101
|
Mikkelsen K, Stojanovska L, Polenakovic M, Bosevski M, Apostolopoulos V. Exercise and mental health. Maturitas 2017; 106:48-56. [PMID: 29150166 DOI: 10.1016/j.maturitas.2017.09.003] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
There is a growing body of literature that recognizes the positive effects of exercise on mood states such as anxiety, stress and depression, through physiological and biochemical mechanisms, including endorphins, mitochondria, mammalian target of rapamycin, neurotransmitters and the hypothalamic-pituitary-adrenal axis, and via the thermogenic hypothesis. In addition, psychological mechanisms influence the effects of exercise on mood states, as suggested by both the distraction hypothesis and the self-efficacy hypothesis. Exercise has also been shown to reduce inflammation via several different processes (inflammation, cytokines, toll-like receptors, adipose tissue and via the vagal tone), which can contribute to better health outcomes in people suffering from mood disorders.
Collapse
Affiliation(s)
- Kathleen Mikkelsen
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | | | | | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| |
Collapse
|
102
|
Hainline B, Derman W, Vernec A, Budgett R, Deie M, Dvořák J, Harle C, Herring SA, McNamee M, Meeuwisse W, Lorimer Moseley G, Omololu B, Orchard J, Pipe A, Pluim BM, Ræder J, Siebert C, Stewart M, Stuart M, Turner JA, Ware M, Zideman D, Engebretsen L. International Olympic Committee consensus statement on pain management in elite athletes. Br J Sports Med 2017; 51:1245-1258. [DOI: 10.1136/bjsports-2017-097884] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
|
103
|
BRELLENTHIN ANGELIQUEG, CROMBIE KEVINM, HILLARD CECILIAJ, KOLTYN KELLIF. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels. Med Sci Sports Exerc 2017; 49:1688-1696. [DOI: 10.1249/mss.0000000000001276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
104
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
105
|
Jones MD, Taylor JL, Barry BK. Occlusion of blood flow attenuates exercise-induced hypoalgesia in the occluded limb of healthy adults. J Appl Physiol (1985) 2017; 122:1284-1291. [DOI: 10.1152/japplphysiol.01004.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Animal studies have demonstrated an important role of peripheral mechanisms as contributors to exercise-induced hypoalgesia (EIH). Whether these same mechanisms contribute to EIH in humans is not known. In the current study, pain thresholds were assessed in healthy volunteers ( n = 36) before and after 5 min of high-intensity leg cycling exercise and an equivalent period of quiet rest. Pressure pain thresholds (PPTs) were assessed over the rectus femoris muscle of one leg and first dorsal interosseous muscles (FDIs) of both arms. Blood flow to one arm was occluded by a cuff throughout the 5-min period of exercise (or rest) and postexercise (or rest) assessments. Ratings of pain intensity and pain unpleasantness during occlusion were also measured. Pain ratings during occlusion increased over time (range, 1.5 to 3.5/10, all d > 0.63, P < 0.001) similarly in the rest and exercise conditions ( d < 0.35, P > 0.4). PPTs at all sites were unchanged following rest (range, −1.3% to +0.9%, all d < 0.05, P > 0.51). Consistent with EIH, exercise significantly increased PPT at the leg (+29%, d = 0.69, P < 0.001) and the nonoccluded (+23%, d = 0.56, P < 0.001) and occluded (+8%, d = 0.19, P = 0.003) unexercised arms. However, the increase in the occluded arm was significantly smaller ( d = −1.03, P < 0.001). These findings show that blocking blood flow to a limb during exercise attenuates EIH, suggesting that peripheral factors contribute to EIH in healthy adults. NEW & NOTEWORTHY This is the first demonstration in humans that a factor carried by the circulation and acting at the periphery is important for exercise-induced hypoalgesia. Further understanding of this mechanism may provide new insight to pain relief with exercise as well as potential interactions between analgesic medications and exercise.
Collapse
Affiliation(s)
- Matthew D. Jones
- School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Neuroscience Research Australia, Sydney, Australia
| | - Janet L. Taylor
- School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Neuroscience Research Australia, Sydney, Australia
| | - Benjamin K. Barry
- School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
106
|
Remmers F, Lange MD, Hamann M, Ruehle S, Pape HC, Lutz B. Addressing sufficiency of the CB1 receptor for endocannabinoid-mediated functions through conditional genetic rescue in forebrain GABAergic neurons. Brain Struct Funct 2017; 222:3431-3452. [PMID: 28393261 PMCID: PMC5676814 DOI: 10.1007/s00429-017-1411-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Genetic inactivation of the cannabinoid CB1 receptor gene in different cell types in the brain has previously revealed necessary functions for distinct synaptic plasticity processes and behaviors. Here, we sought to identify CB1 receptor expression sites that are minimally required to reconstruct normal phenotypes. In a CB1-null background, we re-expressed endogenous CB1 receptors in forebrain GABAergic neurons, thereby assessing the sufficiency of CB1 receptors. Depolarization-induced suppression of inhibitory, but not excitatory, transmission was restored in hippocampal and amygdalar circuits. GABAergic CB1 receptors did not convey protection against chemically induced seizures, but prevented the spontaneous mortality observed in CB1 null mutants. Rescue of GABAergic CB1 receptors largely restored normal anxiety-like behavior but improved extinction of learned fear only marginally. This study illustrates that the approach of genetic reconstruction of complex behaviors is feasible. It also revealed distinct degrees of modulation for different emotional behaviors by the GABAergic population of CB1 receptors.
Collapse
MESH Headings
- Amygdala/metabolism
- Amygdala/physiology
- Animals
- Anxiety
- Behavior, Animal
- Extinction, Psychological
- Fear
- GABAergic Neurons/physiology
- Hippocampus/metabolism
- Hippocampus/physiology
- Inhibitory Postsynaptic Potentials
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Prosencephalon/physiology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/physiology
- Seizures/chemically induced
Collapse
Affiliation(s)
- Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| | - Maren D Lange
- Institute of Physiology I, Westfaelische Wilhelms-University, 48149, Muenster, Germany
| | - Martina Hamann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Sabine Ruehle
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfaelische Wilhelms-University, 48149, Muenster, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| |
Collapse
|
107
|
Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast 2017; 2:127-152. [PMID: 29765853 PMCID: PMC5928534 DOI: 10.3233/bpl-160040] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research.
Collapse
Affiliation(s)
- Julia C. Basso
- Center for Neural Science, New York University, New York, NY, USA
| | - Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
108
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
109
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
110
|
Volkow ND, Hampson AJ, Baler RD. Don't Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward. Annu Rev Pharmacol Toxicol 2017; 57:285-308. [DOI: 10.1146/annurev-pharmtox-010716-104615] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Aidan J. Hampson
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Ruben D. Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
111
|
Ruegsegger GN, Booth FW. Running from Disease: Molecular Mechanisms Associating Dopamine and Leptin Signaling in the Brain with Physical Inactivity, Obesity, and Type 2 Diabetes. Front Endocrinol (Lausanne) 2017; 8:109. [PMID: 28588553 PMCID: PMC5440472 DOI: 10.3389/fendo.2017.00109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 01/04/2023] Open
Abstract
Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults fail to perform substantial levels of physical activity needed to improve health. Thus, understanding the molecular factors that stimulate physical activity, and physical inactivity, is imperative for the development of strategies to reduce sedentary behavior and in turn prevent chronic disease. Despite many of the well-known health benefits of physical activity being described, little is known about genetic and biological factors that may influence this complex behavior. The mesolimbic dopamine system regulates motivating and rewarding behavior as well as motor movement. Here, we present data supporting the hypothesis that obesity may mechanistically lower voluntary physical activity levels via dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine activity is a strong contributor to voluntary physical activity behavior. We also summarize findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn contributes to reductions in physical activity that often accompany obesity. Additionally, we highlight examples in which central leptin activity influences physical activity levels in a dopamine-dependent manner. Future elucidation of these mechanisms will help support strategies to increase physical activity levels in obese patients and prevent diseases caused by physical inactivity.
Collapse
Affiliation(s)
- Gregory N. Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- *Correspondence: Frank W. Booth,
| |
Collapse
|
112
|
Thompson Z, Argueta D, Garland T, DiPatrizio N. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiol Behav 2016; 170:141-150. [PMID: 28017680 DOI: 10.1016/j.physbeh.2016.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Donovan Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Nicholas DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
113
|
Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans. Psychoneuroendocrinology 2016; 74:258-268. [PMID: 27689899 DOI: 10.1016/j.psyneuen.2016.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration.
Collapse
|
114
|
Jones MD, Taylor JL, Booth J, Barry BK. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials. Front Physiol 2016; 7:581. [PMID: 27965587 PMCID: PMC5126702 DOI: 10.3389/fphys.2016.00581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 01/10/2023] Open
Abstract
Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1–SEPs; Experiment 2–LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = −0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = −0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = −0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = −0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.
Collapse
Affiliation(s)
- Matthew D Jones
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Janet L Taylor
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - John Booth
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Benjamin K Barry
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
115
|
Biedermann SV, Auer MK, Bindila L, Ende G, Lutz B, Weber-Fahr W, Gass P, Fuss J. Restricted vs. unrestricted wheel running in mice: Effects on brain, behavior and endocannabinoids. Horm Behav 2016; 86:45-54. [PMID: 27664019 DOI: 10.1016/j.yhbeh.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/26/2022]
Abstract
Beneficial effects of voluntary wheel running on hippocampal neurogenesis, morphology and hippocampal-dependent behavior have widely been studied in rodents, but also serious side effects and similarities to stereotypy have been reported. Some mouse strains run excessively when equipped with running wheels, complicating the comparability to human exercise regimes. Here, we investigated how exercise restriction to 6h/day affects hippocampal morphology and metabolism, stereotypic and basal behaviors, as well as the endocannabinoid system in wheel running C57BL/6 mice; the strain most commonly used for behavioral analyses and psychiatric disease models. Restricted and unrestricted wheel running had similar effects on immature hippocampal neuron numbers, thermoregulatory nest building and basal home-cage behaviors. Surprisingly, hippocampal gray matter volume, assessed with magnetic resonance (MR) imaging at 9.4 Tesla, was only increased in unrestricted but not in restricted runners. Moreover, unrestricted runners showed less stereotypic behavior than restricted runners did. However, after blockage of running wheels for 24h stereotypic behavior also increased in unrestricted runners, arguing against a long-term effect of wheel running on stereotypic behavior. Stereotypic behaviors correlated with frontal glutamate and glucose levels assessed by 1H-MR spectroscopy. While acute running increased plasma levels of the endocannabinoid anandamide in former studies in mice and humans, we found an inverse correlation of anandamide with the daily running distance after long-term running. In conclusion, although there are some diverging effects of restricted and unrestricted running on brain and behavior, restricted running does not per se seem to be a better animal model for aerobic exercise in mice.
Collapse
Affiliation(s)
- Sarah V Biedermann
- Department of Neuroimaging, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany; Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Matthias K Auer
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Johannes Fuss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University Medicine Mannheim, University of Heidelberg, 68159 Mannheim, Germany; Institute for Sex Research and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
116
|
Martins DF, Siteneski A, Ludtke DD, Dal-Secco D, Santos ARS. High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A. Mol Neurobiol 2016; 54:5620-5631. [PMID: 27624384 DOI: 10.1007/s12035-016-0095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain. Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive. Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation. The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice. Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect. Furthermore, the peripheral A1 and opioid receptors, but not CB1, are also involved in exercise's effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase. The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.
Collapse
Affiliation(s)
- Daniel F Martins
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil.
| | - Aline Siteneski
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil
| | - Daniela Dal-Secco
- Neurobiology Laboratory of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adair R S Santos
- Neurobiology Laboratory of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
117
|
Brellenthin AG, Koltyn KF. Exercise as an adjunctive treatment for cannabis use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:481-489. [PMID: 27314543 PMCID: PMC5055462 DOI: 10.1080/00952990.2016.1185434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite cannabis being the most widely used illicit substance in the United States, individuals diagnosed with cannabis use disorder (CUD) have few well-researched, affordable treatment options available to them. Although found to be effective for improving treatment outcomes in other drug populations, exercise is an affordable and highly accessible treatment approach that has not been routinely investigated in cannabis users. OBJECTIVES The aim of this paper is to inform the topic regarding exercise's potential as an adjunctive treatment for individuals with CUD. METHODS We reviewed the evidence surrounding cannabis use and its current treatment in the United States, explored the rationale for including exercise in the treatment of substance use disorders (SUDs), and in particular, proposed a biological mechanism (i.e., endocannabinoids (eCBs)) that should be examined when utilizing exercise for the treatment of CUD. RESULTS Cannabis use is widespread and increasing in the United States. Chronic, heavy cannabis use may dysregulate the endogenous cannabinoid system, which has implications for several psychobiological processes that interact with the eCB system such as reward processing and the stress response. Given that exercise is a potent activator of the eCB system, it is mechanistically plausible that exercise could be an optimal method to supplement cessation efforts by reducing psychophysical withdrawal, managing stress, and attenuating drug cravings. CONCLUSION We suggest there is a strong behavioral and physiological rationale to design studies which specifically assess the efficacy of exercise, in combination with other therapies, in treating CUD. Moreover, it will be especially important to include the investigation of psychobiological mechanisms (e.g., eCBs, hippocampal volume), which have been associated with both exercise and SUDs, to examine the broader impact of exercise on behavioral and physiological responses to treatment.
Collapse
Affiliation(s)
| | - Kelli F Koltyn
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
118
|
Kirkwood JS, Broeckling CD, Donahue S, Prenni JE. A novel microflow LC-MS method for the quantitation of endocannabinoids in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:271-277. [PMID: 27592285 DOI: 10.1016/j.jchromb.2016.08.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
Abstract
Endocannabinoids (ECs) represent a class of endogenous, small molecules that bind and activate the G-protein coupled EC receptors. They are involved in a variety of fundamental biological processes and are associated with many disease states. Endocannabinoids are often present in complex matrices and at low concentrations, complicating their measurement. Here we describe a highly sensitive method for the quantitation of the following ECs in serum: N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine, N-palmitoylethanolamine, 2-arachidonoylglycerol, and its inactive isomer 1-arachidonoylglycerol. On-line sample trapping coupled with separation via microflow liquid chromatography and detection by tandem quadrupole mass spectrometry results in the necessary sensitivity for accurate quantitation of ECs in less than 50μL of serum, without the need for off-line solid phase extraction. Limits of quantitation between 1.2 and 13.4pg/mL were achieved, representing a significant increase in sensitivity compared to previous methods using analytical flow rates. An additional benefit of microflow chromatography is the reduction of solvent consumption by more than two orders of magnitude. The experimental utility of the assay is demonstrated through the analysis of serum from hibernating bears to assess seasonal changes in circulating EC concentrations.
Collapse
Affiliation(s)
- Jay S Kirkwood
- Colorado State University, Proteomics and Metabolomics Facility, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Colorado State University, Proteomics and Metabolomics Facility, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Seth Donahue
- Colorado State University, Department of Mechanical Engineering, 1374 Campus Delivery, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Colorado State University, Proteomics and Metabolomics Facility, 2021 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
119
|
McGonigle CE, Nentwig TB, Wilson DE, Rhinehart EM, Grisel JE. β-endorphin regulates alcohol consumption induced by exercise restriction in female mice. Alcohol 2016; 53:51-60. [PMID: 27286936 DOI: 10.1016/j.alcohol.2016.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Animal models have long been used to study the mechanisms underlying the complex association between alcohol and stress. Female mice prevented from running on a home-cage activity wheel increase voluntary ethanol consumption. β-endorphin is an endogenous opioid involved in negatively regulating the stress response and has also been implicated in the risk for excessive drinking. The present study investigates the role of β-endorphin in moderating free-choice consumption of ethanol in response to a blocked activity wheel. Female, transgenic mice with varying levels of the opioid peptide were given daily 2-h access to 20% ethanol with rotations on a running wheel blocked on alternate days. Subjects with low β-endorphin exhibited enhanced stress sensitivity by self-administering larger quantities of ethanol on days when wheel running was prevented. β-endorphin levels did not influence voluntary activity on the running wheel. There were genotypic differences in plasma corticosterone levels as well as corticotropin-releasing hormone mRNA content in multiple brain regions associated with the stress response in these free drinking and running subjects. Susceptibility to stress is enhanced in female mice with low levels of β-endorphin, and better understanding of the role for this opioid in mitigating the response to stressors may aid in the development of interventions and treatments for excessive use of alcohol in women.
Collapse
|
120
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
121
|
Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 2016; 67:198-206. [PMID: 26923850 DOI: 10.1016/j.psyneuen.2016.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment. We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (N-acyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N=38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD.
Collapse
Affiliation(s)
- Sarah Wilker
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
| | - Anett Pfeiffer
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas Elbert
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Emilio Ovuga
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Aniko Krumbholz
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians University, 82131 Munich, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| |
Collapse
|
122
|
Bressan P, Kramer P. Bread and Other Edible Agents of Mental Disease. Front Hum Neurosci 2016; 10:130. [PMID: 27065833 PMCID: PMC4809873 DOI: 10.3389/fnhum.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Perhaps because gastroenterology, immunology, toxicology, and the nutrition and agricultural sciences are outside of their competence and responsibility, psychologists and psychiatrists typically fail to appreciate the impact that food can have on their patients' condition. Here we attempt to help correct this situation by reviewing, in non-technical, plain English, how cereal grains-the world's most abundant food source-can affect human behavior and mental health. We present the implications for the psychological sciences of the findings that, in all of us, bread (1) makes the gut more permeable and can thus encourage the migration of food particles to sites where they are not expected, prompting the immune system to attack both these particles and brain-relevant substances that resemble them, and (2) releases opioid-like compounds, capable of causing mental derangement if they make it to the brain. A grain-free diet, although difficult to maintain (especially for those that need it the most), could improve the mental health of many and be a complete cure for others.
Collapse
Affiliation(s)
- Paola Bressan
- Department of General Psychology, University of PaduaPadova, Italy
| | - Peter Kramer
- Department of General Psychology, University of PaduaPadova, Italy
| |
Collapse
|
123
|
Heijnen S, Hommel B, Kibele A, Colzato LS. Neuromodulation of Aerobic Exercise-A Review. Front Psychol 2016; 6:1890. [PMID: 26779053 PMCID: PMC4703784 DOI: 10.3389/fpsyg.2015.01890] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.
Collapse
Affiliation(s)
- Saskia Heijnen
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Bernhard Hommel
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Armin Kibele
- Institute for Sports and Sport Science, University of Kassel Kassel, Germany
| | - Lorenza S Colzato
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| |
Collapse
|