101
|
Mendoza K, Derry PJ, Cherian LM, Garcia R, Nilewski L, Goodman JC, Mbye L, Robertson CS, Tour JM, Kent TA. Functional and Structural Improvement with a Catalytic Carbon Nano-Antioxidant in Experimental Traumatic Brain Injury Complicated by Hypotension and Resuscitation. J Neurotrauma 2019; 36:2139-2146. [PMID: 30704349 DOI: 10.1089/neu.2018.6027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypotension worsens outcome after all severities of traumatic brain injury (TBI), with loss of cerebral autoregulation being a potential contributor. Previously, we demonstrated that intravenous injection of a high capacity catalytic antioxidant, poly(ethylene)glycol conjugated hydrophilic carbon clusters (PEG-HCCs) rapidly restored cerebral perfusion and acutely restored brain oxidative balance in a TBI model complicated by hemorrhagic hypotension without evidence of toxicity. Here, we tested whether these acute effects translated into behavioral and structural benefit. TBI was generated by a cortical contusion impactor in 38 Long Evans rats, followed by blood withdrawal to a target mean arterial pressure of 40 mm Hg. PEG-HCC (2 mg/kg) or diluent was injected intravenously 80 min later at the onset of blood resuscitation followed by another injection 2 h later (doses determined in prior studies). Performance on beam walking (performed on days 1-5) and Morris water maze (MWM) (performed on days 11-15) was tested, and lesion size was determined at the termination. PEG-HCC treatment nearly completely prevented motor dysfunction (p < 0.001 vs. diluent), improved MWM performance (p < 0.001; treatment vs. time interaction) and reduced lesion size by 61% (p = 0.054). Here we show that treatment with PEG-HCCs at a clinically realistic time point (onset of resuscitation) prevented a major portion of the neurological dysfunction induced in this TBI model, and that PEG-HCCs are candidates for additional study as a potential therapeutic agent.
Collapse
Affiliation(s)
- Kimberly Mendoza
- 1 Department of Neurology, Baylor College of Medicine, Houston Texas.,2 Department of Chemistry, Rice University, Houston, Texas
| | - Paul J Derry
- 3 Texas A&M College of Medicine-Houston Campus, Houston, Texas
| | | | - Robert Garcia
- 4 Department of Neurosurgery, Baylor College of Medicine, Houston Texas
| | | | - J Clay Goodman
- 4 Department of Neurosurgery, Baylor College of Medicine, Houston Texas.,5 Department of Pathology & Immunology, Baylor College of Medicine, Houston Texas
| | - Lamin Mbye
- 4 Department of Neurosurgery, Baylor College of Medicine, Houston Texas
| | | | - James M Tour
- 2 Department of Chemistry, Rice University, Houston, Texas.,6 The Smalley-Curl Institute, and Rice University, Houston, Texas.,7 Nanocarbon Center, Rice University, Houston, Texas
| | - Thomas A Kent
- 2 Department of Chemistry, Rice University, Houston, Texas.,3 Texas A&M College of Medicine-Houston Campus, Houston, Texas.,8 Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas
| |
Collapse
|
102
|
Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against bacterial infections. PLoS One 2019; 14:e0208216. [PMID: 30794556 PMCID: PMC6386317 DOI: 10.1371/journal.pone.0208216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
Pneumonia remains a global health threat, in part due to expanding categories of susceptible individuals and increasing prevalence of antibiotic resistant pathogens. However, therapeutic stimulation of the lungs’ mucosal defenses by inhaled exposure to a synergistic combination of Toll-like receptor (TLR) agonists known as Pam2-ODN promotes mouse survival of pneumonia caused by a wide array of pathogens. This inducible resistance to pneumonia relies on intact lung epithelial TLR signaling, and inducible protection against viral pathogens has recently been shown to require increased production of epithelial reactive oxygen species (ROS) from multiple epithelial ROS generators. To determine whether similar mechanisms contribute to inducible antibacterial responses, the current work investigates the role of ROS in therapeutically-stimulated protection against Pseudomonas aerugnosa challenges. Inhaled Pam2-ODN treatment one day before infection prevented hemorrhagic lung cytotoxicity and mouse death in a manner that correlated with reduction in bacterial burden. The bacterial killing effect of Pam2-ODN was recapitulated in isolated mouse and human lung epithelial cells, and the protection correlated with inducible epithelial generation of ROS. Scavenging or targeted blockade of ROS production from either dual oxidase or mitochondrial sources resulted in near complete loss of Pam2-ODN-induced bacterial killing, whereas deficiency of induced antimicrobial peptides had little effect. These findings support a central role for multisource epithelial ROS in inducible resistance against a bacterial pathogen and provide mechanistic insights into means to protect vulnerable patients against lethal infections.
Collapse
|
103
|
Veloso AD, Ferraria AM, Botelho do Rego AM, Tavares PB, Valentão P, Pereira DD, Andrade PB, Fernandes AJ, Oliveira MC, Videira RA. Hydrophilic Carbon Nanomaterials: Characterisation by Physical, Chemical, and Biological Assays. ChemMedChem 2019; 14:699-711. [DOI: 10.1002/cmdc.201900003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/29/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Andreia D. Veloso
- CQ-VR and Chemistry DepartmentUniversity of Trás-os-Montes e Alto Douro 5000-801 Vila Real Portugal
| | - Ana M. Ferraria
- Centro de Química-Física Molecular and IN and IBBInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
| | - Ana M. Botelho do Rego
- Centro de Química-Física Molecular and IN and IBBInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
| | - Pedro B. Tavares
- CQ-VR and Chemistry DepartmentUniversity of Trás-os-Montes e Alto Douro 5000-801 Vila Real Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de FarmacognosiaDepartamento de Química, Faculdade de FarmáciaUniversidade do Porto 4050-313 Porto Portugal
| | - David D. Pereira
- REQUIMTE/LAQV, Laboratório de FarmacognosiaDepartamento de Química, Faculdade de FarmáciaUniversidade do Porto 4050-313 Porto Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de FarmacognosiaDepartamento de Química, Faculdade de FarmáciaUniversidade do Porto 4050-313 Porto Portugal
| | - António J. Fernandes
- I3N and Physics DepartmentUniversity of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Maria C. Oliveira
- CQ-VR and Chemistry DepartmentUniversity of Trás-os-Montes e Alto Douro 5000-801 Vila Real Portugal
| | - Romeu A. Videira
- REQUIMTE/LAQV, Laboratório de FarmacognosiaDepartamento de Química, Faculdade de FarmáciaUniversidade do Porto 4050-313 Porto Portugal
| |
Collapse
|
104
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
105
|
Abdel-Hamid M, Nada OH, Ellakwa DES, Ahmed LK. Role of Myeloperoxidase in hepatitis C virus related hepatocellular carcinoma. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
106
|
Li M, Xia J, Tian R, Wang J, Fan J, Du J, Long S, Song X, Foley JW, Peng X. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. J Am Chem Soc 2018; 140:14851-14859. [DOI: 10.1021/jacs.8b08658] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jing Xia
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Ruisong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - James W. Foley
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
107
|
Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS NANO 2018; 12:8882-8892. [PMID: 30028940 DOI: 10.1021/acsnano.8b04022] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antioxidative therapy has been considered an efficient strategy for the treatment of a series of excessive reactive oxygen species (ROS)-triggered diseases, including oxidative-stress-induced periodontal disease. However, current natural enzymes and nanozymes often show their high specificity toward given ROS and have insufficient antioxidative effects against multiple ROS generated in the diseases process. Meanwhile, multienzyme-based antioxidant defense systems are usually confined by the complicated synthesis as well as potential unwanted residue and toxicity. Various supports are highly needed to immobilize natural enzymes and antioxidants during the biorelated usages due to their low operational stability and difficulty of reuse. To overcome these limitations, we develop a high-performance platform by using biodegradable polydopamine nanoparticles (PDA NPs) as smart ROS scavengers in oxidative stress-induced periodontal disease. Although PDA-based materials are well-known to eliminate ROS both in vitro and in vivo, their antioxidative performance in periodontal disease and relative mechanisms have yet to be well-explored. In this study, PDA NPs can act as ROS scavengers in dental specialties with ideal outcomes. Spectroscopic and in vitro experiments provide strong evidence for the roles of PDA NPs in scavenging multiple ROS and suppressing ROS-induced inflammation reactions. In addition to the above investigations, the results from a murine periodontitis model clearly demonstrate the feasibility of PDA NPs as robust antioxidants with which to remove ROS and decrease periodontal inflammation without any side effects. Taken together, the results from our present study will provide valuable insight into the development of safe and efficient antioxidant defense platforms for further biomedical uses.
Collapse
Affiliation(s)
- Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- School of Stomatology , Jilin University , Changchun , Jilin 130021 , China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Min Hu
- School of Stomatology , Jilin University , Changchun , Jilin 130021 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
108
|
Wu J, Li S, Wei H. Integrated nanozymes: facile preparation and biomedical applications. Chem Commun (Camb) 2018; 54:6520-6530. [PMID: 29564455 DOI: 10.1039/c8cc01202d] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
109
|
Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections. mBio 2018; 9:mBio.00696-18. [PMID: 29764948 PMCID: PMC5954225 DOI: 10.1128/mbio.00696-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability.IMPORTANCE Viruses are the most commonly identified causes of pneumonia and inflict unacceptable morbidity, despite currently available therapies. While lung epithelial cells are principal targets of respiratory viruses, they have also been recently shown to contribute importantly to therapeutically inducible antimicrobial responses. This work finds that lung cells can be stimulated to protect themselves against viral challenges, even in the absence of leukocytes, both reducing viral burden and improving survival. Further, it was found that the protection occurs via unexpected induction of reactive oxygen species (ROS) from spatially segregated sources without reliance on type I interferon signaling. Coordinated multisource ROS generation has not previously been described against viruses, nor has ROS generation been reported for epithelial cells against any pathogen. Thus, these findings extend the potential clinical applications for the strategy of inducible resistance to protect vulnerable people against viral infections and also provide new insights into the capacity of lung cells to protect against infections via novel ROS-dependent mechanisms.
Collapse
|
110
|
Fabian RH, Derry PJ, Rea HC, Dalmeida WV, Nilewski LG, Sikkema WKA, Mandava P, Tsai AL, Mendoza K, Berka V, Tour JM, Kent TA. Efficacy of Novel Carbon Nanoparticle Antioxidant Therapy in a Severe Model of Reversible Middle Cerebral Artery Stroke in Acutely Hyperglycemic Rats. Front Neurol 2018; 9:199. [PMID: 29686642 PMCID: PMC5900022 DOI: 10.3389/fneur.2018.00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION While oxidative stress can be measured during transient cerebral ischemia, antioxidant therapies for ischemic stroke have been clinically unsuccessful. Many antioxidants are limited in their range and/or capacity for quenching radicals and can generate toxic intermediates overwhelming depleted endogenous protection. We developed a new antioxidant class, 40 nm × 2 nm carbon nanoparticles, hydrophilic carbon clusters, conjugated to poly(ethylene glycol) termed PEG-HCCs. These particles are high-capacity superoxide dismutase mimics, are effective against hydroxyl radical, and restore the balance between nitric oxide and superoxide in the vasculature. Here, we report the effects of PEG-HCCs administered during reperfusion after transient middle cerebral artery occlusion (tMCAO) by suture in the rat under hyperglycemic conditions. Hyperglycemia occurs in one-third of stroke patients and worsens clinical outcome. In animal models, this worsening occurs largely by accelerating elaboration of reactive oxygen species (ROS) during reperfusion. METHODS PEG-HCCs were studied for their protective ability against hydrogen peroxide in b.End3 brain endothelial cell line and E17 primary cortical neuron cultures. In vivo, hyperglycemia was induced by streptozotocin injection 2 days before tMCAO. 58 Male Sprague-Dawley rats were analyzed. They were injected IV with PBS or PEG-HCCs (4 mg/kg 2×) at the time of recanalization after either 90- or 120-min occlusion. Rats were survived for up to 3 days, and infarct volume characteristics and neurological functional outcome (modified Bederson Score) were assessed. RESULTS PEG-HCCs were protective against hydrogen peroxide in both culture models. In vivo improvement was found after PEG-HCCs with 90-min ischemia with reduction in infarct size (42%), hemisphere swelling (46%), hemorrhage score (53%), and improvement in Bederson score (70%) (p = 0.068-0.001). Early high mortality in the 2-h in the PBS control group precluded detailed analysis, but a trend was found in improvement in all factors, e.g., reduction in infarct volume (48%; p = 0.034) and a 56% improvement in Bederson score (p = 0.055) with PEG-HCCs. CONCLUSION This nano-antioxidant showed some improvement in several outcome measures in a severe model of tMCAO when administered at a clinically relevant time point. Long-term studies and additional models are required to assess potential for clinical use, especially for patients hyperglycemic at the time of their stroke, as these patients have the worst outcomes.
Collapse
Affiliation(s)
- Roderic H. Fabian
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Paul J. Derry
- Department of Neurology and Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Harriett Charmaine Rea
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - William V. Dalmeida
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | | | | | - Pitchaiah Mandava
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Vladimir Berka
- Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - James M. Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, TX, United States
| | - Thomas A. Kent
- Department of Neurology and Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
111
|
Cheng X, Ni X, Wu R, Chong Y, Gao X, Ge C, Yin JJ. Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine (Lond) 2018. [DOI: 10.2217/nnm-2017-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To develop the potential application of carbon nanomaterials as antioxidants calls for better understanding of how the specific structure affects their antioxidant activity. Materials & methods: Several typical carbon nanomaterials, including graphene quantum dots and fullerene derivatives were characterized and their radical scavenging activities were evaluated; in addition, the in vitro and in vivo radioprotection experiments were performed. Results: These carbon nanomaterials can efficiently scavenge free radicals in a structure-dependent manner. In vitro assays demonstrate that administration of these carbon nanomaterials markedly increases the surviving fraction of cells exposed to ionizing radiation. Moreover, in vivo experiments confirm that their administration can also increase the survival rates of mice exposed to radiation. Conclusion: All results confirm that large, buckyball-shaped fullerenes show the strongest antioxidant properties and the best radioprotective efficiency. Our work will be useful in guiding the design and optimization of nanomaterials for potential antioxidant and radioprotection bio-applications.
Collapse
Affiliation(s)
- Xiaju Cheng
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaohu Ni
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Renfei Wu
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yu Chong
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xingfa Gao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Cuicui Ge
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry & Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD 20740, USA
| |
Collapse
|
112
|
Abstract
Nanomaterials represent one of the most promising frontiers in the research for improved antioxidants. Some nanomaterials, including organic (i.e. melanin, lignin) metal oxides (i.e. cerium oxide) or metal (i.e. gold, platinum) based nanoparticles, exhibit intrinsic redox activity that is often associated with radical trapping and/or with superoxide dismutase-like and catalase-like activities. Redox inactive nanomaterials can be transformed into antioxidants by grafting low molecular weight antioxidants on them. Herein, we propose a classification of nanoantioxidants based on their mechanism of action, and we review the chemical methods used to measure antioxidant activity by providing a rationale of the chemistry behind them.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna 40126, Italy.
| | | | | |
Collapse
|
113
|
Li B, Xie J, Yuan Z, Jain P, Lin X, Wu K, Jiang S. Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bowen Li
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Jingyi Xie
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhefan Yuan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Priyesh Jain
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Xiaojie Lin
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Kan Wu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Shaoyi Jiang
- Department of Bioengineering University of Washington Seattle WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
114
|
Li B, Xie J, Yuan Z, Jain P, Lin X, Wu K, Jiang S. Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. Angew Chem Int Ed Engl 2018; 57:4527-4531. [DOI: 10.1002/anie.201710068] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Bowen Li
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Jingyi Xie
- Department of Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhefan Yuan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Priyesh Jain
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Xiaojie Lin
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Kan Wu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Shaoyi Jiang
- Department of Bioengineering University of Washington Seattle WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
115
|
Li R, Guiney LM, Chang CH, Mansukhani ND, Ji Z, Wang X, Liao YP, Jiang W, Sun B, Hersam MC, Nel AE, Xia T. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS NANO 2018; 12:1390-1402. [PMID: 29328670 PMCID: PMC5834379 DOI: 10.1021/acsnano.7b07737] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While two-dimensional graphene oxide (GO) is used increasingly in biomedical applications, there is uncertainty on how specific physicochemical properties relate to biocompatibility in mammalian systems. Although properties such as lateral size and the colloidal properties of the nanosheets are important, the specific material properties that we address here is the oxidation state and reactive surface groups on the planar surface. In this study, we used a GO library, comprising pristine, reduced (rGO), and hydrated GO (hGO), in which quantitative assessment of the hydroxyl, carboxyl, epoxy, and carbon radical contents was used to study the impact on epithelial cells and macrophages, as well as in the murine lung. Strikingly, we observed that hGO, which exhibits the highest carbon radical density, was responsible for the generation of cell death in THP-1 and BEAS-2B cells as a consequence of lipid peroxidation of the surface membrane, membrane lysis, and cell death. In contrast, pristine GO had lesser effects, while rGO showed extensive cellular uptake with minimal effects on viability. In order to see how these in vitro effects relate to adverse outcomes in the lung, mice were exposed to GOs by oropharyngeal aspiration. Animal sacrifice after 40 h demonstrated that hGO was more prone than other materials to generate acute lung inflammation, accompanied by the highest lipid peroxidation in alveolar macrophages, cytokine production (LIX, MCP-1), and LDH release in bronchoalveolar lavage fluid. Pristine GO showed less toxicity, whereas rGO had minimal effects. We demonstrate that the surface oxidation state and carbon radical content play major roles in the induction of toxicity by GO in mammalian cells and the lung.
Collapse
Affiliation(s)
- Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Linda M. Guiney
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Nikhita D. Mansukhani
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
| | | | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, University of California, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
- Corresponding Author: Tian Xia, Ph.D.; and Andre Nel, Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175, CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 983-3359, Fax: (310) 206-8107, ,
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, University of California, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
- Corresponding Author: Tian Xia, Ph.D.; and Andre Nel, Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175, CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 983-3359, Fax: (310) 206-8107, ,
| |
Collapse
|
116
|
Dai Y, Yang Z, Cheng S, Wang Z, Zhang R, Zhu G, Wang Z, Yung BC, Tian R, Jacobson O, Xu C, Ni Q, Song J, Sun X, Niu G, Chen X. Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Self-Assembled Metal-Phenolic Network Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29315862 DOI: 10.1002/adma.201704877] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/13/2017] [Indexed: 05/11/2023]
Abstract
Engineering functional nanomaterials with high therapeutic efficacy and minimum side effects has increasingly become a promising strategy for cancer treatment. Herein, a reactive oxygen species (ROS) enhanced combination chemotherapy platform is designed via a biocompatible metal-polyphenol networks self-assembly process by encapsulating doxorubicin (DOX) and platinum prodrugs in nanoparticles. Both DOX and platinum drugs can activate nicotinamide adenine dinucleotide phosphate oxidases, generating superoxide radicals (O2•- ). The superoxide dismutase-like activity of polyphenols can catalyze H2 O2 generation from O2•- . Finally, the highly toxic HO• free radicals are generated by a Fenton reaction. The ROS HO• can synergize the chemotherapy by a cascade of bioreactions. Positron emission tomography imaging of 89 Zr-labeled as-prepared DOX@Pt prodrug Fe3+ nanoparticles (DPPF NPs) shows prolonged blood circulation and high tumor accumulation. Furthermore, the DPPF NPs can effectively inhibit tumor growth and reduce the side effects of anticancer drugs. This study establishes a novel ROS promoted synergistic nanomedicine platform for cancer therapy.
Collapse
Affiliation(s)
- Yunlu Dai
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Siyuan Cheng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhongliang Wang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ruili Zhang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Can Xu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiaolian Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
117
|
Vieira R, Fernandes A, Oliveira MC. Electrochemical behaviour of electrogenerated hydrophilic carbon nanomaterials. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
118
|
Chen J, Li S, Zhang Y, Wang W, Zhang X, Zhao Y, Wang Y, Bi H. A Reloadable Self-Healing Hydrogel Enabling Diffusive Transport of C-Dots Across Gel-Gel Interface for Scavenging Reactive Oxygen Species. Adv Healthc Mater 2017; 6. [PMID: 28945014 DOI: 10.1002/adhm.201700746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/09/2017] [Indexed: 12/20/2022]
Abstract
While reloadable drug delivery platforms are highly prized for the treatment of a broad spectrum of diseases, the gel-gel interface between hydrogels hinders the intergel diffusive transport of drugs and thus limits the application of hydrogels as reloadable depots. Here, this study reports the circumvention of this barrier by employing a self-healing hydrogel prepared from N-carboxyethyl chitosan and sodium alginate dialdehyde, which are cross-linked via a reversible Schiff base linkage. The injectable and bioadhesive hydrogel shows a rapid gelation time of 47 s. The dynamic self-healing process enables the efficient diffusive transport of carbon quantum dots (C-dots) into an adjacent hydrogel, and thus, the C-dots can be used to scavenge reactive oxygen species from a remote inflammation site. Specifically, the diffusive transport of the C-dots in the self-healing hydrogel after three sequential reloading steps is sevenfold greater than that in the non-self-healing counterpart. In vivo, hematoxylin and eosin staining of the murine skin at the injection site shows no apparent symptoms of inflammation in the group treated with the reloadable self-healing hydrogel. The current strategy represents a promising and straightforward route for the design of a reloadable drug delivery system for future use in clinical application.
Collapse
Affiliation(s)
- Jing Chen
- College of Chemistry and Chemical Engineering; Anhui University; Hefei 230601 China
- School of Life Sciences; Hefei Normal University; Hefei 230601 China
| | - Shuya Li
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Ye Zhang
- College of Chemistry and Chemical Engineering; Anhui University; Hefei 230601 China
| | - Wei Wang
- School of Life Sciences; Hefei Normal University; Hefei 230601 China
| | - Xiang Zhang
- College of Chemistry and Chemical Engineering; Anhui University; Hefei 230601 China
| | - Yangyang Zhao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Yucai Wang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Hong Bi
- College of Chemistry and Chemical Engineering; Anhui University; Hefei 230601 China
| |
Collapse
|
119
|
AbdulSalam SF, Gurjar PN, Zhu H, Liu J, Johnson ES, Kadekaro AL, Landero‐Figueroa J, Merino EJ. Self‐Cyclizing Antioxidants to Prevent DNA Damage Caused by Hydroxyl Radical. Chembiochem 2017; 18:2007-2011. [DOI: 10.1002/cbic.201700341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Safnas F. AbdulSalam
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Purujit N. Gurjar
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Haizhou Zhu
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Jing Liu
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Emma S. Johnson
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Ana Luisa Kadekaro
- Department of Dermatology University of Cincinnati Medical Sciences Building Room 1207A 231 Albert Sabin Way Cincinnati OH 45267-0592 USA
| | - Julio Landero‐Figueroa
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| | - Edward J. Merino
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati OH 45221 USA
| |
Collapse
|
120
|
|
121
|
Sikkema WKA, Metzger AB, Wang T, Tour JM. Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold. Surg Neurol Int 2017; 8:84. [PMID: 28607818 PMCID: PMC5461561 DOI: 10.4103/sni.sni_361_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs. METHODS PEG-GNRs were chemically synthesized and chemically and electrically characterized. RESULTS The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials. CONCLUSION A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known.
Collapse
Affiliation(s)
| | | | - Tuo Wang
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, Texas, USA
- The NanoCarbon Center, Rice University, Houston, Texas, USA
- Department of Material Science and Nanoengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
122
|
|
123
|
Jalilov A, Nilewski LG, Berka V, Zhang C, Yakovenko AA, Wu G, Kent TA, Tsai AL, Tour JM. Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic. ACS NANO 2017; 11:2024-2032. [PMID: 28112896 PMCID: PMC5333640 DOI: 10.1021/acsnano.6b08211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/23/2017] [Indexed: 05/27/2023]
Abstract
Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular analogues that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs), will afford important insights into the highly efficient activity of PEG-HCCs and their graphitic analogues. PEGylated perylene diimides (PEGn-PDI) serve as well-defined molecular analogues of PEG-HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEGn-PDIs have two reversible reduction peaks, which are more positive than the oxidation peak of superoxide (O2•-). This is similar to the reduction peak of the HCCs. Thus, as with PEG-HCCs, PEGn-PDIs are also strong single-electron oxidants of O2•-. Furthermore, reduced PEGn-PDI, PEGn-PDI•-, in the presence of protons, was shown to reduce O2•- to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O2•- to O2 and H2O2 by PEG8-PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s-1; the similarity in kinetics further supports that PEG8-PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two-electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically.
Collapse
Affiliation(s)
- Almaz
S. Jalilov
- Department
of Chemistry, The NanoCarbon Center, Department of Materials Science and
NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Lizanne G. Nilewski
- Department
of Chemistry, The NanoCarbon Center, Department of Materials Science and
NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Vladimir Berka
- Hematology,
Internal Medicine, University of Texas Houston
Medical School, Houston, Texas 77030, United
States
| | - Chenhao Zhang
- Department
of Chemistry, The NanoCarbon Center, Department of Materials Science and
NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrey A. Yakovenko
- Argonne
National Laboratory, X-ray Science Division,
Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Gang Wu
- Hematology,
Internal Medicine, University of Texas Houston
Medical School, Houston, Texas 77030, United
States
| | - Thomas A. Kent
- Department
of Neurology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Translational Research in Inflammatory Diseases, Michel E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- Hematology,
Internal Medicine, University of Texas Houston
Medical School, Houston, Texas 77030, United
States
| | - James M. Tour
- Department
of Chemistry, The NanoCarbon Center, Department of Materials Science and
NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
124
|
Liu L, Zhao H, Shi L, Lan M, Zhang H, Yu C. Enzyme- and metal-free electrochemical sensor for highly sensitive superoxide anion detection based on nitrogen doped hollow mesoporous carbon spheres. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
125
|
Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. J Am Chem Soc 2017; 139:856-862. [PMID: 27997170 PMCID: PMC5752099 DOI: 10.1021/jacs.6b11013] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanotechnology-mediated antioxidative therapy is emerging as a novel strategy for treating a myriad of important diseases through scavenging excessive reactive oxygen and nitrogen species (RONS), a mechanism critical in disease development and progression. However, similar to antioxidative enzymes, currently studied nanoantioxidants have demonstrated scavenging activity to specific RONS, and sufficient antioxidative effects against multiple RONS generated in diseases remain elusive. Here we propose to develop bioinspired melanin nanoparticles (MeNPs) for more potent and safer antioxidative therapy. While melanin is known to function as a potential radical scavenger, its antioxidative mechanisms are far from clear, and its applications for the treatment of RONS-associated diseases have yet to be well-explored. In this study, we provide for the first time exhaustive characterization of the activities of MeNPs against multiple RONS including O2•-, H2O2, •OH, •NO, and ONOO-, the main toxic RONS generated in diseases. The potential of MeNPs for antioxidative therapy has also been evaluated in vitro and in a rat model of ischemic stroke. In addition to the broad defense against these RONS, MeNPs can also attenuate the RONS-triggered inflammatory responses through suppressing the expression of inflammatory mediators and cytokines. In vivo results further demonstrate that these unique multi-antioxidative, anti-inflammatory, and biocompatible features of MeNPs contribute to their effective protection of ischemic brains with negligible side effects.
Collapse
Affiliation(s)
- Yanlan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kelong Ai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Askhatova
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
126
|
Ge C, Fang G, Shen X, Chong Y, Wamer WG, Gao X, Chai Z, Chen C, Yin JJ. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS NANO 2016; 10:10436-10445. [PMID: 27934089 DOI: 10.1021/acsnano.6b06297] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To develop nanomaterials as artificial enzymes, it is necessary to better understand how their physicochemical properties affect their enzyme-like activities. Although prior research has demonstrated that nanomaterials exhibit tunable enzyme-like activities depending on their size, structure, and composition, few studies have examined the effect of surface facets, which determine surface energy or surface reactivity. Here, we use electron spin-resonance spectroscopy to report that lower surface energy {111}-faceted Pd octahedrons have greater intrinsic antioxidant enzyme-like activity than higher surface energy {100}-faceted Pd nanocubes. Our in vitro experiments found that those same Pd octahedrons are more effective than Pd nanocubes at scavenging reactive oxygen species (ROS). Those reductions in ROS preserve the homogeneity of mitochondrial membrane potential and attenuate damage to important biomolecules, thereby allowing a substantially higher number of cells to survive oxidative challenges. Our computations of molecular mechanisms for the antioxidant activities of {111}- and {100}-faceted Pd nanocrystals, as well as their activity order, agree well with experimental observations. These findings can guide the design of antioxidant-mimicking nanomaterials, which could have therapeutic or preventative potential against oxidative stress related diseases.
Collapse
Affiliation(s)
- Cuicui Ge
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Ge Fang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, China
| | - Yu Chong
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Wayne G Wamer
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, China
| | - Zhifang Chai
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Chunying Chen
- Key Laboratory For Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| |
Collapse
|
127
|
Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin JJ. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS NANO 2016; 10:8690-8699. [PMID: 27584033 DOI: 10.1021/acsnano.6b04061] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene quantum dots (GQDs), zero-dimensional carbon materials displaying excellent luminescence properties, show great promise for medical applications such as imaging, drug delivery, biosensors, and novel therapeutics. A deeper understanding of how the properties of GQDs interact with biological systems is essential for these applications. Our work demonstrates that GQDs can efficiently scavenge a number of free radicals and thereby protect cells against oxidative damage. However, upon exposure to blue light, GQDs exhibit significant phototoxicity through increasing intracellular reactive oxygen species (ROS) levels and reducing cell viability, attributable to the generation of free radicals under light excitation. We confirm that light-induced formation of ROS originates from the electron-hole pair and, more importantly, reveal that singlet oxygen is generated by photoexcited GQDs via both energy-transfer and electron-transfer pathways. Moreover, upon light excitation, GQDs accelerate the oxidation of non-enzymic anti-oxidants and promote lipid peroxidation, contributing to the phototoxicity of GQDs. Our results reveal that GQDs can display both anti- and pro-oxidant activities, depending upon light exposure, which will be useful in guiding the safe application and development of potential anticancer/antibacterial applications for GQDs.
Collapse
Affiliation(s)
- Yu Chong
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Cuicui Ge
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Ge Fang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Xiaochuan Ma
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Tao Wen
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Wayne G Wamer
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Chunying Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhifang Chai
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry and Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| |
Collapse
|
128
|
Huq R, Samuel ELG, Sikkema WKA, Nilewski LG, Lee T, Tanner MR, Khan FS, Porter PC, Tajhya RB, Patel RS, Inoue T, Pautler RG, Corry DB, Tour JM, Beeton C. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci Rep 2016; 6:33808. [PMID: 27654170 PMCID: PMC5031970 DOI: 10.1038/srep33808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases mediated by a type of white blood cell-T lymphocytes-are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants. Furthermore, the affinity of carbon nanoparticles for specific cell types represents an emerging tactic for cell-targeted therapy. Here, we report that nontoxic poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), known scavengers of the ROS superoxide (O2•-) and hydroxyl radical, are preferentially internalized by T lymphocytes over other splenic immune cells. We use this selectivity to inhibit T cell activation without affecting major functions of macrophages, antigen-presenting cells that are crucial for T cell activation. We also demonstrate the in vivo effectiveness of PEG-HCCs in reducing T lymphocyte-mediated inflammation in delayed-type hypersensitivity and in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results suggest the preferential targeting of PEG-HCCs to T lymphocytes as a novel approach for T lymphocyte immunomodulation in autoimmune diseases without affecting other immune cells.
Collapse
Affiliation(s)
- Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | - Thomas Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fatima S. Khan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul C. Porter
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rajeev B. Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rutvik S. Patel
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Taeko Inoue
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- The NanoCarbon Center, Rice University, Houston, Texas 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
129
|
Kauffman ME, Kauffman MK, Traore K, Zhu H, Trush MA, Jia Z, Li YR. MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:361-370. [PMID: 29721549 DOI: 10.20455/ros.2016.865] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MitoSOX-based assays are widely used to detect mitochondrial reactive oxygen species (ROS), especially superoxide. To this end, 5 μM MitoSOX is commonly used. In this ROS Protocols article, we described the flow cytometric protocol involving the use of various concentrations of MitoSOX (1, 2.5, 5 μM) for detecting mitochondrial ROS in control and mitochondrial DNA-deficient (MD) melanoma B16-F10 cells. We also compared the MitoSOX-based flow cytometry with lucigenin-derived chemiluminometry for their ability to reliably detect the relative differences in mitochondrial ROS formation in the control and MD cells. Our results suggested that 1 μM, rather than the commonly used 5 μM, appeared to be the optimal concentration of MitoSOX for detecting mitochondrial ROS via flow cytometry.
Collapse
Affiliation(s)
- Megan E Kauffman
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | | | - Kassim Traore
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Hong Zhu
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Y Robert Li
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA.,Department of Biology, University of North Carolina, Greensboro, NC 27412, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
130
|
Kent TA, Mandava P. Embracing Biological and Methodological Variance in a New Approach to Pre-Clinical Stroke Testing. Transl Stroke Res 2016; 7:274-83. [PMID: 27018014 PMCID: PMC5425098 DOI: 10.1007/s12975-016-0463-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
High-profile failures in stroke clinical trials have discouraged clinical translation of neuroprotectants. While there are several plausible explanations for these failures, we believe that the fundamental problem is the way clinical and pre-clinical studies are designed and analyzed for heterogeneous disorders such as stroke due to innate biological and methodological variability that current methods cannot capture. Recent efforts to address pre-clinical rigor and design, while important, are unable to account for variability present even in genetically homogenous rodents. Indeed, efforts to minimize variability may lessen the clinical relevance of pre-clinical models. We propose a new approach that recognizes the important role of baseline stroke severity and other factors in influencing outcome. Analogous to clinical trials, we propose reporting baseline factors that influence outcome and then adapting for the pre-clinical setting a method developed for clinical trial analysis where the influence of baseline factors is mathematically modeled and the variance quantified. A new therapy's effectiveness is then evaluated relative to the pooled outcome variance at its own baseline conditions. In this way, an objective threshold for robustness can be established that must be overcome to suggest its effectiveness when expanded to broader populations outside of the controlled environment of the PI's laboratory. The method is model neutral and subsumes sources of variance as reflected in baseline factors such as initial stroke severity. We propose that this new approach deserves consideration for providing an objective method to select agents worthy of the commitment of time and resources in translation to clinical trials.
Collapse
Affiliation(s)
- Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, McNair Campus, 7200 Cambridge St. 9th Floor, MS: BCM609, Houston, TX, 77030, USA.
- Michael E. DeBakey VA Medical Center Stroke Program and Center for Translational Research on Inflammatory Diseases, Houston, TX, USA.
| | - Pitchaiah Mandava
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, McNair Campus, 7200 Cambridge St. 9th Floor, MS: BCM609, Houston, TX, 77030, USA
- Michael E. DeBakey VA Medical Center Stroke Program and Center for Translational Research on Inflammatory Diseases, Houston, TX, USA
| |
Collapse
|
131
|
Jalilov AS, Zhang C, Samuel EG, Sikkema WKA, Wu G, Berka V, Kent TA, Tsai AL, Tour JM. Mechanistic Study of the Conversion of Superoxide to Oxygen and Hydrogen Peroxide in Carbon Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15086-92. [PMID: 27245481 PMCID: PMC4920082 DOI: 10.1021/acsami.6b03502] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrophilic carbon clusters (HCCs) are oxidized carbon nanoparticles with a high affinity for electrons. The electron accepting strength of HCCs, employing the efficient conversion of superoxide (O2(•-)) to molecular oxygen (O2) via single-electron oxidation, was monitored using cyclic voltammetry and electron paramagnetic resonance spectroscopy. We found that HCCs possess O2 reduction reaction (ORR) capabilities through a two-electron process with the formation of H2O2. By comparing results from aprotic solvents to those obtained from ORR activity in aqueous media, we propose a mechanism for the origin of the antioxidant and superoxide dismutase mimetic properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs).
Collapse
Affiliation(s)
- Almaz S. Jalilov
- Department of Chemistry, The NanoCarbon Center, and Department of
Materials Science and NanoEngineering, Rice
University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Chenhao Zhang
- Department of Chemistry, The NanoCarbon Center, and Department of
Materials Science and NanoEngineering, Rice
University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Errol
L. G. Samuel
- Department of Chemistry, The NanoCarbon Center, and Department of
Materials Science and NanoEngineering, Rice
University, 6100 Main
Street, Houston, Texas 77005, United States
| | - William K. A. Sikkema
- Department of Chemistry, The NanoCarbon Center, and Department of
Materials Science and NanoEngineering, Rice
University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Gang Wu
- Hematology, Department
of Internal Medicine, University of Texas
Houston Medical School, Houston, Texas 77030, United States
| | - Vladimir Berka
- Hematology, Department
of Internal Medicine, University of Texas
Houston Medical School, Houston, Texas 77030, United States
| | - Thomas A. Kent
- Center for Translational Research on Inflammatory Diseases,
Michael E. DeBakey VA Medical Center, and Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- Hematology, Department
of Internal Medicine, University of Texas
Houston Medical School, Houston, Texas 77030, United States
- E-mail:
| | - James M. Tour
- Department of Chemistry, The NanoCarbon Center, and Department of
Materials Science and NanoEngineering, Rice
University, 6100 Main
Street, Houston, Texas 77005, United States
- E-mail:
| |
Collapse
|
132
|
Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci Rep 2016; 6:19819. [PMID: 26804739 PMCID: PMC4726267 DOI: 10.1038/srep19819] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
The mortality and morbidity rates of pancreatic cancer are high because of its extremely invasive and metastatic nature. Its lack of symptoms, late diagnosis and chemo–resistance and the ineffective treatment modalities warrant the development of new chemo–therapeutic agents for pancreatic cancer. Agents from medicinal plants have demonstrated therapeutic benefits in various human cancers. Nimbolide, an active molecule isolated from Azadirachta indica, has been reported to exhibit several medicinal properties. This study assessed the anticancer properties of nimbolide against pancreatic cancer. Our data reveal that nimbolide induces excessive generation of reactive oxygen species (ROS), thereby regulating both apoptosis and autophagy in pancreatic cancer cells. Experiments with the autophagy inhibitors 3-methyladenine and chloroquine diphosphate salt and the apoptosis inhibitor z-VAD-fmk demonstrated that nimbolide-mediated ROS generation inhibited proliferation (through reduced PI3K/AKT/mTOR and ERK signaling) and metastasis (through decreased EMT, invasion, migration and colony forming abilities) via mitochondrial-mediated apoptotic cell death but not via autophagy. In vivo experiments also demonstrated that nimbolide was effective in inhibiting pancreatic cancer growth and metastasis. Overall, our data suggest that nimbolide can serve as a potential chemo–therapeutic agent for pancreatic cancer.
Collapse
|
133
|
Ren X, Meng X, Ren J, Tang F. Graphitic carbon nitride nanosheets with tunable optical properties and their superoxide dismutase mimetic ability. RSC Adv 2016. [DOI: 10.1039/c6ra21624b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphitic carbon nitride nanosheets with tunable optical properties are synthesized through a solid-phase method and possess intrinsic superoxide dismutase-like activity.
Collapse
Affiliation(s)
- Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Fangqiong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
134
|
Wang X, Guo W, Hu Y, Wu J, Wei H. Carbon-Based Nanomaterials for Nanozymes. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2016. [DOI: 10.1007/978-3-662-53068-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
135
|
Mu J, Zhao X, Li J, Yang EC, Zhao XJ. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J Mater Chem B 2016; 4:5217-5221. [DOI: 10.1039/c6tb01390b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hierarchical NiO nanoflowers assembled by ultrathin nanoflakes were found to exhibit intrinsic superoxide dismutase-like activity for the first time.
Collapse
Affiliation(s)
- Jianshuai Mu
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Xin Zhao
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Jie Li
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - En-Cui Yang
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Xiao-Jun Zhao
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| |
Collapse
|
136
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
137
|
Nilewski LG, Sikkema WKA, Kent TA, Tour JM. Carbon nanoparticles and oxidative stress: could an injection stop brain damage in minutes? Nanomedicine (Lond) 2015; 10:1677-9. [DOI: 10.2217/nnm.15.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lizanne G Nilewski
- Department of Chemistry & Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - William KA Sikkema
- Department of Chemistry & Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA
| | - James M Tour
- Department of Chemistry & Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|