101
|
The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol Cell Biol 1992. [PMID: 1569952 DOI: 10.1128/mcb.12.5.2250] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.
Collapse
|
102
|
The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50045-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
103
|
Buermeyer AB, Thompson NE, Strasheim LA, Burgess RR, Farnham PJ. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol Cell Biol 1992; 12:2250-9. [PMID: 1569952 PMCID: PMC364397 DOI: 10.1128/mcb.12.5.2250-2259.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.
Collapse
Affiliation(s)
- A B Buermeyer
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
104
|
Reese J, Katzenellenbogen B. Characterization of a temperature-sensitive mutation in the hormone binding domain of the human estrogen receptor. Studies in cell extracts and intact cells and their implications for hormone-dependent transcriptional activation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50174-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
105
|
Conaway R, Bradsher J, Conaway J. Mechanism of assembly of the RNA polymerase II preinitiation complex. Evidence for a functional interaction between the carboxyl-terminal domain of the largest subunit of RNA polymerase II and a high molecular mass form of the TATA factor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42467-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
106
|
Peterson SR, Dvir A, Anderson CW, Dynan WS. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev 1992; 6:426-38. [PMID: 1547941 DOI: 10.1101/gad.6.3.426] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Isolated transcription complexes contain a protein kinase that phosphorylates the heptapeptide repeats of the carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) large subunit in an apparently promoter-dependent manner. We now show that the essential features of this reaction can be reproduced in a reconstituted system containing three macromolecular components: a fusion protein consisting of the CTD of RNAP II fused to a heterologous DNA-binding domain, an activating DNA fragment containing the recognition sequence for the fusion protein, and a protein kinase that binds nonspecifically to DNA. This kinase closely resembles a previously known DNA-dependent protein kinase. Evidently, the association of the CTD with DNA provides a key signal for phosphorylation. There appears to be no absolute requirement for specific contacts with other DNA-bound transcription factors.
Collapse
Affiliation(s)
- S R Peterson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
107
|
Stone N, Reinberg D. Protein kinases from Aspergillus nidulans that phosphorylate the carboxyl-terminal domain of the largest subunit of RNA polymerase II. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42702-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
108
|
Weinmann R. The basic RNA polymerase II transcriptional machinery. Gene Expr 1992; 2:81-91. [PMID: 1633439 PMCID: PMC6057384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
All genes encoding proteins in eukaryotes are transcribed by RNA polymerase II. The first step in analyzing transcriptional regulation requires understanding the general mechanisms of RNA polymerase II-specific gene transcription. The basal promoter, a template containing a TATA box devoid of upstream regulatory sequences, has been used to identify and characterize the factors which, together with RNA polymerase II, govern transcription in mammalian systems: TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIG, TFIIH, and TFIIJ. Interactions between regulatory transcription factors and basal elements of the transcriptional machinery affect the transcriptional rate in a positive or negative fashion. As these multiple proteins are purified, and their coding sequences are isolated, we come closer to reproducing these processes in vitro with pure components, and thus to elucidating the complex interactions among them.
Collapse
Affiliation(s)
- R Weinmann
- Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104
| |
Collapse
|
109
|
Lu H, Flores O, Weinmann R, Reinberg D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci U S A 1991; 88:10004-8. [PMID: 1946417 PMCID: PMC52855 DOI: 10.1073/pnas.88.22.10004] [Citation(s) in RCA: 257] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The two forms of RNA polymerase II that exist in vivo, phosphorylated (IIO) and nonphosphorylated (IIA), were purified to apparent homogeneity from HeLa cells. The nonphosphorylated form preferentially binds to the preinitiation complex. RNA polymerase II in the complex was converted by a cellular protein kinase to the phosphorylated form.
Collapse
Affiliation(s)
- H Lu
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | | | |
Collapse
|
110
|
|
111
|
Promoter-dependent phosphorylation of RNA polymerase II by a template-bound kinase. Association with transcriptional initiation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92939-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
112
|
Lee JM, Greenleaf AL. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr 1991; 1:149-67. [PMID: 1820212 PMCID: PMC5952209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1991] [Accepted: 05/24/1991] [Indexed: 12/28/2022]
Abstract
We previously purified a yeast protein kinase that specifically hyperphosphorylates the carboxyl-terminal repeat domain (CTD) of RNA polymerase II largest subunit and showed that this CTD kinase consists of three subunits of 58, 38, and 32 kDa. We have now cloned, sequenced, and characterized CTK1, the gene encoding the 58 kDa alpha subunit. The CTK1 gene product contains a central domain homologous to catalytic subunits of other protein kinases, notably yeast CDC28, suggesting that the 58 kDa subunit is catalytic. Cells that carry a disrupted version of the CTK1 gene lack the characterized CTD kinase activity, grow slowly and are cold-sensitive, demonstrating that the CTK1 gene product is essential for CTD kinase activity and normal growth. While ctk1 mutant cells do contain phosphorylated forms of the RNA polymerase II largest subunit, these forms differ from those found in wild type cells, implicating CTK1 as a component of the physiologically significant CTD phosphorylating machinery. As befitting an enzyme with a nuclear function, the N-terminal region of the CTK1 protein contains a nuclear targeting signal.
Collapse
Affiliation(s)
- J M Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
113
|
Chao DM, Young RA. Tailored tails and transcription initiation: the carboxyl terminal domain of RNA polymerase II. Gene Expr 1991; 1:1-4. [PMID: 1820203 PMCID: PMC5952194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D M Chao
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | |
Collapse
|
114
|
Zhang J, Corden JL. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52243-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
115
|
Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52242-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
116
|
|
117
|
Rogalski TM, Golomb M, Riddle DL. Mutant Caenorhabditis elegans RNA polymerase II with a 20,000-fold reduced sensitivity to alpha-amanitin. Genetics 1990; 126:889-98. [PMID: 2076819 PMCID: PMC1204286 DOI: 10.1093/genetics/126.4.889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A doubly mutant ama-1(m118m526) gene results in an RNA polymerase (Rpo) II that is unusually resistant to alpha-amanitin. Rpo II activity in isolated Caenorhabditis elegans cell nuclei is inhibited 50% by alpha-amanitin at a concentration of 150 micrograms/ml, making this enzyme 150 times more resistant to the toxin than Rpo II from the singly mutant allele, ama-1(m118), 20,000 times more resistant than the wild-type Rpo II, and about six times more resistant to amanitin than is Rpo III. It was determined that the SL1 spliced leader precursor is transcribed by Rpo II, and this transcript was used to measure Rpo II activity. The Rpo II activity is unstable in vitro, and the mutant strain has a temperature-sensitive sterile phenotype. The highly resistant double mutant was selected among four million progeny of the mutagenized ama-1(m118) parent by its ability to grow and reproduce in 200 micrograms/ml amanitin in the presence of a permeabilizing agent, Triton X-100.
Collapse
Affiliation(s)
- T M Rogalski
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | |
Collapse
|
118
|
Jess W, Palm P, Evers R, Köck J, Cornelissen AW. Phylogenetic analysis of the RNA polymerases of Trypanosoma brucei, with special reference to class-specific transcription. Curr Genet 1990; 18:547-51. [PMID: 2076555 DOI: 10.1007/bf00327026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have sequenced the genes encoding to largest subunits of the three classes of DNA-dependent RNA polymerases of Trypanosoma brucei. The nucleotide and deduced amino acid sequences were compared and aligned with the corresponding sequences of other eukaryotes. Phylogenetic relationships were subsequently calculated with a distant matrix, a bootstrapped parsimony and a maximum-likelihood method. These independent calculations resulted in trees with very similar topologies. The analyses show that all the largest subunits of T. brucei are evolutionarily distant members within each of the three RNA polymerase classes. An early separation of the trypanosomal subunits from the eukaryotic lineage might form the fundamental basis for the unusual transcription process of this species. Finally, all dendrograms show a separate ramification for the largest subunit of RNA polymerase I, II and III. RNA polymerase II and/or III form a bifurcation with the archaebacterial lineage, RNA polymerase I, however, arises separately from the eubacterial beta' lineage. This suggests that the three eukaryotic RNA polymerase classes are not simply derived by two gene duplications of an ancestral gene with subsequent differentiation.
Collapse
Affiliation(s)
- W Jess
- Max-Planck-Institut für Biologie, Molecular Parasitology Unit, Tübingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
119
|
Wampler SL, Tyree CM, Kadonaga JT. Fractionation of the general RNA polymerase II transcription factors from Drosophila embryos. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45349-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
120
|
Teissere M, Sergi I, Job C, Job D. Analysis of wheat-germ RNA polymerase II by trypsin cleavage. The integrity of the two largest subunits of the enzyme is not mandatory for basal transcriptional activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:913-9. [PMID: 2249702 DOI: 10.1111/j.1432-1033.1990.tb19417.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When wheat-germ RNA polymerase II is subjected to mild proteolytic attack in the presence of trypsin, the resulting form of the enzyme migrates as a single species on electrophoresis in native polyacrylamide gels, with an apparent Mr significantly smaller than that of the native enzyme. Analysis by denaturing gel electrophoresis of the truncated eukaryotic polymerase revealed that the two largest subunits of the native enzyme, i.e. the 220,000-Mr and 140,000-Mr subunits, were cleaved, giving rise to shorter polypeptide chains of Mr 172,800, 155,000, 143,000, 133,800, 125,000 and 115,000. The use of affinity-purified antibodies directed against each of the two large subunits of the native enzyme allowed us to probe for possible precursor/product relationships between the 220,000-Mr and 140,000-Mr subunits of wheat-germ RNA polymerase II and their breakdown products generated in the presence of trypsin. None of the smaller subunits of the plant RNA polymerase II appeared to be sensitive to trypsin attack. The results indicate that the truncated RNA polymerase retained a multimeric structure, and therefore that the proteolyzed largest subunits of the enzyme remained associated with the smaller ones. Furthermore, in transcription of a poly[d(A-T)] template, the catalytic activity of the proteolyzed form of wheat-germ RNA polymerase II was identical to that of the native enzyme. Therefore, the protein domains that can be deleted by the action of trypsin from the two large subunits of the plant transcriptase are not involved in DNA binding and/or nucleotide binding, and do not play an important role in template-directed catalysis of phosphodiester bond formation.
Collapse
Affiliation(s)
- M Teissere
- Centre de Biochimie et de Biologie Moléculaire, Marseille, France
| | | | | | | |
Collapse
|
121
|
Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit. Mol Cell Biol 1990. [PMID: 2398901 DOI: 10.1128/mcb.10.10.5562] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.
Collapse
|
122
|
Scafe C, Chao D, Lopes J, Hirsch JP, Henry S, Young RA. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 1990; 347:491-4. [PMID: 2215664 DOI: 10.1038/347491a0] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The large subunit of RNA polymerase II contains a highly conserved and essential heptapeptide repeat (Pro-Thr-Ser-Pro-Ser-Tyr-Ser) at its carboxy terminus. Saccharomyces cerevisiae cells are inviable if their RNA polymerase II large subunit genes encode fewer than 10 complete heptapeptide repeats; if they encode 10 to 12 complete repeats cells are temperature-sensitive and cold-sensitive, but 13 or more complete repeats will allow wild-type growth at all temperatures. Cells containing C-terminal domains (CTDs) of 10 to 12 complete repeats are also inositol auxotrophs. The phenotypes associated with these CTD mutations are not a consequence of an instability of the large subunit; rather, they seem to reflect a functional deficiency of the mutant enzyme. We show here that partial deletion mutations in RNA polymerase II CTD affect the ability of the enzyme to respond to signals from upstream activating sequences in a subset of promoters in yeast. The number of heptapeptide repeats required for maximal response to signals from these sequences differs from one upstream activating sequence to another. One of the upstream elements that is sensitive to truncations of the CTD is the 17-base-pair site bound by the GAL4 transactivating factor.
Collapse
Affiliation(s)
- C Scafe
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | |
Collapse
|
123
|
Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit. Mol Cell Biol 1990; 10:5562-4. [PMID: 2398901 PMCID: PMC361275 DOI: 10.1128/mcb.10.10.5562-5564.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.
Collapse
|
124
|
Kliewer S, Muchardt C, Gaynor R, Dasgupta A. Loss of a phosphorylated form of transcription factor CREB/ATF in poliovirus-infected cells. J Virol 1990; 64:4507-15. [PMID: 2166827 PMCID: PMC247921 DOI: 10.1128/jvi.64.9.4507-4515.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Host cell RNA synthesis is inhibited by poliovirus infection. We have studied the mechanism of poliovirus-induced inhibition of RNA polymerase II-mediated transcription by using the adenovirus early region 3 (E3) promoter. In vitro transcription from the E3 promoter was severely inhibited in extracts prepared from poliovirus-infected HeLa cells. Four regions in the E3 promoter have been shown to serve as binding sites for cellular transcription factors. These regions contain binding sites for transcription factors NF-1 (site IV), AP-1 (site III), CREB/ATF (site II), and the TATA factor (site I). Binding to these four regions was not significantly altered by poliovirus infection as assayed by DNase I footprinting analysis; furthermore, gel retardation assays failed to reveal dramatic differences in the total amount of CREB/ATF-, AP-1-, and NF-1-binding activity present in mock- or poliovirus-infected cell extracts. Gel retardation assays, however, did reveal significant qualitative differences in the DNA-protein complexes formed with a CREB/ATF-binding site in extracts prepared from poliovirus-infected cells as compared to mock-infected cell extracts. Radioimmunoprecipitation reactions performed with antiserum against CREB/ATF revealed a severe reduction in a phosphorylated form of the protein present in poliovirus-infected cell extracts. However, in vitro kinase reactions demonstrated that mock- and poliovirus-infected cell extracts contained similar levels of CREB/ATF. Expression from the E3 promoter was shown to be activated by CREB/ATF in vivo; this induction was dependent upon the phosphorylation of CREB/ATF. Thus, we propose that poliovirus infection inhibits transcription from the E3 promoter, at least in part, through the dephosphorylation of CREB/ATF.
Collapse
Affiliation(s)
- S Kliewer
- Department of Microbiology and Immunology, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
125
|
Laybourn PJ, Dahmus ME. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38281-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
126
|
Dietrich MA, Prenger JP, Guilfoyle TJ. Analysis of the genes encoding the largest subunit of RNA polymerase II in Arabidopsis and soybean. PLANT MOLECULAR BIOLOGY 1990; 15:207-23. [PMID: 2103447 DOI: 10.1007/bf00036908] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/1990] [Accepted: 04/19/1990] [Indexed: 12/16/2023]
Abstract
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II. The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2-3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3' untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.
Collapse
Affiliation(s)
- M A Dietrich
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
127
|
Zehring WA, Greenleaf AL. The carboxyl-terminal repeat domain of RNA polymerase II is not required for transcription factor Sp1 to function in vitro. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38889-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
128
|
Suzuki M. The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA. Nature 1990; 344:562-5. [PMID: 2181321 DOI: 10.1038/344562a0] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A TANDEM repeat of the sequence Ser-Pro-Thr-Ser-Pro-Ser-Tyr has been found at the C terminus in the largest subunit of RNA polymerase II (refs 1-5) with, for example, 26 units in yeast and 52 in mammals. By removal of this 'tail', it has been shown that 11-23 units are necessary for the normal functioning of the polymerase. The functional role of the repeat is however, unclear, although it has been proposed that it binds to transcription factors. As discussed in an earlier paper, the repeat unit contains two Ser-Pro sequences which seem to be related to a DNA-binding unit found in histones, Ser-Pro-Lys-Lys, and to the Ser-Pro-X-X motif which is often found in gene regulatory proteins and which, it has been proposed, is also a DNA-binding unit. Here, I show that the repeat does indeed bind DNA and present evidence that it does so by the intercalation of tyrosine residues. These experiments involved synthetic peptides containing one or two repeat units. As the sequence Ser-Pro-X-X (where X represents any amino acid) has a strong tendency to assume a special beta-turn, a model of the unit composed of two such beta-turns was made and compared with the structure of the drug Triostin A which is known to intercalate into DNA. Two tyrosine side chains of the repeat overlap well with two quinoxaline rings of the drug and therefore, the model can provide a good explanation of the experimental results.
Collapse
Affiliation(s)
- M Suzuki
- Division of Molecular Physiology, National Institute for Physiological Sciences, Okazak, Japan
| |
Collapse
|
129
|
Thompson NE, Aronson DB, Burgess RR. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39260-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
130
|
The C-terminal domain of the largest subunit of RNA polymerase II and transcription initiation. Mol Cell Biol 1990. [PMID: 2685576 DOI: 10.1128/mcb.9.12.5750] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies specific for the evolutionarily conserved C-terminal heptapeptide repeat domain of the largest subunit of RNA polymerase II inhibited the initiation of transcription from mammalian promoters in vitro. Since these antibodies did not inhibit elongation and randomly initiated transcription, the heptapeptide repeats may function by binding class II transcription initiation factor(s).
Collapse
|
131
|
Matsushima N, Creutz CE, Kretsinger RH. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins 1990; 7:125-55. [PMID: 2139224 DOI: 10.1002/prot.340070204] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Seven proteins each contain 8 to 52 tandem repeats of a unique class of oligopeptide. The consensus peptide for each is rhodopsin Tyr Pro Pro Gln Gly synaptophysin Tyr Gly Pro Gln Gly synexin Tyr Pro Pro Pro Pro Gly gliadin Tyr Pro Pro Pro Gln Pro RNA polymerase II Tyr Ser Pro Thr Ser Pro Ser hordein Phe Pro Gln Gln Pro Gln Gln Pro gluten Tyr Pro Thr Ser Pro Gln Gln Gly Tyr Although there is obvious variation of sequence and of length, the penta- to nonapeptides share an initial Tyr (or Phe) and have high Pro contents and abundant Gly, Gln, and Ser. We have evaluated helical models that both recognize the uniqueness of these sequence repeats and accommodate variations on the basic theme. We have developed a group of related helical models for these proteins with about three oligopeptide repeats per turn of 10-20 A. These models share several common features: Most of the phi dihedral angles are -54 degrees, to accommodate Pro at all positions except the first (Tyr). Except for the beta-turns, most psi dihedral angles are near +140 degrees as found in polyproline. Each oligopeptide has at least one beta-turn; several have two. Some contain a cis-Tyr, Pro peptide bond; a few have a cis-bond plus one beta-turn. Tyr side chains vary from totally exposed to buried within the helices and could move to accommodate either external hydrophobic interactions or phosphorylation. The several related structures seem to be readily interconverted without major change in the overall helical parameters, and therein may lie the key to their functions.
Collapse
Affiliation(s)
- N Matsushima
- Department of Biology, University of Virginia, Charlottesville 22903
| | | | | |
Collapse
|
132
|
Abstract
Two DNA sequence elements are known to recur frequently upstream of eukaryotic polymerase II-transcribed genes. The TATAAA, at position -40, specifies the transcription initiation site. The GGCCAATCT is less frequent around -80. Sequence analysis of upstream regions reveals that the underlined yeast UAS2 consensus sequence, TGATTGGT, is also very frequent at -80 in higher polymerase II-transcribed animal sequences. The underlined CCAAT box and yeast UAS sequences are complementary. Structural analysis suggests some symmetry in their DNA structures. Upstream of the TATAAT-rich region there is an abundance of GC sequences. Analysis of nucleotide tracts indicates that these are preferentially flanked by their complementary nucleotides with a pyrimidine-purine junction, i.e., TTAN, CCGn, CnGG, TnAA. Here, I discuss DNA structural consideration in upstream regions along with protein readout of the major and minor groove information content. These sequence-structure aspects are put in the general context of protein (factors)-DNA (elements) recognition and regulation.
Collapse
Affiliation(s)
- R Nussinov
- Department of Molecular Medicine, Tel Aviv University, Israel
| |
Collapse
|
133
|
Molecular cloning and sequencing of ama-1, the gene encoding the largest subunit of Caenorhabditis elegans RNA polymerase II. Mol Cell Biol 1989. [PMID: 2586513 DOI: 10.1128/mcb.9.10.4119] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genomic sequences that share homology with Rp11215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, have been isolated from the nematode Caenorhabditis elegans. One of these sequences was physically mapped on chromosome IV within a region deleted by the deficiency mDf4, 25 kilobases (kb) from the left deficiency breakpoint. This position corresponds to ama-1 (resistance to alpha-amanitin), a gene shown previously to encode a subunit of RNA polymerase II. Northern (RNA) blotting and DNA sequencing revealed that ama-1 spans 10 kb, is punctuated by 11 introns, and encodes a 5.9-kb mRNA. A cDNA clone was isolated and partially sequenced to confirm the 3' end and several splice junctions. Analysis of the inferred 1,859-residue ama-1 product showed considerable identity with the largest subunit of RNAP II from other organisms, including the presence of a zinc finger motif near the amino terminus, and a carboxyl-terminal domain of 42 tandemly reiterated heptamers with the consensus Tyr Ser Pro Thr Ser Pro Ser. The latter domain was found to be encoded by four exons. In addition, the sequence oriented ama-1 transcription with respect to the genetic map. The second C. elegans sequence detected with the Drosophila probe, named rpc-1, was found to encode a 4.8-kb transcript and hybridized strongly to the gene encoding the largest subunit of RNA polymerase III from yeast, implicating rpc-1 as encoding the analogous peptide in the nematode. By contrast with ama-1, rpc-1 was not deleted by mDf4 or larger deficiencies examined, indicating that these genes are no closer than 150 kb. Genes flanking ama-1, including two collagen genes, also have been identified.
Collapse
|
134
|
Li WB, Bzik DJ, Gu HM, Tanaka M, Fox BA, Inselburg J. An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res 1989; 17:9621-36. [PMID: 2690004 PMCID: PMC335202 DOI: 10.1093/nar/17.23.9621] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have isolated the gene encoding the largest subunit of RNA polymerase II from Plasmodium falciparum. The RPII gene is expressed in the asexual erythrocytic stages of the parasite as a 9 kb mRNA, and is present as a single copy gene located on chromosome 3. The P. falciparum RPII subunit is the largest (2452 amino acids) eukaryotic RPII subunit, and it contains enlarged variable regions that clearly separate and define five conserved regions of the eukaryotic RPII largest subunits. A distinctive carboxyl-terminal domain contains a short highly conserved heptapeptide repeat domain which is bounded on its 5' side by a highly diverged heptapeptide repeat domain, and is bounded on its 3' side by a long carboxyl-terminal extension.
Collapse
Affiliation(s)
- W B Li
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03756
| | | | | | | | | | | |
Collapse
|
135
|
Moyle M, Lee JS, Anderson WF, Ingles CJ. The C-terminal domain of the largest subunit of RNA polymerase II and transcription initiation. Mol Cell Biol 1989; 9:5750-3. [PMID: 2685576 PMCID: PMC363751 DOI: 10.1128/mcb.9.12.5750-5753.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monoclonal antibodies specific for the evolutionarily conserved C-terminal heptapeptide repeat domain of the largest subunit of RNA polymerase II inhibited the initiation of transcription from mammalian promoters in vitro. Since these antibodies did not inhibit elongation and randomly initiated transcription, the heptapeptide repeats may function by binding class II transcription initiation factor(s).
Collapse
Affiliation(s)
- M Moyle
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
136
|
Nonet ML, Young RA. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 1989; 123:715-24. [PMID: 2693207 PMCID: PMC1203883 DOI: 10.1093/genetics/123.4.715] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The largest subunit of RNA polymerase II contains a repeated heptapeptide sequence at its carboxy terminus. Yeast mutants with certain partial deletions of the carboxy-terminal repeat (CTR) domain are temperature-sensitive, cold-sensitive and are inositol auxotrophs. Intragenic and extragenic suppressors of the cold-sensitive phenotype of CTR domain deletion mutants were isolated and studied to investigate the function of this domain. Two types of intragenic suppressing mutations suppress the temperature-sensitivity, cold-sensitivity and inositol auxotrophy of CTR domain deletion mutants. Most intragenic mutations enlarge the repeat domain by duplicating various portions of the repeat coding sequence. Other intragenic suppressing mutations are point mutations in a conserved segment of the large subunit. An extragenic suppressing mutation (SRB2-1) was isolated that strongly suppresses the conditional and auxotrophic phenotypes of CTR domain mutations. The SRB2 gene was isolated and mapped, and an SRB2 partial deletion mutation (srb2 delta 10) was constructed. The srb2 delta 10 mutants are temperature-sensitive, cold-sensitive and are inositol auxotrophs. These phenotypes are characteristic of mutations in genes encoding components of the transcription apparatus. We propose that the SRB2 gene encodes a factor that is involved in RNA synthesis and may interact with the CTR domain of the large subunit of RNA polymerase II.
Collapse
Affiliation(s)
- M L Nonet
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
137
|
Payne JM, Laybourn PJ, Dahmus ME. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47159-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
138
|
Bird DM, Riddle DL. Molecular cloning and sequencing of ama-1, the gene encoding the largest subunit of Caenorhabditis elegans RNA polymerase II. Mol Cell Biol 1989; 9:4119-30. [PMID: 2586513 PMCID: PMC362490 DOI: 10.1128/mcb.9.10.4119-4130.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two genomic sequences that share homology with Rp11215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, have been isolated from the nematode Caenorhabditis elegans. One of these sequences was physically mapped on chromosome IV within a region deleted by the deficiency mDf4, 25 kilobases (kb) from the left deficiency breakpoint. This position corresponds to ama-1 (resistance to alpha-amanitin), a gene shown previously to encode a subunit of RNA polymerase II. Northern (RNA) blotting and DNA sequencing revealed that ama-1 spans 10 kb, is punctuated by 11 introns, and encodes a 5.9-kb mRNA. A cDNA clone was isolated and partially sequenced to confirm the 3' end and several splice junctions. Analysis of the inferred 1,859-residue ama-1 product showed considerable identity with the largest subunit of RNAP II from other organisms, including the presence of a zinc finger motif near the amino terminus, and a carboxyl-terminal domain of 42 tandemly reiterated heptamers with the consensus Tyr Ser Pro Thr Ser Pro Ser. The latter domain was found to be encoded by four exons. In addition, the sequence oriented ama-1 transcription with respect to the genetic map. The second C. elegans sequence detected with the Drosophila probe, named rpc-1, was found to encode a 4.8-kb transcript and hybridized strongly to the gene encoding the largest subunit of RNA polymerase III from yeast, implicating rpc-1 as encoding the analogous peptide in the nematode. By contrast with ama-1, rpc-1 was not deleted by mDf4 or larger deficiencies examined, indicating that these genes are no closer than 150 kb. Genes flanking ama-1, including two collagen genes, also have been identified.
Collapse
Affiliation(s)
- D M Bird
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | |
Collapse
|
139
|
Lazard D, Fernández-Tomás C, Gariglio P, Weinmann R. Modification of an adenovirus major late promoter-binding factor during poliovirus infection. J Virol 1989; 63:3858-64. [PMID: 2474675 PMCID: PMC250980 DOI: 10.1128/jvi.63.9.3858-3864.1989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To further characterize the mechanism involved in poliovirus-induced inhibition of HeLa cells mRNA synthesis, in vitro formation of DNA-protein complexes between nuclear upstream stimulatory transcription factor (USF) and the adenovirus type 2 major late promoter upstream promoter element (UPE; located between -45 and -65 base pairs) was studied. Using the gel shift assay, we found differences between the UPE-protein complex formed with partially purified nuclear extracts from poliovirus-infected HeLa cells and that obtained in the presence of mock-infected extracts. Formation of the modified UPE-USF complex coincided with virus-induced inhibition of host cell RNA synthesis in vivo and with a less efficient in vitro transcriptional activity of the nuclear extracts from infected cells. Furthermore, using a cross-linking protocol, we found that the host 46-kilodalton UPE-binding USF factor was severely diminished and that a virus-induced or -modified 50-kilodalton polypeptide appeared to be specifically bound to the UPE template.
Collapse
Affiliation(s)
- D Lazard
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F
| | | | | | | |
Collapse
|
140
|
Guilfoyle TJ. A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase II. THE PLANT CELL 1989; 1:827-836. [PMID: 2535525 PMCID: PMC159820 DOI: 10.1105/tpc.1.8.827] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase IIA has been partially purified and characterized. The kinase has a native molecular weight of about 200 kilodaltons. This kinase utilizes Mg2+ and ATP and transfers about 20 phosphates to the heptapeptide repeats Pro-Thr-Ser-Pro-Ser-Tyr-Ser in the carboxyl-terminal domain of the 220-kilodalton subunit of soybean RNA polymerase II. This phosphorylation results in a mobility shift of the 220-kilodalton subunits of a variety of eukaryotic RNA polymerases to polypeptides ranging in size from greater than 220 kilodaltons to 240 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels. The phosphorylation is highly specific to the heptapeptide repeats since a degraded subunit polypeptide of 180 kilodaltons that lacks the heptapeptide repeats is poorly phosphorylated. Synthetic heptapeptide repeat multimers inhibit the phosphorylation of the 220-kilodalton subunit.
Collapse
Affiliation(s)
- T J Guilfoyle
- Department of Biochemistry, University of Missouri, Columbia, 65211
| |
Collapse
|
141
|
Thompson NE, Steinberg TH, Aronson DB, Burgess RR. Inhibition of in Vivo and in Vitro Transcription by Monoclonal Antibodies Prepared against Wheat Germ RNA Polymerase II That React with the Heptapeptide Repeat of Eukaryotic RNA Polymerase II. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60493-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
142
|
Cisek LJ, Corden JL. Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 1989; 339:679-84. [PMID: 2662013 DOI: 10.1038/339679a0] [Citation(s) in RCA: 214] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Actively transcribing eukaryotic RNA polymerase II is highly phosphorylated on its repetitive carboxyl-terminal domain. We have isolated a protein kinase that phosphorylates serine residues in this repetitive domain. A component of this kinase is cdc2, the product of a cell-cycle control gene previously shown to be a component of M-phase-promoting factor and M-phase-specific histone H1 kinase. This observation suggests a role for the cdc2 protein kinase in transcriptional regulation.
Collapse
Affiliation(s)
- L J Cisek
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
143
|
Evers R, Hammer A, Cornelissen AW. Unusual C-terminal domain of the largest subunit of RNA polymerase II of Crithidia fasciculata. Nucleic Acids Res 1989; 17:3403-13. [PMID: 2726483 PMCID: PMC317783 DOI: 10.1093/nar/17.9.3403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The C-terminal domain of the largest subunit of RNA polymerase II in higher eukaryotes is present in the protozoan parasite Trypanosoma brucei in a strongly modified form. To determine whether this is a general feature of the Kinetoplastida and to determine the role of this domain in RNA polymerase II transcription, we have analysed the C-terminal domain of the distantly related species Crithidia fasciculata. No positional identity of amino acid residues between the C-termini of C. fasciculata and T. brucei can be found. Moreover, both domains lack the heptapeptide repeat structure present in higher eukaryotes. The two domains are, however, very similar in amino acid composition, being rich in acidic residues as well as serine and tryosine. The latter observation is compatible with the concept that in vivo phosphorylation of the C-terminus activates RNA polymerase II.
Collapse
Affiliation(s)
- R Evers
- Max-Planck-Institut für Biologie, Molecular Parisitology Unit, Tübingen, FRG
| | | | | |
Collapse
|
144
|
Kaysen J, Donovan-Peluso M, Acuto S, O'Neill D, Bank A. Regulation of human fetal hemoglobin gene expression. Ann N Y Acad Sci 1989; 554:206-16. [PMID: 2735651 DOI: 10.1111/j.1749-6632.1989.tb22422.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An understanding of the mechanism involved in the regulated expression of the human gamma and beta globin genes requires the detailed definition of the cis-acting DNA sequences and trans-acting protein factors responsible for their developmental stage specific expression. To determine the critical cis-acting elements, hybrid genes containing elements of the gamma and beta globin genes were transfected into K562 cells, a human erythroleukemia line. The regulated expression of the gamma and beta genes was also studied by transferring hybrid genes containing the gamma or beta promoters linked to the neomycin resistance gene (neoR) into erythroid (K562) cells and nonerythroid (Hela) cells. DNA sequences found to be important to the expression of the gamma gene were assayed for the presence of transacting factors by studying the binding of protein factors using the gel mobility shift assay. The results suggest that there are multiple cis-acting elements 5' and 3' to the gamma and beta genes, and perhaps within these genes contributing to their regulation. In addition, there are multiple trans-acting protein factors interacting with these regions which may determine their transcriptional regulation in erythroid cells.
Collapse
Affiliation(s)
- J Kaysen
- Columbia University, College of Physicians and Surgeons, New York, New York
| | | | | | | | | |
Collapse
|
145
|
Lee JM, Greenleaf AL. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc Natl Acad Sci U S A 1989; 86:3624-8. [PMID: 2657724 PMCID: PMC287190 DOI: 10.1073/pnas.86.10.3624] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The unique C-terminal repeat domain (CTD) of the largest subunit (IIa) of eukaryotic RNA polymerase II consists of multiple repeats of the heptapeptide consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The number of repeats ranges from 26 in yeast to 42 in Drosophila to 52 in mouse. The CTD is essential in vivo, but its structure and function are not yet understood. The CTD can be phosphorylated at multiple serine and threonine residues, generating a form of the largest subunit (II0) with markedly reduced mobility in NaDodSO4/polyacrylamide gels. To investigate this extensive phosphorylation, which presumably modulates functional properties of RNA polymerase II, we began efforts to purify a specific CTD kinase. Using CTD-containing fusion proteins as substrates, we have purified a CTD kinase from the yeast Saccharomyces cerevisiae. The enzyme extensively phosphorylates the CTD portion of both the fusion proteins and intact subunit IIa, producing products with reduced electrophoretic mobilities. The properties of the CTD kinase suggest that it is distinct from previously described protein kinases. Analogous activities were also detected in Drosophila and HeLa cell extracts.
Collapse
Affiliation(s)
- J M Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
146
|
Allison LA, Ingles CJ. Mutations in RNA polymerase II enhance or suppress mutations in GAL4. Proc Natl Acad Sci U S A 1989; 86:2794-8. [PMID: 2495535 PMCID: PMC287005 DOI: 10.1073/pnas.86.8.2794] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The activation domains of eukaryotic DNA-binding transcription factors, such as GAL4, may regulate transcription by contacting RNA polymerase II. One potential site on RNA polymerase II for such interactions is the C-terminal tandemly repeated heptapeptide domain in the largest subunit (RPO21). We have changed the number of heptapeptide repeats in this yeast RPO21 C-terminal domain and have expressed these mutant RNA polymerase II polypeptides in yeast cells containing either wild-type or defective GAL4 proteins. Although the number of RPO21 heptapeptide repeats had no effect on the activity of wild-type GAL4, changing the length of the C-terminal domain modified the ability of mutant GAL4 proteins to activate transcription. Shorter or longer RPO21 C-terminal domains enhanced or partially suppressed, respectively, the effects of deletions in the transcriptional-activation domains of GAL4. The same RPO21 mutations also affected transcriptional activation by a GAL4-GCN4 chimera. These data suggest that the activation domains of DNA-binding transcription factors could interact, either directly or indirectly, with the heptapeptide repeats of RNA polymerase II.
Collapse
Affiliation(s)
- L A Allison
- Banting and Best Department of Medical Research, University of Toronto, ON, Canada
| | | |
Collapse
|
147
|
Laybourn PJ, Dahmus ME. Transcription-dependent Structural Changes in the C-terminal Domain of Mammalian RNA Polymerase Subunit IIa/o. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83483-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
148
|
The Major Late Promoter of Adenovirus-2 Is Accurately Transcribed by RNA Polymerases IIO, IIA, and IIB. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94046-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
149
|
Jokerst RS, Weeks JR, Zehring WA, Greenleaf AL. Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:266-75. [PMID: 2496296 DOI: 10.1007/bf00339727] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized RpII215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster. DNA sequencing and nuclease S1 analyses provided the primary structure of this gene, its 7 kb RNA and 215 kDa protein products. The amino-terminal 80% of the subunit harbors regions with strong homology to the beta' subunit of Escherichia coli RNA polymerase and to the largest subunits of other eukaryotic RNA polymerases. The carboxyl-terminal 20% of the subunit is composed of multiple repeats of a seven amino acid consensus sequence, Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The homology domains, as well as the unique carboxyl-terminal structure, are considered in the light of current knowledge of RNA polymerase II and the properties of its largest subunit. Additionally, germline transformation demonstrated that a 9.4 kb genomic DNA segment containing the alpha-amanitin-resistant allele, RpII215C4, includes all sequences required to produce amanitin-resistant transformants.
Collapse
Affiliation(s)
- R S Jokerst
- Biochemistry Department, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
150
|
|