on Streptomyces and Agrobacterium. This review illustrates that common themes are emerging in the regulation of polar growth in diverse bacteria. Emerging themes include the use of landmark proteins to direct growth to the pole and coordination of polar growth with cell-cycle progression.
Collapse
Affiliation(s)
- Matthew Howell
- Division of Biological Sciences, 423 Tucker Hall, 612 Hitt St., University of Missouri, Columbia, MO 65211, USA
| | - Pamela Jb Brown
- Division of Biological Sciences, 423 Tucker Hall, 612 Hitt St., University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
106
|
Singh AK, Carette X, Potluri LP, Sharp JD, Xu R, Prisic S, Husson RN. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res 2016; 44:e143. [PMID: 27407107 PMCID: PMC5062980 DOI: 10.1093/nar/gkw625] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/02/2016] [Indexed: 12/23/2022] Open
Abstract
Despite many methodological advances that have facilitated investigation of Mycobacterium tuberculosis pathogenesis, analysis of essential gene function in this slow-growing pathogen remains difficult. Here, we describe an optimized CRISPR-based method to inhibit expression of essential genes based on the inducible expression of an enzymatically inactive Cas9 protein together with gene-specific guide RNAs (CRISPR interference). Using this system to target several essential genes of M. tuberculosis, we achieved marked inhibition of gene expression resulting in growth inhibition, changes in susceptibility to small molecule inhibitors and disruption of normal cell morphology. Analysis of expression of genes containing sequences similar to those targeted by individual guide RNAs did not reveal significant off-target effects. Advantages of this approach include the ability to compare inhibited gene expression to native levels of expression, lack of the need to alter the M. tuberculosis chromosome, the potential to titrate the extent of transcription inhibition, and the ability to avoid off-target effects. Based on the consistent inhibition of transcription and the simple cloning strategy described in this work, CRISPR interference provides an efficient approach to investigate essential gene function that may be particularly useful in characterizing genes of unknown function and potential targets for novel small molecule inhibitors.
Collapse
Affiliation(s)
- Atul K Singh
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Carette
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared D Sharp
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranfei Xu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
107
|
Abstract
Mycobacteria grow and divide asymmetrically, creating variability in growth pole age, growth properties, and antibiotic susceptibilities. Here, we investigate the importance of growth pole age and other growth properties in determining the spectrum of responses of Mycobacterium smegmatis to challenge with rifampicin. We used a combination of live-cell microscopy and modeling to prospectively identify subpopulations with altered rifampicin susceptibility. We found two subpopulations that had increased susceptibility. At the initiation of treatment, susceptible cells were either small and at early stages of the cell cycle, or large and in later stages of their cell cycle. In contrast to this temporal window of susceptibility, tolerance was associated with factors inherited at division: long birth length and mature growth poles. Thus, rifampicin response is complex and due to a combination of differences established from both asymmetric division and the timing of treatment relative to cell birth.
Collapse
|
108
|
Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division. J Bacteriol 2016; 198:1883-1891. [PMID: 27137498 DOI: 10.1128/jb.00198-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. IMPORTANCE How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several alphaproteobacteria, including Agrobacterium tumefaciens Essential components for unipolar growth are largely uncharacterized, and the mechanism constraining growth to one pole of a wild-type cell is unknown. Here, we report that the deletion of a polar development gene, podJAt, results in cells exhibiting ectopic polar growth, including multiple growth poles and aberrant localization of cell division and polar growth-associated proteins. These data suggest that PodJAt is a critical factor in normal polar growth and impacts cell division in A. tumefaciens.
Collapse
|
109
|
Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A 2016; 113:5400-5. [PMID: 27114527 DOI: 10.1073/pnas.1525165113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis.
Collapse
|
110
|
Schlimpert S, Flärdh K, Buttner M. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device. J Vis Exp 2016:53863. [PMID: 26967231 PMCID: PMC4828195 DOI: 10.3791/53863] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park;
| | | | - Mark Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park
| |
Collapse
|
111
|
Tan S, Russell DG. Trans-species communication in the Mycobacterium tuberculosis-infected macrophage. Immunol Rev 2015; 264:233-48. [PMID: 25703563 DOI: 10.1111/imr.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Much of the infection cycle of Mycobacterium tuberculosis (Mtb) is spent within its host cell, the macrophage. As a consequence of the chronic, enduring nature of the infection, this cell-cell interaction has become highly intimate, and the bacterium has evolved to detect, react to, and manipulate the evolving, immune-modulated phenotype of its host. In this review, we discuss the nature of the endosomal/lysosomal continuum, the characterization of the bacterium's transcriptional responses during the infection cycle, and the dominant environmental cues that shape this response. We also discuss how the metabolism of both cells is modulated by the infection and the impact that this has on the progression of the granuloma. Finally, we detail how these transcriptional responses can be exploited to construct reporter bacterial strains to probe the temporal and spatial environmental shifts experienced by Mtb during the course of experimental infections. These reporter strains provide new insights into the fitness of Mtb under immune- and drug-mediated pressure.
Collapse
Affiliation(s)
- Shumin Tan
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | | |
Collapse
|
112
|
PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2015; 112:11666-71. [PMID: 26324921 DOI: 10.1073/pnas.1515544112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens elongates by addition of peptidoglycan (PG) only at the pole created by cell division, the growth pole, whereas the opposite pole, the old pole, is inactive for PG synthesis. How Agrobacterium assigns and maintains pole asymmetry is not understood. Here, we investigated whether polar growth is correlated with novel pole-specific localization of proteins implicated in a variety of growth and cell division pathways. The cell cycle of A. tumefaciens was monitored by time-lapse and superresolution microscopy to image the localization of A. tumefaciens homologs of proteins involved in cell division, PG synthesis and pole identity. FtsZ and FtsA accumulate at the growth pole during elongation, and improved imaging reveals FtsZ disappears from the growth pole and accumulates at the midcell before FtsA. The L,D-transpeptidase Atu0845 was detected mainly at the growth pole. A. tumefaciens specific pole-organizing protein (Pop) PopZAt and polar organelle development (Pod) protein PodJAt exhibited dynamic yet distinct behavior. PopZAt was found exclusively at the growing pole and quickly switches to the new growth poles of both siblings immediately after septation. PodJAt is initially at the old pole but then also accumulates at the growth pole as the cell cycle progresses suggesting that PodJAt may mediate the transition of the growth pole to an old pole. Thus, PopZAt is a marker for growth pole identity, whereas PodJAt identifies the old pole.
Collapse
|
113
|
Touchette MH, Bommineni GR, Delle Bovi RJ, Gadbery JE, Nicora CD, Shukla AK, Kyle JE, Metz TO, Martin DW, Sampson NS, Miller WT, Tonge PJ, Seeliger JC. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids. Biochemistry 2015; 54:5457-68. [PMID: 26271001 DOI: 10.1021/acs.biochem.5b00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although they are classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl β-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. Here, we show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl β-diol substrate analogues. By applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and that a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in the regulation of DIM biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.
Collapse
Affiliation(s)
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
115
|
Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus. Mol Microbiol 2015; 98:7-16. [PMID: 26135034 PMCID: PMC4949712 DOI: 10.1111/mmi.13101] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
Abstract
Mycolic acids are unique long chain fatty acids found in the lipid-rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti-M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co-ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.
Collapse
Affiliation(s)
- Vijayashankar Nataraj
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cristian Varela
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Asma Javid
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
116
|
Brecik M, Centárová I, Mukherjee R, Kolly GS, Huszár S, Bobovská A, Kilacsková E, Mokošová V, Svetlíková Z, Šarkan M, Neres J, Korduláková J, Cole ST, Mikušová K. DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chem Biol 2015; 10:1631-6. [PMID: 25906160 DOI: 10.1021/acschembio.5b00237] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flavo-enzyme DprE1 catalyzes a key epimerization step in the decaprenyl-phosphoryl d-arabinose (DPA) pathway, which is essential for mycobacterial cell wall biogenesis and targeted by several new tuberculosis drug candidates. Here, using differential radiolabeling with DPA precursors and high-resolution fluorescence microscopy, we disclose the unexpected extracytoplasmic localization of DprE1 and periplasmic synthesis of DPA. Collectively, this explains the vulnerability of DprE1 and the remarkable potency of the best inhibitors.
Collapse
Affiliation(s)
- Miroslav Brecik
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Ivana Centárová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Raju Mukherjee
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gaëlle S. Kolly
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stanislav Huszár
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Adela Bobovská
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Emöke Kilacsková
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Veronika Mokošová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Zuzana Svetlíková
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Michal Šarkan
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - João Neres
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jana Korduláková
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Stewart T. Cole
- Global
Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katarína Mikušová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
117
|
Kieser KJ, Boutte CC, Kester JC, Baer CE, Barczak AK, Meniche X, Chao MC, Rego EH, Sassetti CM, Fortune SM, Rubin EJ. Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathog 2015; 11:e1005010. [PMID: 26114871 PMCID: PMC4483258 DOI: 10.1371/journal.ppat.1005010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/07/2015] [Indexed: 01/11/2023] Open
Abstract
Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles. How mycobacteria control this different mode of growth is incompletely understood. Here we find that PonA1, a penicillin binding protein (PBP) capable of transglycosylation and transpeptidation of cell wall peptidoglycan (PG), is a major governor of polar growth in mycobacteria. PonA1 is required for growth of Mycobacterium smegmatis and is critical for M. tuberculosis during infection. In both cases, PonA1’s catalytic activities are both required for normal cell length, though loss of transglycosylase activity has a more pronounced effect than transpeptidation. Mutations that alter the amount or the activity of PonA1 result in abnormal formation of cell poles and changes in cell length. Moreover, altered PonA1 activity results in dramatic differences in antibiotic susceptibility, suggesting that a balance between the two enzymatic activities of PonA1 is critical for survival. We also find that phosphorylation of a cytoplasmic region of PonA1 is required for normal activity. Mutations in a critical phosphorylated residue affect transglycosylase activity and result in abnormal rates of cell elongation. Together, our data indicate that PonA1 is a central determinant of polar growth in mycobacteria, and its governance of cell elongation is required for robust cell fitness during both host-induced and antibiotic stress. Bacterial infections rely on continued bacterial growth. Studying cell growth is particularly important for pathogens such as Mycobacterium tuberculosis that grow differently than model organisms. Unlike Escherichia coli or Bacillus subtilis, which grow by incorporating cell wall material along their body, mycobacteria grow from the pole. It remains unclear how mycobacteria construct and extend their poles. Our work identifies a cell wall synthase, PonA1, as a key determinant of mycobacterial polar growth. PonA1 governs polar growth through two enzymatic activities that build the cell wall’s peptidoglycan (PG); both of these activities are required for normal cell growth. Changes in the amount or activity of PonA1 leads to misplaced cell poles and inhibition of cell proliferation. PonA1 is phosphorylated, an unusual modification for PG synthases. This phosphorylation tunes the rate of cell elongation. Changing PonA1’s regulatory or enzymatic activity impacts the survival of cells in the host or when treated with antibiotics. Our work shows how mycobacterial cell pole construction and cell fitness is governed by a major cell wall synthase; these findings may have implications for other bacteria that elongate from their poles.
Collapse
Affiliation(s)
- Karen J. Kieser
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Cara C. Boutte
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jemila C. Kester
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Christina E. Baer
- Department of Microbiology and Physiological Systems, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amy K. Barczak
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael C. Chao
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - E. Hesper Rego
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
118
|
Gupta S, Banerjee SK, Chatterjee A, Sharma AK, Kundu M, Basu J. Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division. MICROBIOLOGY-SGM 2015; 161:1627-1638. [PMID: 25971440 DOI: 10.1099/mic.0.000108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coordinated bacterial cell septation and cell wall biosynthesis require formation of protein complexes at the sites of division and elongation, in a temporally controlled manner. The protein players in these complexes remain incompletely understood in mycobacteria. Using in vitro and in vivo assays, we showed that Rv2147c (or SepF) of Mycobacterium tuberculosis interacts with the principal driver of cytokinesis, FtsZ. SepF also interacts with itself both in vitro and in vivo. Amino acid residues 189A, 190K and 215F are required for FtsZ-SepF interaction, and are conserved across Gram-positive bacteria. Using Mycobacterium smegmatis as a surrogate system, we confirmed that sepFMSMEG is essential. Knockdown of SepF led to cell elongation, defective growth and failure of FtsZ to localize to the site of division, suggesting that SepF assists FtsZ localization at the site of division. Furthermore, SepF interacted with MurG, a peptidoglycan-synthesizing enzyme, both in vitro and in vivo, suggesting that SepF could serve as a link between cell division and peptidoglycan synthesis. SepF emerges as a newly identified essential component of the cell division complex in mycobacteria.
Collapse
Affiliation(s)
- Shamba Gupta
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Srijon Kaushik Banerjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Ayan Chatterjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|
119
|
Siegrist MS, Aditham AK, Espaillat A, Cameron TA, Whiteside SA, Cava F, Portnoy DA, Bertozzi CR. Host actin polymerization tunes the cell division cycle of an intracellular pathogen. Cell Rep 2015; 11:499-507. [PMID: 25892235 DOI: 10.1016/j.celrep.2015.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 02/02/2023] Open
Abstract
Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arjun K Aditham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akbar Espaillat
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Todd A Cameron
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah A Whiteside
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
120
|
The essential features and modes of bacterial polar growth. Trends Microbiol 2015; 23:347-53. [PMID: 25662291 DOI: 10.1016/j.tim.2015.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 01/25/2023]
Abstract
Polar growth represents a surprising departure from the canonical dispersed cell growth model. However, we know relatively little of the underlying mechanisms governing polar growth or the requisite suite of factors that direct polar growth. Underscoring how classic doctrine can be turned on its head, the peptidoglycan layer of polar-growing bacteria features unusual crosslinks and in some species the quintessential cell division proteins FtsA and FtsZ are recruited to the growing poles. Remarkably, numerous medically important pathogens utilize polar growth, accentuating the need for intensive research in this area. Here we review models of polar growth in bacteria based on recent research in the Actinomycetales and Rhizobiales, with emphasis on Mycobacterium and Agrobacterium species.
Collapse
|
121
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
122
|
Cui T, He ZG. Improved understanding of pathogenesis from protein interactions inMycobacteriumtuberculosis. Expert Rev Proteomics 2014; 11:745-55. [DOI: 10.1586/14789450.2014.971762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
123
|
Abstract
Mycobacterium tuberculosis, which is the aetiological agent of tuberculosis, owes much of its success as a pathogen to its unique cell wall and unusual mechanism of growth, which facilitate its adaptation to the human host and could have a role in clinical latency. Asymmetric growth and division increase population heterogeneity, which may promote antibiotic tolerance and the fitness of single cells. In this Review, we describe the unusual mechanisms of mycobacterial growth, cell wall biogenesis and division, and discuss how these processes might affect the survival of M. tuberculosis in vivo and contribute to the persistence of infection.
Collapse
|