101
|
Hogan C, Perkins AV. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients 2022; 14:nu14030628. [PMID: 35276987 PMCID: PMC8838303 DOI: 10.3390/nu14030628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Selenium is an essential trace element required for human health, and selenium deficiency has been associated with many diseases. The daily recommended intake of selenium is 60 µg/day for adults, which increases to 65 µg/day for women when pregnant. Selenium is incorporated into the 21st amino acid, selenocysteine (sec), a critical component of selenoproteins that plays an important role in a variety of biological responses such as antioxidant defence, reactive oxygen species (ROS) signalling, formation of thyroid hormones, DNA synthesis and the unfolded protein response in the endoplasmic reticulum (ER). Although 25 selenoproteins have been identified, the role of many of these is yet to be fully characterised. This review summarises the current evidence demonstrating that selenium is essential for a healthy pregnancy and that poor selenium status leads to gestational disorders. In particular, we focus on the importance of the placental selenoproteome, and the role these proteins may play in a healthy start to life.
Collapse
|
102
|
Yang N, Wang Q, Ding B, Gong Y, Wu Y, Sun J, Wang X, Liu L, Zhang F, Du D, Li X. Expression profiles and functions of ferroptosis-related genes in the placental tissue samples of early- and late-onset preeclampsia patients. BMC Pregnancy Childbirth 2022; 22:87. [PMID: 35100981 PMCID: PMC8805258 DOI: 10.1186/s12884-022-04423-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background The accumulation of reactive oxygen species (ROS) resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation that likely plays an important role in PE pathogenesis. This study aimed to investigate the expression profiles and functions of ferroptosis-related genes (FRGs) in early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE). Methods Gene expression data and clinical information were downloaded from the Gene Expression Omnibus (GEO) database. The “limma” R package was used to screen differentially expressed genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the expression of hub FRGs in PE. Results A total of 4215 differentially expressed genes (DEGs) were identified between EOPE and preterm cases while 556 DEGs were found between LOPE and term controls. Twenty significantly different FRGs were identified in EOPE subtypes, while only 3 FRGs were identified in LOPE subtypes. Functional enrichment analysis revealed that the differentially expressed FRGs were mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as the response to hypoxia, iron homeostasis and iron ion binding process. PPI network analysis and verification by RT-qPCR resulted in the identification of the following five FRGs of interest: FTH1, HIF1A, FTL, MAPK8 and PLIN2. Conclusions EOPE and LOPE have distinct underlying molecular mechanisms, and ferroptosis may be mainly implicated in the pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04423-6.
Collapse
Affiliation(s)
- Nana Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Qianghua Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Biao Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Yingying Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Yue Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Junpei Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Xuegu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Lei Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Feng Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Danli Du
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| | - Xiang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
103
|
|
104
|
Preterm Labor, a Syndrome Attributed to the Combination of External and Internal Factors. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
105
|
Chen V, Bo C, Gu W. The roads to ferroptosis under homeostatic versus pathological conditions. Mol Cell Oncol 2021; 8:1970477. [PMID: 34859139 DOI: 10.1080/23723556.2021.1970477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The calcium-independent phospholipase iPLA2β has been identified as a transcriptional target of the tumor suppressor TP53 (or p53). Unlike GPX4 (glutathione peroxidase 4), iPLA2β is not required for normal homeostasis but critical for ferroptosis during stress responses. Our results implicate iPLA2β as an essential regulator in a noncanonical ferroptosis pathway.
Collapse
Affiliation(s)
- Vincent Chen
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Chu Bo
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
106
|
Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, Sferruzzi-Perri AN, Wu X, Ma H, Brännström M, Shao LR, Billig H. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Mol Hum Reprod 2021; 27:gaab067. [PMID: 34850077 DOI: 10.1093/molehr/gaab067] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that link hyperandrogenism and insulin (INS) resistance (HAIR) to the increased miscarriage rate in women with polycystic ovary syndrome (PCOS) remain elusive. Previous studies demonstrate that increased uterine and placental ferroptosis is associated with oxidative stress-induced fetal loss in a pre-clinical PCOS-like rat model. Here, we investigated the efficacy and molecular mechanism of action of the antioxidant N-acetylcysteine (NAC) in reversing gravid uterine and placental ferroptosis in pregnant rats exposed to 5α-dihydrotestosterone (DHT) and INS. Molecular and histological analyses showed that NAC attenuated DHT and INS-induced uterine ferroptosis, including dose-dependent increases in anti-ferroptosis gene content. Changes in other molecular factors after NAC treatment were also observed in the placenta exposed to DHT and INS, such as increased glutathione peroxidase 4 protein level. Furthermore, increased apoptosis-inducing factor mitochondria-associated 2 mRNA expression was seen in the placenta but not in the uterus. Additionally, NAC was not sufficient to rescue DHT + INS-induced mitochondria-morphological abnormalities in the uterus, whereas the same treatment partially reversed such abnormalities in the placenta. Finally, we demonstrated that NAC selectively normalized uterine leukemia inhibitory factor, osteopontin/secreted phosphoprotein 1, progesterone receptor, homeobox A11 mRNA expression and placental estrogen-related receptor beta and trophoblast-specific protein alpha mRNA expression. Collectively, our data provide insight into how NAC exerts beneficial effects on differentially attenuating gravid uterine and placental ferroptosis in a PCOS-like rat model with fetal loss. These results indicate that exogenous administration of NAC represents a potential therapeutic strategy in the treatment of HAIR-induced uterine and placental dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Liang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
107
|
Bagayoko S, Leon-Icaza SA, Pinilla M, Hessel A, Santoni K, Péricat D, Bordignon PJ, Moreau F, Eren E, Boyancé A, Naser E, Lefèvre L, Berrone C, Iakobachvili N, Metais A, Rombouts Y, Lugo-Villarino G, Coste A, Attrée I, Frank DW, Clevers H, Peters PJ, Cougoule C, Planès R, Meunier E. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathog 2021; 17:e1009927. [PMID: 34516571 PMCID: PMC8460005 DOI: 10.1371/journal.ppat.1009927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/23/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Pierre-Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Flavie Moreau
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Aurélien Boyancé
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Emmanuelle Naser
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Cytometry & Imaging Core facility, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Lise Lefèvre
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Céline Berrone
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Nino Iakobachvili
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Arnaud Metais
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Agnès Coste
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
108
|
Ma P, Wang Z, Wang Y, Hou B, Sun J, Tian H, Li B, Shui G, Yang X, Yang X, Qiang G, Liew CW, Du G. Integration of Metabolomics and Transcriptomics Reveals Ketone Body and Lipid Metabolism Disturbance Related to ER Stress in the Liver. J Proteome Res 2021; 20:3875-3888. [PMID: 34270263 DOI: 10.1021/acs.jproteome.1c00167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Once protein synthesis is excessive or misfolded protein becomes aggregated, which eventually overwhelms the capacity of the endoplasmic reticulum (ER), a state named ER stress would be reached. ER stress could affect many tissues, especially the liver, in which nonalcoholic fatty liver disease, liver steatosis, etc. have been reported relative. However, there is still a lack of systematic insight into ER stress in the liver, which can be obtained by integrating metabolomics and transcriptomics of the tissue. Here, tunicamycin was utilized to induce ER stress in C57BL/6N mice. Microarray and untargeted metabolomics were performed to identify the genes and metabolites significantly altered in liver tissues. Surprisingly, apart from the predictable unfolded protein response, liver lipid, arginine, and proline metabolisms were affirmed to be related to ER stress. Also, the ketone body metabolism changed most prominently in response to ER stress, with few studies backing. What is more, succinate receptor 1 (Sucnr1) may be a novel marker and therapeutical target of liver ER stress. In this study, the combination of the metabolome and transcriptome provided reliable information about liver pathological processes, including key relative pathways, potential markers, and targets involved in ER stress of the liver.
Collapse
Affiliation(s)
- Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Yisa Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.,College of Pharmacy, Harbin University of Commerce, Harbin 510006, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qindao 266000, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Li
- LipidALL Technologies Ltd., Changzhou 213125, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xinyu Yang
- Department of Pharmaceutical Analysis, College of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, U.K
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chong Wee Liew
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, 60612 Illinois, United States
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| |
Collapse
|
109
|
Bao Z, Liu Y, Chen B, Miao Z, Tu Y, Li C, Chao H, Ye Y, Xu X, Sun G, Zhao P, Liu N, Liu Y, Wang X, Lam SM, Kagan VE, Bayır H, Ji J. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nat Commun 2021; 12:4220. [PMID: 34244497 PMCID: PMC8270965 DOI: 10.1038/s41467-021-24469-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/18/2021] [Indexed: 01/20/2023] Open
Abstract
Prokineticin-2 (Prok2) is an important secreted protein likely involved in the pathogenesis of several acute and chronic neurological diseases through currently unidentified regulatory mechanisms. The initial mechanical injury of neurons by traumatic brain injury triggers multiple secondary responses including various cell death programs. One of these is ferroptosis, which is associated with dysregulation of iron and thiols and culminates in fatal lipid peroxidation. Here, we explore the regulatory role of Prok2 in neuronal ferroptosis in vitro and in vivo. We show that Prok2 prevents neuronal cell death by suppressing the biosynthesis of lipid peroxidation substrates, arachidonic acid-phospholipids, via accelerated F-box only protein 10 (Fbxo10)-driven ubiquitination, degradation of long-chain-fatty-acid-CoA ligase 4 (Acsl4), and inhibition of lipid peroxidation. Mice injected with adeno-associated virus-Prok2 before controlled cortical impact injury show reduced neuronal degeneration and improved motor and cognitive functions, which could be inhibited by Fbxo10 knockdown. Our study shows that Prok2 mediates neuronal cell deaths in traumatic brain injury via ferroptosis.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinlong Liu
- Department of Neurosurgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Binglin Chen
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zong Miao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiming Tu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengzhan Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, China
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Heath, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.,Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Heath, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
110
|
Chu T, Mouillet JF, Cao Z, Barak O, Ouyang Y, Sadovsky Y. RNA Network Interactions During Differentiation of Human Trophoblasts. Front Cell Dev Biol 2021; 9:677981. [PMID: 34150771 PMCID: PMC8209545 DOI: 10.3389/fcell.2021.677981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
In the human placenta, two trophoblast cell layers separate the maternal blood from the villous basement membrane and fetal capillary endothelial cells. The inner layer, which is complete early in pregnancy and later becomes discontinuous, comprises the proliferative mononuclear cytotrophoblasts, which fuse together and differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight regulation of this differentiation process is critical for the proper development and the functional role of the placenta. The molecular mechanisms regulating the fusion and differentiation of trophoblasts during human pregnancy remain poorly understood. To decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed cultured primary human trophoblasts to standard in vitro differentiation conditions or to conditions known to hinder this differentiation process, namely exposure to hypoxia (O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium. Using next generation sequencing technology, we analyzed the differential expression of trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via indirect gene ontology analysis. This study improves our knowledge of the interactions between ncRNAs and mRNAs during trophoblast differentiation and identifies key biological processes that may be impaired in common gestational diseases, such as fetal growth restriction or preeclampsia.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jean-Francois Mouillet
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhishen Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Oren Barak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
111
|
Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell 2021; 56:1363-1393. [PMID: 33945792 DOI: 10.1016/j.devcel.2021.04.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tumors undergo metabolic transformations to sustain uncontrolled proliferation, avoid cell death, and seed in secondary organs. An increased focus on cancer lipid metabolism has unveiled a number of mechanisms that promote tumor growth and survival, many of which are independent of classical cellular bioenergetics. These mechanisms include modulation of ferroptotic-mediated cell death, support during tumor metastasis, and interactions with the cells of the tumor microenvironment. As such, targeting lipid metabolism for anti-cancer therapies is attractive, with recent work on small-molecule inhibitors identifying compounds to target lipid metabolism. Here, we discuss these topics and identify open questions.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Antonino Alejandro Pane
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ali Talebi
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
112
|
Kajiwara K, Beharier O, Chng CP, Goff JP, Ouyang Y, St Croix CM, Huang C, Kagan VE, Hsia KJ, Sadovsky Y. Ferroptosis induces membrane blebbing in placental trophoblasts. J Cell Sci 2021; 135:jcs.255737. [PMID: 33414166 DOI: 10.1242/jcs.255737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated, non-apoptotic form of cell death, characterized by hydroxy-peroxidation of discrete phospholipid hydroperoxides, particularly hydroperoxyl (Hp) forms of arachidonoyl- and adrenoyl-phosphatidylethanolamine, with a downstream cascade of oxidative damage to membrane lipids, proteins and DNA, culminating in cell death. We recently showed that human trophoblasts are particularly sensitive to ferroptosis caused by depletion or inhibition of glutathione peroxidase 4 (GPX4) or the lipase PLA2G6. Here, we show that trophoblastic ferroptosis is accompanied by a dramatic change in the trophoblast plasma membrane, with macro-blebbing and vesiculation. Immunofluorescence revealed that ferroptotic cell-derived blebs stained positive for F-actin, but negative for cytoplasmic organelle markers. Transfer of conditioned medium that contained detached macrovesicles or co-culture of wild-type target cells with blebbing cells did not stimulate ferroptosis in target cells. Molecular modeling showed that the presence of Hp-phosphatidylethanolamine in the cell membrane promoted its cell ability to be stretched. Together, our data establish that membrane macro-blebbing is characteristic of trophoblast ferroptosis and can serve as a useful marker of this process. Whether or not these blebs are physiologically functional remains to be established.
Collapse
Affiliation(s)
- Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan105-8461
| | - Ofer Beharier
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Julie P Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
113
|
Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome. Placenta 2021; 108:32-38. [PMID: 33812183 DOI: 10.1016/j.placenta.2021.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Programmed cell death is a central process in the control of tissue development, organismal physiology, and disease. Ferroptosis is a recently identified form of programmed cell death that is uniquely defined by redox-active iron-dependent hydroxy-peroxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids and a loss of lipid peroxidation repair capacity. This distinctive form of lipotoxic cell death has been recently implicated in multiple human diseases, spanning ischemia-reperfusion heart injury, brain damage, acute kidney injury, cancer, and asthma. Intriguingly, settings that have been associated with ferroptosis are linked to placental physiology and trophoblast injury. Such circumstances include hypoxia-reperfusion during placental development, physiological uterine contractions or pathological changes in placental bed perfusion, the abundance of trophoblastic iron, evidence for lipotoxicity during the pathophysiology of major placental disorders such as preeclampsia, fetal growth restriction, and preterm birth, and reduced glutathione peroxidation capacity and lipid peroxidation repair during placental injury. We recently interrogated placental ferroptosis in placental dysfunction in human and mouse pregnancy, dissected its relevance to placental injury, and validated the role of glutathione peroxidase-4 in guarding placental trophoblasts against ferroptotic injury. We also uncovered a role for the phospholipase PLA2G6 (PNPLA9) in attenuating trophoblast ferroptosis. Here, we summarize current data on trophoblast ferroptosis, and the role of several proteins and microRNAs as regulators of this process. Our text offers insights into new opportunities for regulating ferroptosis as a means for protecting placental trophoblasts against lipotoxic injury.
Collapse
|
114
|
Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid Metabolism and Ferroptosis. BIOLOGY 2021; 10:biology10030184. [PMID: 33801564 PMCID: PMC8000263 DOI: 10.3390/biology10030184] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary Ferroptosis is a type of cell death, which is morphologically and mechanistically distinct from other type of cell death pathways such as apoptosis and necroptosis. Lipid peroxidation is a hallmark of ferroptosis and directly destroys cellular membranes, thereby causing ferroptosis. Since lipid peroxidation, which induces ferroptosis, occurs in polyunsaturated fatty acid on specific phospholipids, various lipid metabolic pathways are involved in lipid peroxidation and ferroptosis. Besides, various metabolic and signaling pathways directly and indirectly regulate lipid peroxidation and ferroptosis. Since ferroptosis is associated with a variety of human diseases such as cancer, myocardial infarction, atherosclerosis, kidney diseases, liver diseases, and neuronal diseases, a better understanding of the regulatory mechanisms of ferroptosis can provide insights and treatment strategies for related diseases. Abstract Ferroptosis is a type of iron-dependent regulated necrosis induced by lipid peroxidation that occurs in cellular membranes. Among the various lipids, polyunsaturated fatty acids (PUFAs) associated with several phospholipids, such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), are responsible for ferroptosis-inducing lipid peroxidation. Since the de novo synthesis of PUFAs is strongly restricted in mammals, cells take up essential fatty acids from the blood and lymph to produce a variety of PUFAs via PUFA biosynthesis pathways. Free PUFAs can be incorporated into the cellular membrane by several enzymes, such as ACLS4 and LPCAT3, and undergo lipid peroxidation through enzymatic and non-enzymatic mechanisms. These pathways are tightly regulated by various metabolic and signaling pathways. In this review, we summarize our current knowledge of how various lipid metabolic pathways are associated with lipid peroxidation and ferroptosis. Our review will provide insight into treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| |
Collapse
|
115
|
Phospholipase iPLA 2β averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 2021; 17:465-476. [PMID: 33542532 PMCID: PMC8152680 DOI: 10.1038/s41589-020-00734-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2β (iPLA2β, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2β averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2β expression and a PD-relevant phenotype. Thus, iPLA2β is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.
Collapse
|
116
|
Metabolic Regulation of Ferroptosis in Cancer. BIOLOGY 2021; 10:biology10020083. [PMID: 33499222 PMCID: PMC7911352 DOI: 10.3390/biology10020083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Ferroptosis is a recently defined nonapoptotic form of cell death that is associated with various human diseases, including cancer. As ferroptosis is caused by an overdose of lipid peroxidation resulting from dysregulation of the cellular antioxidant system, it is inherently closely associated with cellular metabolism. Here, we provide an updated review of the recent studies that have shown mechanisms of metabolic regulation of ferroptosis in the context of cancer. Abstract Ferroptosis is a unique cell death mechanism that is executed by the excessive accumulation of lipid peroxidation in cells. The relevance of ferroptosis in multiple human diseases such as neurodegeneration, organ damage, and cancer is becoming increasingly evident. As ferroptosis is deeply intertwined with metabolic pathways such as iron, cyst(e)ine, glutathione, and lipid metabolism, a better understanding of how ferroptosis is regulated by these pathways will enable the precise utilization or prevention of ferroptosis for therapeutic uses. In this review, we present an update of the mechanisms underlying diverse metabolic pathways that can regulate ferroptosis in cancer.
Collapse
|