101
|
Misra V, Walter S, Yang P, Hayes S, O'Hare P. Conformational alteration of Oct-1 upon DNA binding dictates selectivity in differential interactions with related transcriptional coactivators. Mol Cell Biol 1996; 16:4404-13. [PMID: 8754841 PMCID: PMC231439 DOI: 10.1128/mcb.16.8.4404] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
VP16 (termed VP16-H here) of herpes simplex virus (HSV) belongs to a family of related regulatory proteins which includes VP16-B of bovine herpesvirus (BHV). We show that VP16-B, while also being a powerful transactivator of transcription dependent on Oct-1 binding sites in its target promoters, has virtually no activity on a defined VP16-H-responsive, octamer-containing target promoter. While Oct-1 binds equally well to the VP16-B-responsive and -nonresponsive sites, VP16-B interacts with Oct-1 only when Oct-1 is bound to the BHV octamer site and not when it is bound to the HSV site. We show from the analysis of chimeric proteins that the ability of VP16-B to discriminate between the Oct-1 forms depends on features of its N-terminal region. We also show from an analysis of chimeric DNA motifs that sequences that lie 3' to the POU domain-contacting region of the HSV octamer site play a role in making it unresponsive to VP16-B. Finally, we show by high-resolution hydroxyl radical footprint analysis that the conformation of Oct-l is different on the two sites. These results augment our previous report on an allosteric effect of DNA signals on the conformation of bound proteins and indicate that different conformations of the same DNA binding protein can be recognized selectively by related members of interacting regulatory proteins. The possible implications of our observations for selective gene regulation by Oct-1, a ubiquitous transcription factor, and other multimember transcription families are discussed.
Collapse
Affiliation(s)
- V Misra
- Saskatchewan Health Services Utilization and Research Commission, Canada
| | | | | | | | | |
Collapse
|
102
|
Haviv I, Vaizel D, Shaul Y. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J 1996; 15:3413-20. [PMID: 8670843 PMCID: PMC451905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The X protein of hepatitis B virus (HBV) coactivates activators bearing potent (mostly acidic) activation domains. Here, we investigated the molecular mechanisms of this coactivation. We show that pX interacts with general transcription factors TFIIB and TFIIH, as well as with the potent activation domain of VP16. TFIIB interacts with both pX and VP16 simultaneously. In addition, the RNA polymerase II enzyme itself binds to pX. By reducing the activity of cellular coactivators, through squelching, we intensify the dependence of the activator on pX-mediated coactivation. Squelching is essentially diminished in the presence of pX, both in vivo and in vitro. The target of pX in this activity is the template-bound activator, and not the squelcher. Furthermore, by following transcription in a TAF-deprived reaction, we demonstrate absolute dependence of the activator on the activity of pX. We propose that pX coactivates transcription by substituting cellular coactivators in activator-preinitiation complex interactions.
Collapse
Affiliation(s)
- I Haviv
- Department of Molecular Genetics and Virology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
103
|
Huang CC, Herr W. Differential control of transcription by homologous homeodomain coregulators. Mol Cell Biol 1996; 16:2967-76. [PMID: 8649408 PMCID: PMC231291 DOI: 10.1128/mcb.16.6.2967] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human herpes simplex virus type 1 (HSV-1) transactivator VP16 and its homolog from bovine herpes-virus 1 (BHV-1) can each recruit the human homeodomain protein Oct-1 into a transcriptional regulatory complex. Here, we show that these two Oct-1 coregulators possess similar, if not identical, homeodomain recognition properties but possess different virus-specific cis-regulatory specificities: the HSV-1 VP-16 protein activates transcription from the HSV-1 VP16 response element, and the BHV-1 VP16 protein activates transcription from the BHV-1 VP16 response element. A distinct 3-bp segment, the D segment, lying 3' of the canonical TAATGARAT motif (where R is a purine) in the VP16 response element is responsible for the differential cis element recognition and transcriptional activation by these two homeodomain coregulators. These results demonstrate how a single homeodomain protein can direct differential transcriptional regulation by selective association with homologous homeodomain coregulators.
Collapse
Affiliation(s)
- C C Huang
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
104
|
Lam Q, Smibert CA, Koop KE, Lavery C, Capone JP, Weinheimer SP, Smiley JR. Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function. EMBO J 1996; 15:2575-81. [PMID: 8665865 PMCID: PMC450190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) virions contain two regulatory proteins that facilitate the onset of the lytic cycle: VP16 activates transcription of the viral immediate-early genes, and vhs triggers shutoff of host protein synthesis and accelerated turnover of cellular and viral mRNAs. VP16 and vhs form a complex in infected cells, raising the possibility of a regulatory link between them. Here we show that viral protein synthesis and mRNA levels undergo a severe decline at intermediate times after infection with a VP16 null mutant, culminating in virtually complete translational arrest. This phenotype was rescued by a transcriptionally incompetent derivative of VP16 that retains vhs binding activity, and was eliminated by inactivating the vhs gene. These results indicate that VP16 dampens vhs activity, allowing HSV mRNAs to persist in infected cells. Further evidence supporting this hypothesis came from the demonstration that a stably transfected cell line expressing VP16 was resistant to host shutoff induced by superinfecting HSV virions. Thus, in addition to its well known function as a transcriptional activator, VP16 stimulates viral gene expression at a post-transcriptional level, by sparing viral mRNAs from degradation by one of the virus-induced host shutoff mechanisms.
Collapse
Affiliation(s)
- Q Lam
- Cancer Research Group, Institute of Molecular Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
105
|
Mittal V, Cleary MA, Herr W, Hernandez N. The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc. Mol Cell Biol 1996; 16:1955-65. [PMID: 8628262 PMCID: PMC231183 DOI: 10.1128/mcb.16.5.1955] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The RNA polymerase II and III human small nuclear RNA promoters have a common basal element, the proximal sequence element, which binds the TATA box-binding protein-containing complex SNAPc. They also contain an enhancer characterized by a highly conserved octamer sequence, which constitutes a binding site for the broadly expressed POU domain transcription factor Oct-1. The POU domain is a bipartite DNA-binding domain consisting of a POU-homeo (POUH) domain and a POU-specific (POUs) domain joined by a flexible linker. Here, we show that the Oct-1 POU domain but not the related Pit-1 POU domain can facilitate the binding of SNAPc to the proximal sequence element, and activate transcription. The effect is probably mediated by protein-protein contacts, and 1 of 30 amino acid differences between the Oct-1 and Pit-1 POUs domains is the key determinant for the differential interaction with SNAPc and the ability to activate transcription. These results show that a function that is the hallmark of activation domains, namely, recruitment of a basal transcription complex resulting in activation of transcription, can be performed by a DNA-binding domain. In this case, subtle changes between activator DNA-binding domains, as subtle as a single amino acid difference, can profoundly affect interaction with the basal transcription machinery.
Collapse
Affiliation(s)
- V Mittal
- Howard Hughes Medical Institute, State University of New York at Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
106
|
Grenfell SJ, Latchman DS, Thomas NS. Oct-1 [corrected] and Oct-2 DNA-binding site specificity is regulated in vitro by different kinases. Biochem J 1996; 315 ( Pt 3):889-93. [PMID: 8645173 PMCID: PMC1217290 DOI: 10.1042/bj3150889] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transcription factors Oct-1 and Oct-2 bind differentially to three octamer binding sequences corresponding to the octamer binding site from the H2B promoter [ATGCTAATAA], a simple TAATGARAT motif, found in herpes simplex virus IE4/5 genes [GCGGTAATGAGAT], and a perfect consensus overlapping octamer/TAATGARAT motif [ATGCTAATGAGAT]. By comparing the effects of protein kinase A, protein kinase C and casein kinase 2 in vitro on the binding of Oct-1 and Oct-2 to the three motifs, we show that the actions of these kinases regulate Oct-1 and Oct-2 DNA binding independently of each other in a binding-site-specific manner. Inhibition of cellular phosphatases also regulate Oct-1 and Oct-2 DNA binding in a binding-site-specific manner. Both kinase and phosphatase activity are important for regulating the DNA binding activity of Oct-1 and Oct-2 because, in the presence of phosphatase inhibitors, protein kinase A attenuates the binding of both Oct-1 and Oct-2 to the octamer binding site but enhances binding when phosphatase inhibitors are omitted. Thus the DNA specificity of Oct-1 and Oct-2 can be regulated in vitro by the action of different kinases.
Collapse
Affiliation(s)
- S J Grenfell
- Department of Haematology, University College London Medical School, U.K
| | | | | |
Collapse
|
107
|
Schmelter J, Knez J, Smiley JR, Capone JP. Identification and characterization of a small modular domain in the herpes simplex virus host shutoff protein sufficient for interaction with VP16. J Virol 1996; 70:2124-31. [PMID: 8642633 PMCID: PMC190049 DOI: 10.1128/jvi.70.4.2124-2131.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus transactivator VP16 and the virion host shutoff protein vhs are viral structural components that direct the activation of immediate-early gene expression and the arrest of host protein synthesis, respectively, during an infection. Recent studies show that VP16 and vhs physically interact with each other in vitro and in infected cells, suggesting that their respective regulatory functions are coupled. In this report, we used the yeast two-hybrid system and affinity chromatography with purified VP16 fusion proteins to precisely map a region in vhs that directs interaction with VP16. Deletion analysis of vhs demonstrated that a 21-amino-acid-long domain spanning residues 310 to 330 (PAAGGTEMRVSWTEILTQQIA) was sufficient for directing complex formation with VP16 in vivo and in vitro when fused to a heterologous protein. Site-directed mutagenesis of this region identified tryptophan 321 as a crucial determinant for interaction with VP16 in vitro and in vivo and additional residues that are important for stable complex formation in vitro. These findings indicate that vhs residues 310 to 330 constitute an independent and modular binding interface that is recognized by VP16.
Collapse
Affiliation(s)
- J Schmelter
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
108
|
Gardner DP, Byrne GW, Ruddle FH, Kappen C. Spatial and temporal regulation of a lacZ reporter transgene in a binary transgenic mouse system. Transgenic Res 1996; 5:37-48. [PMID: 8589738 DOI: 10.1007/bf01979920] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transgenic mouse system is a powerful tool for the study of gene function. However, when the analysis involves genes that are critical for the normal developmental process, the usefulness of transgenic mouse systems is limited (for review see Hanahan, 1989; Westphal and Gruss, 1989; Byrne et al., 1991). This is due to potential transgene interference with development in case of ectopic or high level expression. As a result, establishing permanent transgenic mouse lines expressing these types of genes has proven difficult. To circumvent these difficulties, a binary transgenic mouse system has been established, termed the Multiplex System (Byrne and Ruddle, 1989). This is a two-tiered gene activation system in which expression of the gene of interest occurs only in offspring carrying transgenes encoding both components: transactivator and transresponder. Transactivator lines contain the gene encoding the VP16 protein of herpes simplex virus. Transresponder lines harbour the gene of interest linked to the IE promoter which includes recognition sequences for the VP16 transactivator. Previously, the inducibility of a chloramphenicol acetyltransferase reporter gene in newborn offspring that carried both a transactivator and transresponder transgene (Byrne and Ruddle, 1989) has been shown. Moreover, it has been demonstrated that expression of the VP16 protein was not detrimental to development and that transactivation appeared to be tissue specific. Here, the potential of the system for the expression of transgenes in early mouse embryogenesis was examined, using the Escherichia coli beta-galactosidase gene as a reporter in the transresponder mouse strain. To direct expression of VP16, the murine Hoxc-8 promoter, which is known to be active during early development, was used. Embryos from crosses of transactivators to transresponders were isolated at different stages of development and stained for beta-galactosidase activity. Transactivation, as demonstrated by strong beta-galactosidase staining, could be detected as early as eight days of development. At all stages examined, the pattern of lacZ transresponder gene expression accurately reflected the activity of the Hoxc-8 promoter controlling VP16 expression. It is demonstrated that the Multiplex System can be used to express transresponder transgenes in a spatially and temporally defined manner in multiple cell types early during mouse embryogenesis.
Collapse
Affiliation(s)
- D P Gardner
- Samuel C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
109
|
Hagmann M, Georgiev O, Schaffner W, Douville P. Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons. Nucleic Acids Res 1995; 23:4978-85. [PMID: 8559654 PMCID: PMC307502 DOI: 10.1093/nar/23.24.4978] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Interference with VP16-mediated activation of herpes virus immediate-early (or alpha) genes is thought to be the major cause of establishing viral latency in sensory neurons. This could be brought about by lack of a key activating transcription factor(s) or active repression. In this study we find that sensory neurons express all important components for VP16-mediated alpha gene induction, such as the POU transcription factor Oct-1, host cell factor (HCF) and GABP alpha/beta. However, Oct-1 and GABP alpha/beta are only present at low levels and the VP16-induced complex (VIC) appears different. We do not find protein expression of the transcription factor Oct-2, implicated by others as an alpha gene repressor. The POU factor N-Oct3 (Brn 2 or POU3F2) is also present in sensory neurons and binds viral TAATGARAT motifs with higher affinity than Oct-1, indicating that it may be a candidate repressor for competitive binding to TAATGARAT motifs. When transfected into HeLa cells, where Oct-1 and GABP alpha/beta are highly abundant, N-Oct3 represses model promoters with multimerized TAATGARAT motifs, but fails to repress complete alpha gene promoters. Taken together our findings suggest that modulation of alpha gene promoters could contribute to viral latency when low concentrations of the activating transcription factors Oct-1 and GABP alpha/beta prevail. Our data, however, refute the notion that competing Oct factors are able to block alpha gene transcription to achieve viral latency.
Collapse
Affiliation(s)
- M Hagmann
- Institut für Molekularbiologie II der Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
110
|
Pfisterer P, Zwilling S, Hess J, Wirth T. Functional characterization of the murine homolog of the B cell-specific coactivator BOB.1/OBF.1. J Biol Chem 1995; 270:29870-80. [PMID: 8530384 DOI: 10.1074/jbc.270.50.29870] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
B cell-specific transcriptional promoter activity mediated by the octamer motif requires the Oct1 or Oct2 protein and additional B cell-restricted cofactors. One such cofactor, BOB.1/OBF.1, was recently isolated from human B cells. Here, we describe the isolation and detailed characterization of the murine homolog. Full-length cDNAs and genomic clones were isolated, and the gene structure was determined. Comparison of the deduced amino acids shows 88% sequence identity between mouse and human BOB.1/OBF.1. The NH2-terminal 126 amino acids of BOB.1/OBF.1 are both essential and sufficient for interaction with the POU domains of either Oct1 or Oct2. This protein-protein interaction does not require the simultaneous binding of Oct proteins to DNA, and high resolution footprinting of the Oct-DNA interaction reveals that binding of BOB.1/OBF.1 to Oct1 or Oct2 does not alter the interaction with DNA. BOB.1/OBF.1 can efficiently activate octamer-dependent promoters in fibroblasts; however, it fails to stimulate octamer-dependent enhancer activity. Fusion of subdomains of BOB.1/OBF.1 with the GAL4 DNA binding domain reveals that both NH2- and COOH-terminal domains of BOB.1/OBF.1 contribute to full transactivation function, the COOH-terminal domain is more efficient in this transactivation assay. Consistent with the failure of full-length BOB.1/OBF.1 to stimulate octamer-dependent enhancer elements in non B cells, the GAL4 fusions likewise only stimulate from a promoter-proximal position.
Collapse
Affiliation(s)
- P Pfisterer
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Federal Republic of Germany
| | | | | | | |
Collapse
|
111
|
Mitchell WJ. Neurons differentially control expression of a herpes simplex virus type 1 immediate-early promoter in transgenic mice. J Virol 1995; 69:7942-50. [PMID: 7494307 PMCID: PMC189739 DOI: 10.1128/jvi.69.12.7942-7950.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immediate-early proteins of herpes simplex virus control the cascade of viral gene expression during lytic infection. It is not known which viral or host proteins control the reactivation of the viral genome in latently infected neurons. To determine whether neuronal proteins can regulate a herpes simplex virus immediate-early promoter in vivo, transgenic mice containing the promoter regulatory region of the herpes simplex virus type 1 immediate-early gene (ICP4) fused to the bacterial beta-galactosidase gene were generated. Two lines of mice, in the absence of viral proteins, displayed ICP4 promoter activity in neurons in specific locations in the central nervous system. The anatomic locations of these neurons were the hippocampus, cerebellar cortex, superior colliculus, indusium griseum, mammillary nucleus, cerebral cortex, and the dorsal laminae of the dorsal horns of the spinal cord. Additional subsets of neurons expressed the ICP4 promoter at lower levels; these included trigeminal ganglia and retinas. In a third line of mice, lower levels of expression were present in many of the above-described neurons. Many types of neurons, nearly all nonneuronal cells in the central nervous system, and some non-nervous system tissues were negative. Viral proteins including VP16 are not necessary to induce transcription from the ICP4 promoter in many neurons and some other cell types but may be required in most cells in vivo. An approximately 100-fold-greater number of neurons in the trigeminal ganglia expressed ICP4 promoter activity in newborn mice compared with adults. These data provide direct evidence that host proteins are sufficient to activate a herpes simplex virus immediate-early promoter in neurons in vivo and that a differential expression pattern for this promoter exists within different neuronal phenotypes and between the same neurons in different ages of mice.
Collapse
Affiliation(s)
- W J Mitchell
- Laboratory of Experimental Neuropathology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| |
Collapse
|
112
|
Shaw P, Knez J, Capone JP. Amino acid substitutions in the herpes simplex virus transactivator VP16 uncouple direct protein-protein interaction and DNA binding from complex assembly and transactivation. J Biol Chem 1995; 270:29030-7. [PMID: 7499437 DOI: 10.1074/jbc.270.48.29030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The herpes simplex virus transactivator VP16 directs the assembly of a multicomponent protein-DNA complex that requires the participation of two cellular factors, the POU homeodomain protein Oct-1, which binds independently to response elements, and VCAF-1 (VP16 complex assembly factor; also called HCF, C1), a factor that binds directly to VP16. A number of distinct properties of VP16 have been implicated in the assembly of the VP16-induced complex (VIC). These include its independent association with VCAF-1 and, under appropriate conditions, its ability to bind to DNA or to DNA-bound Oct-1 in the absence of VCAF-1. In order to probe the requirements of these individual interactions in the functional assembly of VIC, we mutated selected charged amino acids in two subdomains of VP16 previously shown to be important in protein-DNA complex formation. Purified VP16 proteins were analyzed for their ability to direct protein-DNA complex formation and to interact directly with VCAF-1. Several classes of mutants that were differentially compromised in VCAF-1 interaction, direct DNA binding, and/or association with DNA-bound Oct-1 were obtained. Interestingly, all of the derivatives were still capable of generating the VIC complex in vitro and activating transcription in vivo. Our findings indicate that the cooperative assembly of functional VP16-containing complexes can occur by pathways that do not necessarily require the prior interaction of VP16 with VCAF-1 or the ability of VP16 to bind directly to DNA or associate with DNA-bound Oct-1.
Collapse
Affiliation(s)
- P Shaw
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
113
|
Elliott G, Mouzakitis G, O'Hare P. VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol 1995; 69:7932-41. [PMID: 7494306 PMCID: PMC189738 DOI: 10.1128/jvi.69.12.7932-7941.1995] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In addition to its function as a powerful transactivator of viral immediate-early transcription, VP16 is an essential component of the herpes simplex virus (HSV) virion. As such, VP16 is introduced into cells, to effect its function in transactivation, as part of the virus tegument. Here we examine the potential for VP16 protein-protein interactions specific to virus-infected cells and show that VP16 copurifies in a highly enriched fraction with a single major polypeptide which we identify as the virus-encoded structural protein VP22. We further show that in vitro-translated VP22 binds specifically to purified VP16. The activation domain of VP16 was required and largely sufficient for this binding. Mutations within this domain, which disrupt its transactivation function, also affected VP22 binding. Furthermore, we show that while VP16 and VP22 showed distinct patterns of compartmentalization in vivo, coexpression of both proteins resulted in a profound reorganization from their normal locations to a novel macromolecular assembly. The colocalization was also dependent on the activation domain of VP16 but required additional determinants within the N terminus. These results are discussed in the context of VP16 regulation of transcription both early in infection during delivery of tegument proteins and at late times during virus assembly.
Collapse
Affiliation(s)
- G Elliott
- Marie Curie Research Institute, Oxted, Surrey, United Kingdom
| | | | | |
Collapse
|
114
|
Abstract
The herpes simplex virus VP16-associated protein HCF is a nuclear host-cell factor that exists as a family of polypeptides encoded by a single gene. The mature HCF polypeptides are amino- and carboxy-terminal fragments of a large approximately 300-kD precursor protein that arise through cleavage at one or more centrally located sites. The sites of cleavage are the HCF repeats, highly conserved 26-amino-acid sequences repeated six times in the HCF precursor protein. The HCF repeat alone is sufficient to induce cleavage of a heterologous protein, and cleavage occurs at a defined site--PPCE/THET--within the HCF repeat. Alanine-scan mutagenesis was used to identify a large 18-amino-acid segment of the HCF repeat that is important to induce cleavage of a heterologous protein. Even though HCF is cleaved, the majority of amino- and carboxy-terminal cleavage products remain tightly, albeit noncovalently, associated. Modulation of this noncovalent association may provide a mechanism for regulating HCF activity. For example, the cleaved products of an alternative mRNA splicing variant of HCF do not remain associated.
Collapse
Affiliation(s)
- A C Wilson
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
115
|
Pomerantz JL, Pabo CO, Sharp PA. Analysis of homeodomain function by structure-based design of a transcription factor. Proc Natl Acad Sci U S A 1995; 92:9752-6. [PMID: 7568211 PMCID: PMC40880 DOI: 10.1073/pnas.92.21.9752] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.
Collapse
Affiliation(s)
- J L Pomerantz
- Center for Cancer Research, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
116
|
Hippenmeyer PJ, Pegg LE. Enhancing expression of recombinant proteins in mammalian cells using the herpesvirus VP16 transactivator. Curr Opin Biotechnol 1995; 6:548-52. [PMID: 7579666 DOI: 10.1016/0958-1669(95)80091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The herpesvirus VP16 transactivator has become a useful tool for facilitating the production of recombinant proteins in cultured mammalian cells. Not only does it afford the rapid isolation of stable high-level producer cell lines, but also VP16-expressing cells have been found to rival COS cells in their ability to express proteins transiently. Some of the most interesting developments have been the expression of heterodimeric receptors and soluble forms of membrane proteins.
Collapse
|
117
|
Kuddus R, Gu B, DeLuca NA. Relationship between TATA-binding protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex formation and repression of transcription. J Virol 1995; 69:5568-75. [PMID: 7637002 PMCID: PMC189411 DOI: 10.1128/jvi.69.9.5568-5575.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The herpes simplex virus (HSV) regulatory protein, infected-cell polypeptide 4 (ICP4), represses the transcription of promoters that have binding sites for ICP4 located near the transcription start site. It also been shown that ICP4 binds such promoter DNA cooperatively with the TATA-binding protein (TBP) and TFIIB to form a tripartite protein-DNA complex (C. Smith, P. Bates, R. Rivera-Gonzales, B. Gu, and N. A. DeLuca, J. Virol. 67:4676-4687, 1993). In this study, we analyzed the effects of position and orientation of the ICP4-binding site relative to the TATA box in the ICP4 promoter on transcriptional repression by ICP4 and on the ability of ICP4 to form tripartite complexes with TBP and TFIIB. The results of theis parallel study provide a strong correlation between tripartite complex formation and repression. Both tripartite-complex formation and transcriptional repression were efficient when the ICP4-binding site was downstream of the TATA box, within a short distance and in proper orientation. In addition, both tripartite-complex formation and repression were partially sensitive to the stereoaxial positioning of the ICP4-binding site relative to the TATA box. As a preliminary characterization of the tripartite complex, circular permutation analysis was performed to assess the distortion of the proximal promoter region in the tripartite complex. As previously reported, both TBP and ICP4 independently could bend DNA and the relative magnitude by which each of these proteins bent DNA in the tripartite complex was preserved. The results of this study suggest that the formation of tripartite complexes on a promoter is part of the mechanism of repression and that simple blocking as a sole result of ICP4 binding is not sufficient for full repression.
Collapse
Affiliation(s)
- R Kuddus
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
118
|
Misra V, Walker S, Hayes S, O'Hare P. The bovine herpesvirus alpha gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. J Virol 1995; 69:5209-16. [PMID: 7636962 PMCID: PMC189350 DOI: 10.1128/jvi.69.9.5209-5216.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In herpes simplex virus (HSV)-infected cells, viral gene expression is initiated when the immediate-early, or alpha, genes are transactivated by the alpha gene trans-inducing factor (alpha TIF), a component of the infecting virion. The protein binds to one or more recognition elements (TAATGARAT) in the promoters of alpha genes via interaction with the cellular proteins Oct-1 and CFF. The alpha TIF of HSV (HSV-alpha TIF) is believed to subsequently accelerate the assembly of the transcription complex by direct contact between its carboxyl-terminal acidic activation domain and at least two components of the transcription apparatus, TAFII40 and TFIIB. Like its HSV counterpart, the alpha TIF of bovine herpesvirus (BHV) (designated BHV-alpha TIF) also transactivates alpha gene promoters and for full activity exhibits a requirement for its extended carboxyl-terminal region. Despite this requirement, there is a notable lack of homology to the carboxyl-terminal acidic activation domain of HSV-alpha TIF. We swapped the amino- and carboxyl-terminal domains of HSV-alpha TIF and BHV-alpha TIF to make chimeric proteins. Using these chimeras, we show that the carboxyl terminus of BHV-alpha TIF is insufficient for transactivation, which requires cooperative determinants in both the amino-terminal and carboxyl-terminal regions of the protein. We have previously shown that the amino-terminal determinant in BHV-alpha TIF displays reduced but significant independent transactivation potential. Interestingly, this amino-terminal determinant appears not to reside in the HSV-alpha TIF, which displays no independent amino-terminal activity. Furthermore, we show that the amino-terminal activation domain of BHV-alpha TIF may be able to act synergistically with the carboxyl-terminal activation domain of HSV-alpha TIF, since a chimeric protein containing both domains appeared to be more efficient at activating transcription than either alpha TIF. In addition, the amino terminus of HSV-alpha TIF could not restore activity when linked to the carboxyl terminus of BHV-alpha TIF, while the amino terminus of BHV-alpha TIF reconstituted an intact protein with potent activation potential. We also show that in fusions with the DNA binding domain of GAL4, full activity requires the entire BHV-alpha TIF, although both amino and carboxyl termini display some activity on their own. In contrast, for HSV-alpha TIF, the carboxyl terminus is sufficient and possibly even more potent than the entire protein, while the amino-terminus is devoid of activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V Misra
- Department of Veterinary Microbiology, W.C.V.M. University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
119
|
Barlev NA, Candau R, Wang L, Darpino P, Silverman N, Berger SL. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J Biol Chem 1995; 270:19337-44. [PMID: 7642611 DOI: 10.1074/jbc.270.33.19337] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RNA polymerase II transcription requires functional interactions between activator proteins bound to upstream DNA sites and general factors bound to the core promoter. Accessory transcription factors, such as adaptors and coactivators, have important, but still unclear, roles in the activation process. We tested physical interactions of the putative adaptor ADA2 with activation domains derived from acidic activator proteins and with certain general transcription factors. ADA2 associated with the herpesvirus VP16 and yeast GCN4 activation domains but not with the activation domain of yeast HAP4, which previously was shown to be independent of ADA2 function in vivo and in vitro. Furthermore, the amino terminus of ADA2 directly interacted with the VP16 activation domain, suggesting that ADA2 provides determinants for interaction between activation domains and the adaptor complex. Both TATA-binding protein (TBP) and TFIIB have previously been shown to interact directly with the VP16 activation domain in vitro (Stringer, K. F., Ingles, C. J., and Greenblatt, J. (1990) Nature 345, 783-786; Lin, Y. S., Ha, I., Maldonado, E., Reinberg, D., and Green, M. R. (1991) Nature 353, 569-571). Interestingly, when binding was tested between VP16 and these general factors in yeast nuclear extracts, both factors interacted with VP16, but only the TBP/VP16 association was dependent on ADA2. In addition, ADA2 physically associated with TBP, but not with TFIIB. These results suggest that the role of ADA2 in transcriptional activation is to promote physical interaction between activation domains and TBP.
Collapse
Affiliation(s)
- N A Barlev
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
120
|
Nakshatri H, Nakshatri P, Currie RA. Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J Biol Chem 1995; 270:19613-23. [PMID: 7642649 DOI: 10.1074/jbc.270.33.19613] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ubiquitous human POU domain protein, Oct-1, and the related B-cell protein, Oct-2, regulate transcription from a variety of eukaryotic genes by binding to a common cis-acting octamer element, 5'-ATTTGCAT-3'. The binding of Oct-1 and Oct-2 to the functionally important lipoprotein lipase (LPL) promoter octamer site was stimulated by the general transcription factor, TFIIB. Comparative analysis of the LPL, histone H2B (H2B), and herpes simplex virus ICPO gene promoter octamer sites revealed that nucleotide sequences within and flanking the octamer sequence determined the degree of TFIIB-mediated stimulation of Oct-1 DNA binding. TFIIB was found to decrease the rate of dissociation of Oct-1 from the LPL octamer site, whereas it increased the rate of association, as well as decreased the rate of dissociation, of Oct-1 from the H2B octamer site. A monoclonal antibody against TFIIB immunoprecipitated a ternary complex containing TFIIB, Oct-1, and the LPL and H2B octamer binding sites. TFIIB did not alter the DNase I footprints generated by Oct-1 on the LPL and H2B promoters. However, Oct-1 on the TATA-binding protein and TFIIB from footprinting the perfect TATA box sequence located 5' of the LPL, NF-Y binding site. In transfection experiments, transcription from the reporters containing the LPL octamer, and either the SV40 or the yeast transcription factor GAL4-dependent enhancers, initiated at a precise position within the octamer sequence. Transcription from reporters containing the H2B octamer and the SV40 enhancer initiated at several positions within and flanking the octamer site, whereas transcription initiated at a precise position within the octamer from reporters with both the H2B octamer and the GAL4-dependent enhancer. These results suggest that octamers and their flanking sequences play an important role in positioning the site of transcription initiation, and that this could be a function of the interaction of Oct-1 with TFIIB.
Collapse
Affiliation(s)
- H Nakshatri
- Laboratory of Gene Regulation, Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
121
|
Moriuchi H, Moriuchi M, Cohen JI. Proteins and cis-acting elements associated with transactivation of the varicella-zoster virus (VZV) immediate-early gene 62 promoter by VZV open reading frame 10 protein. J Virol 1995; 69:4693-701. [PMID: 7609034 PMCID: PMC189274 DOI: 10.1128/jvi.69.8.4693-4701.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein, the homolog of herpes simplex virus type 1 (HSV-1) VP16, is a virion-associated transactivator of the VZV immediate-early (IE) gene 62 (IE62) promoter. VP16 forms a complex with cellular factors (Oct1 and host cell factor [HCF]) and TAATGARAT elements (found in all HSV-1 IE promoter/enhancer sequences) to mediate stimulation of IE transcription. The VZV IE62 promoter also contains three TAATGARAT-like elements. Mutagenesis studies of the VZV IE62 promoter indicated that TAATGARAT-like elements contribute to transactivation of the VZV IE62 promoter by ORF10 protein. Other cis-acting elements such as GA-rich and cyclic AMP-responsive elements were also needed for full transactivation by ORF10 protein. In mobility shift assays, ORF10 protein formed a complex with either of two TAATGARAT-like elements that lack an overlapping octamer-binding motif (octa-/TAATGARAT) but not with a TAATGARAT element with an overlapping octamer-binding motif (octa+/TAATGARAT). In contrast, VP16 formed a high-affinity ternary complex with an octa+/TAATGARAT element and a low-affinity complex with octa-/TAATGARAT elements. Addition of antibodies to ORF10 protein, Oct1, or HCF disrupted the complexes, demonstrating that ORF10 protein interacts with Oct1 and HCF. These results suggest that transactivation of the VZV IE62 gene by ORF10 protein and HSV IE genes by VP16 require similar cellular proteins but distinct cis-acting elements.
Collapse
Affiliation(s)
- H Moriuchi
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
122
|
Herr W, Cleary MA. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 1995; 9:1679-93. [PMID: 7622033 DOI: 10.1101/gad.9.14.1679] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Herr
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
123
|
Kinchington PR, Bookey D, Turse SE. The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. J Virol 1995; 69:4274-82. [PMID: 7769688 PMCID: PMC189166 DOI: 10.1128/jvi.69.7.4274-4282.1995] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Of the five varicella-zoster virus (VZV) open reading frames (ORFs) known to encode proteins which influence viral transcriptional events, two (ORFs 10 and 62) encode proteins associated with the tegument of virus particles, where they may function during the immediate-early events of infection. In this study, antibodies which recognize the products of the three additional VZV ORFs, ORFs 4, 61, and 63, were made and used to characterize their association with virus particles. ORF 4 encoded a 52-kDa polypeptide, and antibodies to ORF 63 reacted with polypeptides of 47 and 28 kDa. Antibodies to ORF 61 recognized heterogeneous polypeptides of 62 to 66 kDa in cells infected with a vaccinia virus recombinant expressing ORF 61 and in VZV-infected melanoma cells but reacted very weakly with polypeptides of VZV-infected human foreskin fibroblasts, suggesting that cell-specific factors were involved in ORF 61 protein accumulation. Analysis of virus particles purified from melanoma cells indicated that a 52-kDa polypeptide from ORF 4 and the 47-kDa polypeptide from ORF 63, but not any from ORF 61, were associated with virus particles. The virion proteins were likely components of the tegument, as they were not solubilized by treatment of virus with mild detergents and were completely resistant to trypsin digestion unless prior envelope solubilization was performed. The products of ORFs 4 and 63 were not found in purified VZV nucleocapsids. These results suggest that forms of the ORF 4- and ORF 63-encoded transcriptional regulatory proteins are also structural and may also have roles in the immediate-early events of infection.
Collapse
Affiliation(s)
- P R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
124
|
Panagiotidis CA, Artandi S, Calame K, Silverstein SJ. Polyamines alter sequence-specific DNA-protein interactions. Nucleic Acids Res 1995; 23:1800-9. [PMID: 7784186 PMCID: PMC306939 DOI: 10.1093/nar/23.10.1800] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polyamines are abundant biogenic cations implicated in many biological processes. Despite a plethora of evidence on polyamine-induced DNA conformational changes, no thorough study of their effects on the activities of sequence-specific DNA binding proteins has been performed. We describe the in vitro effects of polyamines on the activities of purified, representative DNA-binding proteins, and on complex protein mixtures. Polyamines at physiological concentrations enhance the binding of several proteins to DNA (e.g. USF, TFE3, Ig/EBP, NF-IL6, YY1 and ICP-4, a herpes simplex virus gene regulator), but inhibit others (e.g. Oct-1). The degree of enhancement correlates with cationic charge; divalent putrescine is ineffective whereas tetravalent spermine is more potent than trivalent spermidine. Polyamine effects on USF and ICP-4 result from increased rate of complex formation rather than a decreased rate of dissociation. DNAse I footprint analysis indicated that polyamines do not alter DNA-protein contacts. Polyamines also facilitate formation of complexes involving binding of more than one protein on a DNA fragment.
Collapse
Affiliation(s)
- C A Panagiotidis
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
125
|
Baudoux L, Defechereux P, Schoonbroodt S, Merville MP, Rentier B, Piette J. Mutational analysis of varicella-zoster virus major immediate-early protein IE62. Nucleic Acids Res 1995; 23:1341-9. [PMID: 7753624 PMCID: PMC306859 DOI: 10.1093/nar/23.8.1341] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The varicella-zoster virus (VZV) open reading frame 62 encodes an immediate-early protein (IE62) that transactivates expression of various VZV promoters and autoregulates its own expression in transient expression assays. In Vero cells, IE62 was shown to transactivate the expression of all putative immediate-early (IE) and early (E) genes of VZV with an up-regulating effect at low intracellular concentrations. To define the functional domains involved in the regulatory properties of IE62, a large number of in-frame insertions and deletions were introduced into a plasmid-borne copy of the gene encoding IE62. Studies of the regulatory activities of the resultant mutant polypeptides in transient expression assays allowed to delineate protein regions important for repression of its own promoter and for transactivation of a VZV putative immediate-early gene (ORF61) promoter and an early gene (ORF29) promoter. This mutational analysis resulted in the identification of a new functional domain situated at the border between regions 4 and 5 which plays a crucial role in the IE62 regulatory functions. This domain turned out to be very well conserved amongst homologous alphaherpesvirus regulatory proteins and appeared to be rich in bulky hydrophobic and proline residues, similar to the proline-rich region of the CAAT box binding protein CTF-1. By immunofluorescence, a nuclear localization signal has been mapped in region 3.
Collapse
Affiliation(s)
- L Baudoux
- Department of Microbiology, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
126
|
Cleary MA, Herr W. Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain. Mol Cell Biol 1995; 15:2090-100. [PMID: 7891704 PMCID: PMC230436 DOI: 10.1128/mcb.15.4.2090] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA binding by the Oct-1 protein is directed by its POU domain, a bipartite DNA-binding domain made up of a POU-specific (POUS) domain and a POU-homeo (POUH) domain, two helix-turn-helix-containing DNA-binding modules that cooperate in DNA recognition. Although the best-characterized DNA target for Oct-1 binding is the octamer sequence ATGCAAAT, Oct-1 also binds a number of different DNA sequence elements. For example, Oct-1 recognizes a form of the herpes simplex virus VP16-responsive TAATGARAT element, called the (OCTA-)TAATGARAT site, that lacks octamer site similarity. Our studies suggest two mechanisms by which Oct-1 achieves flexible DNA sequence recognition. First, an important arginine found in the Oct-1 POUS domain tolerates substitutions of its base contacts within the octamer site. Second, on the (OCTA-)TAATGARAT site, the POUS domain is located on the side of the POUH domain opposite from where it is located on an octamer site. This flexibility of the Oct-1 POU domain in DNA binding also has an impact on its participation in a multiprotein-DNA complex with VP16. We show that Oct-1 POUS domain residues that contact DNA have different effects on VP16-induced complex formation depending on whether the VP16-responsive element involved has overlapping octamer similarity or not.
Collapse
Affiliation(s)
- M A Cleary
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
127
|
Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J Biol Chem 1995; 270:4387-94. [PMID: 7876203 DOI: 10.1074/jbc.270.9.4387] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alpha/immediate early genes of herpes simplex virus are regulated by the specific assembly of a multiprotein enhancer complex containing the Oct-1 POU domain protein, the viral alpha-transinduction factor alpha TIF, (VP16, ICP25), and the C1 cellular factor. The C1 factor from mammalian cells is a heterogeneous but related set of polypeptides that interact directly with the alpha-transinduction factor to form a heteromeric protein complex. The isolation of cDNAs encoding the polypeptides of the C1 factor suggests that these proteins are proteolytic products of a novel precursor. The sequence of the amino termini of these polypeptide products indicate that the proteins are generated by site-specific cleavages within a reiterated 20-amino acid sequence. Although the C1 factor appears to be ubiquitously expressed, it is localized to subnuclear structures in specific cell types.
Collapse
Affiliation(s)
- T M Kristie
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
128
|
Schwarzenbach H, Newell JW, Matthias P. Involvement of the Ets family factor PU.1 in the activation of immunoglobulin promoters. J Biol Chem 1995; 270:898-907. [PMID: 7822329 DOI: 10.1074/jbc.270.2.898] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The B cell-specific expression of immunoglobulin (Ig) genes is controlled by the concerted action of variable (V) region promoters and intronic or 3' enhancers, all of which are active in a lymphoid-specific manner. A crucial highly conserved element of the V region promoters is the octamer site -ATTTGCAT-, which can be bound by ubiquitous (Oct-1) as well as B cell-specific (Oct-2) factors. Another less conserved element found in many Ig promoters is pyrimidine-rich and has been shown to be functionally important, in particular for those Ig promoters that have only an imperfect octamer site. In this study we have analyzed the factors binding specifically to the pyrimidine-rich motif of the V kappa 19 promoter, a light chain gene promoter with an imperfect octamer site. Using nuclear extracts prepared from B cells, we detected two sets of specific complexes in electrophoretic mobility shift experiments. One complex appears to be ubiquitous but enriched in lymphoid cells and represents the binding of a potentially novel factor with an apparent molecular mass of approximately 50 kDa. The other complex was found only with extracts from pre-B or B cells as well as from a macrophage cell line and appears to be caused by the binding of PU.1, a factor of the Ets family. We show that on this Ig promoter Oct factors (Oct-1 or Oct-2) and PU.1 can bind concomitantly but without synergism. By transfection experiments in non-B cells we demonstrate that PU.1 is indeed able to activate this promoter in concert with Oct-2. Furthermore, we show that PU.1 can bind with varying affinities to the pyrimidine-rich elements of several other Ig promoters. These data suggest a more general role for PU.1 or other members of the Ets family in the activation of Ig promoters.
Collapse
|
129
|
Krady JK, Ward DC. Transcriptional activation by the parvoviral nonstructural protein NS-1 is mediated via a direct interaction with Sp1. Mol Cell Biol 1995; 15:524-33. [PMID: 7799962 PMCID: PMC232005 DOI: 10.1128/mcb.15.1.524] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nonstructural protein NS-1, encoded by the parvovirus minute virus of mice, is a potent regulator of viral gene expression. NS-1 does not bind DNA in a sequence-specific manner, and the mechanism by which it modulates viral promoter function is unclear. We have used Gal4-NS-1 fusion protein constructs to identify and characterize an activating domain encoded within the C-terminal 88 amino acids of NS-1 which competes effectively with the acidic activator domain of the herpes simplex virus VP16 protein. DNA affinity chromatography and immunoprecipitation experiments demonstrate that protein-protein interactions between the transcription factor Sp1 and NS-1 are required to bind NS-1 to promoter DNA in vitro. Cotransfection of Gal4-NS-1 and Sp1-VP16 acidic activator constructs into Drosophila melanogaster Schneider cells, which lack endogenous Sp1, stimulates transcription from a minimal promoter containing five Gal4 binding sites, while single-construct transfections do not. Cotransfection of Schneider cells with wild-type NS-1 and Sp1 constructs activates transcription from a simian virus 40 promoter 10- to 30-fold over that of either construct alone. Thus, Sp1-NS-1 interactions in vivo can stimulate transcription from a heterologous promoter containing Sp1 binding sites.
Collapse
Affiliation(s)
- J K Krady
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
130
|
McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 1995; 9:47-58. [PMID: 7828851 DOI: 10.1101/gad.9.1.47] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The CCAAT-binding factor is a conserved heteromeric transcription factor that binds to CCAAT box-containing upstream activation sites (UASs) within the promoters of numerous eukaryotic genes. The CCAAT-binding factor of Saccharomyces cerevisiae activates the transcription of these genes in response to growth in a nonfermentable carbon source. Previous studies have demonstrated that the HAP2, HAP3, and HAP4 subunits of the yeast CCAAT-binding factor are required for the transcriptional activation of genes containing a CCAAT box. Using the two-hybrid screening method, we have identified an additional component of the CCAAT-binding factor. We present the identification and characterization of a novel gene, HAP5, that encodes an additional subunit of the CCAAT-binding factor required for the assembly and DNA-binding activity of the complex. In a hap5 mutant, we show that CCAAT-binding activity is abolished in vitro. Furthermore, we demonstrate that purified recombinant HAP2, HAP3, and HAP5 are able to reconstitute CCAAT-binding activity in mobility shift analysis. These data suggest that the HAP2/3/5 heterotrimer represents a unique DNA-binding factor in which all three subunits of the complex are absolutely required for DNA-binding activity.
Collapse
Affiliation(s)
- D S McNabb
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | |
Collapse
|
131
|
Wagner EK, Guzowski JF, Singh J. Transcription of the herpes simplex virus genome during productive and latent infection. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 51:123-65. [PMID: 7659774 DOI: 10.1016/s0079-6603(08)60878-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E K Wagner
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
132
|
Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol 1994. [PMID: 7969117 DOI: 10.1128/mcb.14.12.7758] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding how diverse transcription patterns are achieved through common factor binding elements is a fundamental question that underlies much of developmental and cellular biology. One example is provided by the fibroblast growth factor 4 (FGF-4) gene, whose expression is restricted to specific embryonic tissues during development and to undifferentiated embryonal carcinoma cells in tissue culture. Analysis of the cis- and trans-acting elements required for the activity of the previously identified FGF-4 enhancer in F9 embryonal carcinoma cells showed that enhancer function depends on sequences that bind Sp1 and ubiquitous as well as F9-specific octamer-binding proteins. However, sequences immediately upstream of the octamer motif, which conform to a binding site for the high-mobility group (HMG) domain factor family, were also critical to enhancer function. We have identified a novel F9-specific factor, Fx, which specifically recognizes this motif. Fx formed complexes with either Oct-1 or Oct-3 in a template-dependent manner. The ability of different enhancer variants to form the Oct-Fx complexes correlated with enhancer activity, indicating that these complexes play an essential role in transcriptional activation of the FGF-4 gene. Thus, while FGF-4 enhancer function is octamer site dependent, its developmentally restricted activity is determined by the interaction of octamer-binding proteins with the tissue-specific factor Fx.
Collapse
|
133
|
Legendre D, Rommelaere J. Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol 1994; 68:7974-85. [PMID: 7966588 PMCID: PMC237260 DOI: 10.1128/jvi.68.12.7974-7985.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NS-1 gene of the parvovirus minute virus of mice (MVM) (prototype strain, MVMp) was fused in phase with the sequence coding for the DNA-binding domain of the bacterial LexA repressor. The resulting chimeric protein, LexNS-1, was tested for its transcriptional activity by using various target promoters in which multiple LexA operator sequences had been introduced. Under these conditions, NS-1 was shown to stimulate gene expression driven by the modified long terminal repeat promoters (from the retroviruses mouse mammary tumor virus and Rous sarcoma virus) and P38 promoter (from MVMp), indicating that the NS-1 protein is a potent transcriptional activator. It is noteworthy that in the absence of LexA operator-mediated targeting, the genuine mouse mammary tumor virus and Rous sarcoma virus promoters were inhibited by NS-1. Together these data strongly suggest that NS-1 contains an activating region able to induce promoters with which this protein interacts but also to repress transcription from nonrecognized promoters by a squelching mechanism similar to that described for other activators. Deletion mutant analysis led to the identification of an NS-1 domain that exhibited an activating potential comparable to that of the whole polypeptide when fused to the DNA-binding region of LexA. This domain is localized in the carboxy-terminal part of NS-1 and corresponds to one of the two regions previously found to be responsible for toxicity. These results argue for the involvement of the regulatory functions of NS-1 in the cytopathic effect of this parvovirus product.
Collapse
Affiliation(s)
- D Legendre
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode St Genèse, Belgium
| | | |
Collapse
|
134
|
Dailey L, Yuan H, Basilico C. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol 1994; 14:7758-69. [PMID: 7969117 PMCID: PMC359316 DOI: 10.1128/mcb.14.12.7758-7769.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Understanding how diverse transcription patterns are achieved through common factor binding elements is a fundamental question that underlies much of developmental and cellular biology. One example is provided by the fibroblast growth factor 4 (FGF-4) gene, whose expression is restricted to specific embryonic tissues during development and to undifferentiated embryonal carcinoma cells in tissue culture. Analysis of the cis- and trans-acting elements required for the activity of the previously identified FGF-4 enhancer in F9 embryonal carcinoma cells showed that enhancer function depends on sequences that bind Sp1 and ubiquitous as well as F9-specific octamer-binding proteins. However, sequences immediately upstream of the octamer motif, which conform to a binding site for the high-mobility group (HMG) domain factor family, were also critical to enhancer function. We have identified a novel F9-specific factor, Fx, which specifically recognizes this motif. Fx formed complexes with either Oct-1 or Oct-3 in a template-dependent manner. The ability of different enhancer variants to form the Oct-Fx complexes correlated with enhancer activity, indicating that these complexes play an essential role in transcriptional activation of the FGF-4 gene. Thus, while FGF-4 enhancer function is octamer site dependent, its developmentally restricted activity is determined by the interaction of octamer-binding proteins with the tissue-specific factor Fx.
Collapse
Affiliation(s)
- L Dailey
- Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
135
|
Andersen B, Rosenfeld MG. Pit-1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43877-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
136
|
Ralph WM, Cabatingan MS, Schaffer PA. Induction of herpes simplex virus type 1 immediate-early gene expression by a cellular activity expressed in Vero and NB41A3 cells after growth arrest-release. J Virol 1994; 68:6871-82. [PMID: 7933067 PMCID: PMC237122 DOI: 10.1128/jvi.68.11.6871-6882.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infected cell protein 0 (ICP0), a major immediate-early regulatory protein of herpes simplex virus type 1 (HSV-1), activates expression of all classes of HSV genes as well as a variety of heterologous viral and cellular genes. Previous studies have shown that a cellular activity expressed maximally in Vero cells 8 h after release from growth arrest in the G0/G1 phase of the cell cycle can enhance plaque formation and gene expression of a mutant virus (7134) lacking both copies of the gene encoding ICP0 (W. Cai and P. Schaffer, J. Virol. 65:4078-4090, 1991). This observation suggests that the cellular activity can substitute for ICP0 to activate viral gene expression. To further characterize this cellular activity, Vero and NB41A3 (mouse neuroblastoma) cells were transfected at various times after release from growth arrest with promoter-chloramphenicol acetyltransferase (CAT) constructs containing promoters representing the major kinetic classes of HSV genes, and CAT activity was measured from 2 to 24 h postrelease. The results of these tests demonstrate that CAT expression from immediate-early promoter-CAT plasmids was enhanced 10- and 3-fold when Vero and NB41A3 cells were transfected at 6 and 2 h postrelease, respectively. In contrast, only low levels of immediate-early promoter-driven CAT activity were apparent when cells were transfected at later times postrelease. No significant stimulation of CAT activity was observed from promoter-CAT plasmids containing representative early or late HSV promoters or a heterologous viral (simian virus 40 early) promoter. Differences in the efficiency of uptake of plasmid DNA by cells at various times postrelease did not account for the observed differences in CAT expression. Unlike Vero cells, in which cell division resumed after release from growth arrest, division of NB41A3 cells did not resume. Rather, these cells displayed morphological features suggestive of a differentiated phenotype. Collectively, these findings demonstrate that a cellular activity expressed in Vero and NB41A3 cells after release from growth arrest can activate HSV gene expression by enhancing immediate-early gene expression.
Collapse
Affiliation(s)
- W M Ralph
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
137
|
Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 1994. [PMID: 7935417 DOI: 10.1128/mcb.14.10.7013] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation.
Collapse
|
138
|
The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activate a bidirectional viral promoter. Mol Cell Biol 1994. [PMID: 7935407 DOI: 10.1128/mcb.14.10.6896] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms governing the function of cellular USF and herpesvirus immediate-early transcription factors are subjects of considerable interest. In this regard, we identified a novel form of coordinate gene regulation involving a cooperative interplay between cellular USF and the varicella-zoster virus immediate-early protein 62 (IE 62). A single USF-binding site defines the potential level of IE 62-dependent activation of a bidirectional viral early promoter of the DNA polymerase and major DNA-binding protein genes. We also report a dominant negative USF-2 mutant lacking the DNA-binding domain that permits the delineation of the biological role of both USF-1 and USF-2 in this activation process. The symmetrical stimulation of the bidirectional viral promoter by IE 62 is achieved at concentrations of USF-1 (43 kDa) or USF-2 (44 kDa) already existing in cells. Our observations support the notion that cellular USF can intervene in and possibly target promoters for activation by a herpesvirus immediate-early protein.
Collapse
|
139
|
Meier JL, Luo X, Sawadogo M, Straus SE. The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activate a bidirectional viral promoter. Mol Cell Biol 1994; 14:6896-906. [PMID: 7935407 PMCID: PMC359220 DOI: 10.1128/mcb.14.10.6896-6906.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms governing the function of cellular USF and herpesvirus immediate-early transcription factors are subjects of considerable interest. In this regard, we identified a novel form of coordinate gene regulation involving a cooperative interplay between cellular USF and the varicella-zoster virus immediate-early protein 62 (IE 62). A single USF-binding site defines the potential level of IE 62-dependent activation of a bidirectional viral early promoter of the DNA polymerase and major DNA-binding protein genes. We also report a dominant negative USF-2 mutant lacking the DNA-binding domain that permits the delineation of the biological role of both USF-1 and USF-2 in this activation process. The symmetrical stimulation of the bidirectional viral promoter by IE 62 is achieved at concentrations of USF-1 (43 kDa) or USF-2 (44 kDa) already existing in cells. Our observations support the notion that cellular USF can intervene in and possibly target promoters for activation by a herpesvirus immediate-early protein.
Collapse
Affiliation(s)
- J L Meier
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
140
|
Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, Ingles CJ. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 1994; 14:7013-24. [PMID: 7935417 PMCID: PMC359231 DOI: 10.1128/mcb.14.10.7013-7024.1994] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation.
Collapse
Affiliation(s)
- H Xiao
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The homeodomain is a highly conserved structural module that binds DNA and participates in protein-protein interactions. Most homeodomains contain residues at positions 47 and 51 which mediate recognition of a TAAT core binding sequence in the major groove. The constraints imposed on the identity of these residues by homeodomain structure and DNA docking have been examined in the context of the POU domain of the Oct-1 transcription factor. A bacterial library, in which POU homeodomain residues 47 and 51 have been randomized, was probed on nitrocellulose filters for the binding of DNA fragments containing the consensus octamer sequence. The residues which provide for the highest affinity interaction with the octamer consensus sequence, and the greatest specificity, are the highly conserved wild-type residues valine 47 and asparagine 51. Interestingly, a class of variants containing arginine at position 51 was also detected in the screen and found to have moderate affinity for the consensus sequence but reduced specificity compared to the wild-type protein. A single variant containing arginine at both positions 47 and 51 was detected when the library was probed with fragments containing nucleotide substitutions at positions expected to be contacted by residues 47 and 51. This variant was used to alter the DNA-binding specificity of a transcriptional regulatory complex which depends upon Oct-1 for DNA recognition. These findings suggest that homeodomain structure and DNA docking constrain in the versatility of the domain in that only a limited set of amino acid determinants can endow the domain with specific, high-affinity DNA binding.
Collapse
Affiliation(s)
- J L Pomerantz
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
142
|
Elliott GD. The extreme carboxyl terminus of the equine herpesvirus 1 homolog of herpes simplex virus VP16 is essential for immediate-early gene activation. J Virol 1994; 68:4890-7. [PMID: 8035487 PMCID: PMC236429 DOI: 10.1128/jvi.68.8.4890-4897.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.
Collapse
Affiliation(s)
- G D Elliott
- Department of Microbiology, University of Leeds, United Kingdom
| |
Collapse
|
143
|
Misra V, Bratanich AC, Carpenter D, O'Hare P. Protein and DNA elements involved in transactivation of the promoter of the bovine herpesvirus (BHV) 1 IE-1 transcription unit by the BHV alpha gene trans-inducing factor. J Virol 1994; 68:4898-909. [PMID: 8035488 PMCID: PMC236430 DOI: 10.1128/jvi.68.8.4898-4909.1994] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In herpes simplex virus (HSV)-infected cells, the transcription of immediate-early (alpha) genes is regulated by a virion component, the alpha gene trans-inducing factor (alpha TIF). This protein forms a complex with cellular factors and TAATGARAT motifs present in one or more copies in the promoters of all alpha genes. We have characterized the bovine herpesvirus 1 (BHV-1) homolog of this protein. Like its HSV counterpart, the BHV alpha TIF was synthesized in the later stages of infection and could be demonstrated to be a component of purified virions. In transient expression assays, BHV alpha TIF was a strong transactivator and stimulated the activity of IE-1, the major BHV-1 alpha gene promoter, with an efficiency comparable to that of HSV alpha TIF. This stimulation was largely dependent on a TAATGAGCT sequence present in a single copy in IE-1, and BHV alpha TIF, in conjunction with cellular factors, formed a complex with oligonucleotides containing this sequence. Despite these similarities between the two alpha TIFs, our preliminary observations suggest that the proteins may activate transcription by different mechanisms. Although BHV alpha TIF strongly transactivated IE-1, it differed from its HSV counterpart in that the carboxyl terminus of BHV alpha TIF, when fused to the DNA-binding domain of GAL4, was a relatively poor stimulator of a promoter containing GAL4-binding sites. Also unlike HSV alpha TIF, removal of the carboxyl terminus of BHV alpha TIF reduced but did not eliminate the ability of the protein to transactivate IE-1. These results are discussed in view of the structural similarities and differences among the alpha TIFs of alphaherpes-viruses.
Collapse
Affiliation(s)
- V Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
144
|
Franke S, Scholz G, Scheidereit C. Identification of novel ubiquitous and cell type-specific factors that specifically recognize immunoglobulin heavy chain and kappa light chain promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
145
|
Kinchington PR, Vergnes JP, Defechereux P, Piette J, Turse SE. Transcriptional mapping of the varicella-zoster virus regulatory genes encoding open reading frames 4 and 63. J Virol 1994; 68:3570-81. [PMID: 8189496 PMCID: PMC236861 DOI: 10.1128/jvi.68.6.3570-3581.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Four of the 68 varicella-zoster virus (VZV) unique open reading frames (ORFs), i.e., ORFs 4, 61, 62, and 63, encode proteins that influence viral transcription and are considered to be positional homologs of herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins. In order to identify the elements that regulate transcription of VZV ORFs 4 and 63, the encoded mRNAs were mapped in detail. For ORF 4, a major 1.8-kb and a minor 3.0-kb polyadenylated [poly(A)+] RNA were identified, whereas ORF 63-specific probes recognized 1.3- and 1.9-kb poly(A)+ RNAs. Probes specific for sequences adjacent to the ORFs and mapping of the RNA 3' ends indicated that the ORF 4 RNAs were 3' coterminal, whereas the RNAs for ORF 63 represented two different termination sites. S1 nuclease mapping and primer extension analyses indicated a single transcription initiation site for ORF 4 at 38 bp upstream of the ORF start codon. For ORF 63, multiple transcriptional start sites at 87 to 95, 151 to 153, and (tentatively) 238 to 243 bp upstream of the ORF start codon were identified. TATA box motifs at good positional locations were found upstream of all mapped transcription initiation sites. However, no sequences resembling the TAATGARAT motif, which confers IE regulation upon HSV-1 IE genes, were found. The finding of the absence of this motif was supported through analyses of the regulatory sequences of ORFs 4 and 63 in transient transfection assays alongside those of ORFs 61 and 62. Sequences representing the promoters for ORFs 4, 61, and 63 were all stimulated by VZV infection but failed to be stimulated by coexpression with the HSV-1 transactivator Vmw65. In contrast, the promoter for ORF 62, which contains TAATGARAT motifs, was activated by VZV infection and coexpression with Vmw65. These results extend the transcriptional knowledge for VZV and suggest that ORFs 4 and 63 contain regulatory signals different from those of the ORF 62 and HSV-1 IE genes.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- Chromosome Mapping
- DNA, Viral/genetics
- Gene Expression Regulation, Viral
- Genes, Regulator
- Genes, Viral
- Herpesvirus 1, Human/genetics
- Herpesvirus 3, Human/genetics
- Humans
- Immediate-Early Proteins/genetics
- Molecular Sequence Data
- Open Reading Frames
- Promoter Regions, Genetic
- RNA, Viral/genetics
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- P R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania 15213
| | | | | | | | | |
Collapse
|
146
|
Giniger E, Tietje K, Jan LY, Jan YN. lola encodes a putative transcription factor required for axon growth and guidance in Drosophila. Development 1994; 120:1385-98. [PMID: 8050351 DOI: 10.1242/dev.120.6.1385] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the gene longitudinals lacking (lola) lead to defects in the development of axon tracts in the Drosophila embryonic central nervous system. We now show that lola mutations also cause defects of axon growth and guidance in the peripheral nervous system, and causes a particular cluster of embryonic sense organs (lch5) to be oriented improperly. Axonal aberrations caused by lola are similar to those caused by mutations of three other genes, logo, Notch and Delta, raising the possibility that lola works in the same genetic pathway as do these other molecules. The lola gene encodes at least two nuclear protein products, apparently by differential RNA splicing. The predicted proteins contain an amino-terminal motif similar to that recently described for a family of transcription factors, including the products of the Drosophila genes tramtrack and the Broad Complex. Like Ttk and BR-C, one of the two characterized products of the lola locus bears sequences similar to the zinc-finger motif, but the other (neuronal) form of the protein has no recognizable DNA-binding motif.
Collapse
Affiliation(s)
- E Giniger
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | | | |
Collapse
|
147
|
Transcriptional activation by herpes simplex virus type 1 VP16 in vitro and its inhibition by oligopeptides. Mol Cell Biol 1994. [PMID: 8164693 DOI: 10.1128/mcb.14.5.3484] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.
Collapse
|
148
|
DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol 1994. [PMID: 8164660 DOI: 10.1128/mcb.14.5.3041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.
Collapse
|
149
|
Flemington EK, Lytle JP, Cayrol C, Borras AM, Speck SH. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol 1994; 14:3041-52. [PMID: 8164660 PMCID: PMC358672 DOI: 10.1128/mcb.14.5.3041-3052.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Burkitt Lymphoma
- Cell Line
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Genes, Viral
- Globins/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/physiology
- Humans
- Models, Genetic
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- Restriction Mapping
- Sequence Homology, Amino Acid
- TATA Box
- Trans-Activators/biosynthesis
- Trans-Activators/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- E K Flemington
- Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
150
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|