101
|
Saha J, Dey S, Pal A. Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Curr Genet 2022; 68:481-503. [PMID: 35763098 DOI: 10.1007/s00294-022-01245-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Elevated concentration of non-essential persistent heavy metals and metalloids in the soil is detrimental to essential soil microbes and plants, resulting in diminished diversity and biomass. Thus, isolation, screening, and whole genomic analysis of potent strains of bacteria from arable lands with inherent capabilities of heavy metal resistance and plant growth promotion hold the key for bio remedial applications. This study is an attempt to do the same. In this study, a potent strain of Pseudomonas aeruginosa was isolated from paddy fields, followed by metabolic profiling using FTIR, metal uptake analysis employing ICP-MS, whole genome sequencing and comparative codon usage analysis. ICP-MS study provided insights into a high degree of Cd uptake during the exponential phase of growth under cumulative metal stress to Cd, Zn and Co, which was further corroborated by the detection of cadA gene along with czcCBA operon in the genome upon performing whole-genome sequencing. This potent strain of Pseudomonas aeruginosa also harboured genes, such as copA, chrA, znuA, mgtE, corA, and others conferring resistance against different heavy metals, such as Cd, Zn, Co, Cu, Cr, etc. A comparative codon usage bias analysis at the genomic and genic level, whereby several heavy metal resistant genes were considered in the backdrop of two housekeeping genes among 40 Pseudomonas spp. indicated the presence of a relatively strong codon usage bias in the studied strain. With this work, an effort was made to explore heavy metal-resistant bacteria (isolated from arable soil) and whole genome sequence analysis to get insight into metal resistance for future bio remedial applications.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Sourav Dey
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
102
|
Tyagi N, Sardar R, Gupta D. Natural selection plays a significant role in governing the codon usage bias in the novel SARS-CoV-2 variants of concern (VOC). PeerJ 2022; 10:e13562. [PMID: 35765592 PMCID: PMC9233899 DOI: 10.7717/peerj.13562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
The ongoing prevailing COVID-19 pandemic caused by SARS-CoV-2 is becoming one of the major global health concerns worldwide. The SARS-CoV-2 genome encodes spike (S) glycoprotein that plays a very crucial role in viral entry into the host cell via binding of its receptor binding domain (RBD) to the host angiotensin converting enzyme 2 (ACE2) receptor. The continuously evolving SARS-CoV-2 genome results in more severe and transmissible variants characterized by the emergence of novel mutations called 'variants of concern' (VOC). The currently designated alpha, beta, gamma, delta and omicron VOC are the focus of this study due to their high transmissibility, increased virulence, and concerns for decreased effectiveness of the available vaccines. In VOC, the spike (S) gene and other non-structural protein mutations may affect the efficacies of the approved COVID-19 vaccines. To understand the diversity of SARS-CoV-2, several studies have been performed on a limited number of sequences. However, only a few studies have focused on codon usage bias (CUBs) pattern analysis of all the VOC strains. Therefore, to evaluate the evolutionary divergence of all VOC S-genes, we performed CUBs analysis on 300,354 sequences to understand the evolutionary relationship with its adaptation in different hosts, i.e., humans, bats, and pangolins. Base composition and RSCU analysis revealed the presence of 20 preferred AU-ended and 10 under-preferred GC-ended codons. In addition, CpG was found to be depleted, which may be attributable to the adaptive response by viruses to escape from the host defense process. Moreover, the ENC values revealed a higher bias in codon usage in the VOC S-gene. Further, the neutrality plot analysis demonstrated that S-genes analyzed in this study are under 83.93% influence of natural selection, suggesting its pivotal role in shaping the CUBs. The CUBs pattern of S-genes was found to be very similar among all the VOC strains. Interestingly, we observed that VOC strains followed a trend of antagonistic codon usage with respect to the human host. The identified CUBs divergence would help to understand the virus evolution and its host adaptation, thus help design novel vaccine strategies against the emerging VOC strains. To the best of our knowledge, this is the first report for identifying the evolution of CUBs pattern in all the currently identified VOC.
Collapse
Affiliation(s)
- Neetu Tyagi
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India,Biochemistry, Jamia Hamdard University, New Delhi, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India
| |
Collapse
|
103
|
Li B, Wu H, Miao Z, Hu L, Zhou L, Lu Y. Codon Usage of Hepatitis E Viruses: A Comprehensive Analysis. Front Microbiol 2022; 13:938651. [PMID: 35801104 PMCID: PMC9253588 DOI: 10.3389/fmicb.2022.938651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with multiple species and genotypes, which may be classified into human, animal, and zoonotic HEV. Codon usage bias of HEV remained unclear. This study aims to characterize the codon usage of HEV and elucidate the main drivers influencing the codon usage bias. A total of seven HEV genotypes, HEV-1 (human HEV), HEV-3 and HEV-4 (zoonotic HEV), HEV-8, HEV-B, HEV-C1, and HEV-C2 (emerging animal HEV), were included in the study. Complete coding sequences, ORF1, ORF2, and ORF3, were accordingly obtained in the GenBank. Except for HEV-8, the other six genotypes tended to use codons ending in G/C. Based on the analysis of relatively synonymous codon usage (RSCU) and principal component analysis (PCA), codon usage bias was determined for HEV genotypes. Codon usage bias differed widely across human, zoonotic, and animal HEV genotypes; furthermore, it varied within certain genotypes such as HEV-4, HEV-8, and HEV-C1. In addition, dinucleotide abundance revealed that HEV was affected by translation selection to form a unique dinucleotide usage pattern. Moreover, parity rule 2 analysis (PR2), effective codon number (ENC)-plot, and neutrality analysis were jointly performed. Natural selection played a leading role in forming HEV codon usage bias, which was predominant in HEV-1, HEV-3, HEV-B and HEV-C1, while affected HEV-4, HEV-8, and HEV-C2 in combination with mutation pressure. Our findings may provide insights into HEV evolution and codon usage bias.
Collapse
Affiliation(s)
- Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Yihan Lu,
| |
Collapse
|
104
|
Ahmed W, Gupta S, Singh D, Singh R. Insight of genetic features prevalent in three Echinoderm species (Apostichopus japonicus, Heliocedaris erythrogramma and Asterias rubens) and their evolutionary association using comparative codon pattern analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
105
|
Zhao S, Cui H, Hu Z, Du L, Ran X, Wen X. Senecavirus A Enhances Its Adaptive Evolution via Synonymous Codon Bias Evolution. Viruses 2022; 14:v14051055. [PMID: 35632797 PMCID: PMC9146685 DOI: 10.3390/v14051055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments. The phylogenetic tree and Median-joining (MJ)-Network of these SVA lineages worldwide were constructed to reveal SVA three-stage genetic development clusters. Furthermore, we analyzed the codon bias of the SVA genome of selected strains and found that SVA could increase the GC content of the third base of some amino acid synonymous codons to enhance the viral RNA adaptive evolution. Our results highlight the impact of recessive mutation of virus codon bias on the evolution of the SVA and uncover a previously underappreciated evolutionary strategy for SVA. They also underline the importance of understanding the genetic evolution of SVA and how SVA adapts to the adverse effects of external stress.
Collapse
Affiliation(s)
- Simiao Zhao
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Huiqi Cui
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenru Hu
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Xuhua Ran
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| |
Collapse
|
106
|
He Z, Qin L, Xu X, Ding S. Evolution and host adaptability of plant RNA viruses: Research insights on compositional biases. Comput Struct Biotechnol J 2022; 20:2600-2610. [PMID: 35685354 PMCID: PMC9160401 DOI: 10.1016/j.csbj.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
During recent decades, many new emerging or re-emerging RNA viruses have been found in plants through the development of deep-sequencing technology and big data analysis. These findings largely changed our understanding of the origin, evolution and host range of plant RNA viruses. There is evidence that their genetic composition originates from viruses, and host populations play a key role in the evolution and host adaptability of plant RNA viruses. In this mini-review, we describe the state of our understanding of the evolution of plant RNA viruses in view of compositional biases and explore how they adapt to the host. It appears that adenine rich (A-rich) coding sequences, low CpG and UpA dinucleotide frequencies and lower codon usage patterns were found in the vast majority of plant RNA viruses. The codon usage pattern of plant RNA viruses was influenced by both natural selection and mutation pressure, and natural selection mostly from hosts was the dominant factor. The codon adaptation analyses support that plant RNA viruses probably evolved a dynamic balance between codon adaptation and deoptimization to maintain efficient replication cycles in multiple hosts with various codon usage patterns. In the future, additional combinations of computational and experimental analyses of the nucleotide composition and codon usage of plant RNA viruses should be addressed.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Corresponding author.
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
107
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
108
|
He Z, Ding S, Guo J, Qin L, Xu X. Synonymous Codon Usage Analysis of Three Narcissus Potyviruses. Viruses 2022; 14:v14050846. [PMID: 35632588 PMCID: PMC9143068 DOI: 10.3390/v14050846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Narcissus degeneration virus (NDV), narcissus late season yellows virus (NLSYV) and narcissus yellow stripe virus (NYSV), which belong to the genus Potyvirus of the family Potyviridae, cause significant losses in the ornamental value and quality of narcissus. Several previous studies have explored the genetic diversity and evolution rate of narcissus viruses, but the analysis of the synonymous codons of the narcissus viruses is still unclear. Herein, the coat protein (CP) of three viruses is used to analyze the viruses’ phylogeny and codon usage pattern. Phylogenetic analysis showed that NYSV, NDV and NLSYV isolates were divided into five, three and five clusters, respectively, and these clusters seemed to reflect the geographic distribution. The effective number of codon (ENC) values indicated a weak codon usage bias in the CP coding region of the three narcissus viruses. ENC-plot and neutrality analysis showed that the codon usage bias of the three narcissus viruses is all mainly influenced by natural selection compared with the mutation pressure. The three narcissus viruses shared the same best optimal codon (CCA) and the synonymous codon prefers to use codons ending with A/U, compared to C/G. Our study shows the codon analysis of different viruses on the same host for the first time, which indicates the importance of the evolutionary-based design to control these viruses.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: or
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi 564507, China;
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| |
Collapse
|
109
|
Nambou K, Anakpa M, Tong YS. Human genes with codon usage bias similar to that of the nonstructural protein 1 gene of influenza A viruses are conjointly involved in the infectious pathogenesis of influenza A viruses. Genetica 2022; 150:97-115. [PMID: 35396627 PMCID: PMC8992787 DOI: 10.1007/s10709-022-00155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
Molecular mechanisms of the non-structural protein 1 (NS1) in influenza A-induced pathological changes remain ambiguous. This study explored the pathogenesis of human infection by influenza A viruses (IAVs) through identifying human genes with codon usage bias (CUB) similar to NS1 gene of these viruses based on the relative synonymous codon usage (RSCU). CUB of the IAV subtypes H1N1, H3N2, H3N8, H5N1, H5N2, H5N8, H7N9 and H9N2 was analyzed and the correlation of RSCU values of NS1 sequences with those of the human genes was calculated. The CUB of NS1 was uneven and codons ending with A/U were preferred. The ENC-GC3 and neutrality plots suggested natural selection as the main determinant for CUB. The RCDI, CAI and SiD values showed that the viruses had a high degree of adaptability to human. A total of 2155 human genes showed significant RSCU-based correlation (p < 0.05 and r > 0.5) with NS1 coding sequences and was considered as human genes with CUB similar to NS1 gene of IAV subtypes. Differences and similarities in the subtype-specific human protein–protein interaction (PPI) networks and their functions were recorded among IAVs subtypes, indicating that NS1 of each IAV subtype has a specific pathogenic mechanism. Processes and pathways involved in influenza, transcription, immune response and cell cycle were enriched in human gene sets retrieved based on the CUB of NS1 gene of IAV subtypes. The present work may advance our understanding on the mechanism of NS1 in human infections of IAV subtypes and shed light on the therapeutic options.
Collapse
Affiliation(s)
- Komi Nambou
- Shenzhen Nambou1 Biotech Company Limited, 998 Wisdom Valley, No. 38-56 Zhenming Road, Guangming District, Shenzhen, 518106, China.
| | - Manawa Anakpa
- Centre d'Informatique et de Calcul, Université de Lomé, Boulevard Gnassingbé Eyadema, 01 B.P. 1515, Lomé, Togo
| | - Yin Selina Tong
- Shenzhen Nambou1 Biotech Company Limited, 998 Wisdom Valley, No. 38-56 Zhenming Road, Guangming District, Shenzhen, 518106, China
| |
Collapse
|
110
|
Zu Z, Lin H, Hu Y, Zheng X, Chen C, Zhao Y, He N. The genetic evolution and codon usage pattern of severe fever with thrombocytopenia syndrome virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105238. [PMID: 35144005 DOI: 10.1016/j.meegid.2022.105238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging zoonotic infectious disease caused by the SFTS virus (SFTSV), which has been continuously circulating in Eastern Asia in recent years. Although the evolution of SFTSV has been investigated, the evolutionary changes associated with codon usage have not been reported. Thus, a comprehensive genetic and codon usage bias analysis of SFTSV was conducted to elucidate the genetic diversity and evolutionary relationships in a novel perspective. The study amplified and sequenced fifteen SFTSV strains from a prefecture of Zhejiang Province, Eastern China in 2020, where SFTS cases have been continuously reported in the past decade. Phylogenetic analysis was conducted based on the complete coding sequences of SFTSV segments. It suggested that all SFTSV strains circulating in Zhejiang were clustered with Japanese and Korean strains, which belonged to two different genotypes. Meanwhile, thirty-nine genetic reassortants classified into nineteen different reassortment forms were identified, while 45 recombination events in 41 SFTSV strains were found. Codon usage patterns were further analyzed to understand the evolutionary changes in relation to genotype and host. And it revealed that codon usage bias was mainly driven by natural selection rather than mutation pressure. In addition, the codon adaptation index (CAI) analysis demonstrated the strong adaptability of SFTSV to Gallus gallus and Homo sapiens. Similarity index (SiD) analysis indicated that Haemaphysalis longicornis posed a strong selection pressure to SFTSV. In conclusion, this study revealed that the genetic diversity of SFTSV is gradually increasing. The codon usage analysis suggested that codon usage bias of SFTSV was mainly driven by natural selection, and SFTSV has evolved host-specific codon usage patterns. This contributes to the development of control measures against SFTSV.
Collapse
Affiliation(s)
- Zhipeng Zu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Haijiang Lin
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China; Taizhou City Center for Disease Control and Prevention, Taizhou City, Zhejiang Province 318001, China
| | - Yafei Hu
- Taizhou City Center for Disease Control and Prevention, Taizhou City, Zhejiang Province 318001, China
| | - Xiang Zheng
- Taizhou City Center for Disease Control and Prevention, Taizhou City, Zhejiang Province 318001, China
| | - Cairong Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou City, Zhejiang Province 318001, China
| | - Yishuang Zhao
- Taizhou City Center for Disease Control and Prevention, Taizhou City, Zhejiang Province 318001, China
| | - Na He
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
111
|
Synonymous Codon Pattern of Cowpea Mild Mottle Virus Sheds Light on Its Host Adaptation and Genome Evolution. Pathogens 2022; 11:pathogens11040419. [PMID: 35456094 PMCID: PMC9026141 DOI: 10.3390/pathogens11040419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cowpea mild mottle virus (CpMMV) is an economically significant virus that causes severe disease on several legume crops. Aside from recombination, other factors driving its rapid evolution are elusive. In this study, the synonymous codon pattern of CpMMV and factors shaping it were analyzed. Phylogeny and nucleotide composition analyses showed that isolates of different geography or hosts had very similar nucleotide compositions. Relative synonymous codon usage (RSCU) and neutrality analyses suggest that CpMMV prefers A/U-ending codons and natural selection is the dominative factor that affects its codon bias. Dinucleotide composition and codon adaptation analyses indicate that the codon pattern of CpMMV is mainly shaped by the requirement of escaping of host dinucleotide-associated antiviral responses and translational efficiency.
Collapse
|
112
|
Li L, Wu Q, Fang L, Wu K, Li M, Zeng S. Comparative Chloroplast Genomics and Phylogenetic Analysis of Thuniopsis and Closely Related Genera within Coelogyninae (Orchidaceae). Front Genet 2022; 13:850201. [PMID: 35401668 PMCID: PMC8987740 DOI: 10.3389/fgene.2022.850201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Thuniopsis was recently proposed for a rare orchid species T. cleistogama formerly classified in the genus Thunia. The relationships between Thuniopsis and its related genera have not yet been conclusively resolved. Recognition of the genus provides a new perspective to illustrate the morphological diversity and plastome evolution within Coelogyninae. In this study, we sequenced and assembled complete chloroplast (cp) genomes for three accessions of Thuniopsis cleistogama and two accessions of Thunia alba. A total of 135 genes were annotated for each cp genome, including 89 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The ENC-plot and neutrality plot analyses revealed that natural selection dominated over mutation pressure in their evolutionary process. Specially, we found that selection played a vital role in shaping the codon usage in Thunia alba cp genome. General characteristics of the cp genomes were further analyzed and compared with those published plastomes of four other related species. Despite the conserved organization and structure, the whole individual cp genome size ranged from 158,394 bp to 159,950 bp. In all the examined plastomes, sequences in the inverted repeat (IR) regions were more conserved than those in the small single copy (SSC) and large single copy (LSC) regions. However, close examination identified contraction and expansion of the IR/SSC boundary regions, which might be the main reason for the cp genome size variation. Our comparative analysis of the cp genomes revealed that single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) provided valuable information for identifying genetic variations within and among genera. Furthermore, sequence variations in the protein-coding regions were more conserved than those in the non-coding regions. We selected eight divergence hotspots with nucleotide sequence diversities (Pi values) higher than 0.08. Most of these polymorphisms were located in the intergenic regions. Phylogenomic analyses recovered largely congruent relationships among major clades and strongly supported the monophyly of Thuniopsis. The results obtained in this study can improve our understanding of the classification of this enigmatic genus. The chloroplast genomic data presented here provide valuable insights into the phylogeny and evolutionary patterns of the Coelogyninae as well as the orchids as a whole.
Collapse
Affiliation(s)
- Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuping Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mingzhi Li
- Guangzhou Bio and Data Biotechnology Co., Ltd., Guangzhou, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Songjun Zeng,
| |
Collapse
|
113
|
Wang Z, Cai Q, Wang Y, Li M, Wang C, Wang Z, Jiao C, Xu C, Wang H, Zhang Z. Comparative Analysis of Codon Bias in the Chloroplast Genomes of Theaceae Species. Front Genet 2022; 13:824610. [PMID: 35360853 PMCID: PMC8961065 DOI: 10.3389/fgene.2022.824610] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Theaceae species are dicotyledonous angiosperms with extremely high ornamental and economic value. The chloroplast genome is traditionally used to study species evolution, expression of chloroplast genes and chloroplast transformation. Codon usage bias (CUB) analysis is beneficial for investigations of evolutionary relationships and can be used to improve gene expression efficiency in genetic transformation research. However, there are relatively few systematic studies of the CUB in the chloroplast genomes of Theaceae species. In this study, CUB and nucleotide compositions parameters were determined by the scripts written in the Perl language, CodonW 1.4.2, CU.Win2000, RStudio and SPSS 23.0. The chloroplast genome data of 40 Theaceae species were obtained to analyse the codon usage (CU) characteristics of the coding regions and the influence of the source of variation on CUB. To explore the relationship between the CUB and gene expression levels in these 40 Theaceae plastomes, the synonymous codon usage order (SCUO) and measure independent of length and composition (MILC) values were determined. Finally, phylogenetic analysis revealed the genetic evolutionary relationships among these Theaceae species. Our results showed that based on the chloroplast genomes of these 40 Theaceae species, the CUB was for codons containing A/T bases and those that ended with A/T bases. Moreover, there was great commonality in the CUB of the Theaceae species according to comparative analysis of relative synonymous codon usage (RSCU) and relative frequency of synonymous codon (RFSC): these species had 29 identical codons with bias (RSCU > 1), and there were 19 identical high-frequency codons. The CUB of Theaceae species is mainly affected by natural selection. The SCUO value of the 40 Theaceae species was 0.23 or 0.24, and the chloroplast gene expression level was moderate, according to MILC values. Additionally, we observed a positive correlation between the SCUO and MILC values, which indicated that CUB might affect gene expression. Furthermore, the phylogenetic analysis showed that the evolutionary relationships in these 40 Theaceae species were relatively conserved. A systematic study on the CUB and expression of Theaceae species provides further evidence for their evolution and phylogeny.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Zhaoliang Zhang,
| |
Collapse
|
114
|
Sebastian W, Sukumaran S, Gopalakrishnan A. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity (Edinb) 2022; 128:236-249. [PMID: 35256764 PMCID: PMC8986858 DOI: 10.1038/s41437-022-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Clupeoid fish can be considered excellent candidates to understand the role of mitochondrial DNA in adaptive evolution, as they have colonized different habitats (marine, brackish, freshwater, tropical and temperate regions) over millions of years. Here, we investigate patterns of tRNA location, codon usage bias, and lineage-specific diversifying selection signals to provide novel insights into how evolutionary improvements of mitochondrial metabolic efficiency have allowed clupeids to adapt to different habitats. Based on whole mitogenome data of 70 Clupeoids with a global distribution we find that purifying selection was the dominant force acting and that the mutational deamination pressure in mtDNA was stronger than the codon/amino acid constraints. The codon usage pattern appears evolved to achieve high translational efficiency (codon/amino acid-related constraints), as indicated by the complementarity of most codons to the GT-saturated tRNA anticodon sites (retained by deamination-induced pressure) and usage of the codons of the tRNA genes situated near to the control region (fixed by deamination pressure) where transcription efficiency was high. The observed shift in codon preference patterns between marine and euryhaline/freshwater Clupeoids indicates possible selection for improved translational efficiency in mitochondrial genes while adapting to low-salinity habitats. This mitogenomic plasticity and enhanced efficiency of the metabolic machinery may have contributed to the evolutionary success and abundance of Clupeoid fish.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
115
|
Abdoli R, Mazumder TH, Nematollahian S, Zanjani RS, Mesbah RA, Uddin A. Gaining insights into the compositional constraints and molecular phylogeny of five silkworms mitochondrial genome. Int J Biol Macromol 2022; 206:543-552. [PMID: 35245576 DOI: 10.1016/j.ijbiomac.2022.02.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
This study was performed to identify codon usage bias (CUB), genetic similarity and phylogenetic analysis of complete mitochondrial genomes along with separate sequences of 13 protein coding genes per each genome from five types of silkworm including Bombyx mori, Bombyx mandarina, Samia cynthia ricini, Antheraea pernyi and Antheraea assama. Nucleotide composition analysis suggested that AT content was higher than GC content and t-test analysis revealed significance difference (p < 0.01) between AT and GC content. Relative synonymous CUB analysis revealed most over-represented codon ends with A or T. Parity plot analysis revealed both natural selection and mutation pressure influenced CUB of mitochondrial genes while neutrality plot analysis suggested that role of natural selection was higher than mutation pressure. The effective number of codons (ENC) revealed the CUB was low among genes and genomes. In phylogenetic analysis of complete mitochondrial genomes, the B. mori fell in a same cluster with Bombyx mandarina and showed the most similarity (96.7%). In terms of protein coding genes, COX1, COX2 and COX3 showed the most obvious differences. In conclusion, comparative analysis of mitochondrial genomes could be used to identify differences in gene organization, accurate phylogenetic analysis and clustering of different types of silkworms.
Collapse
Affiliation(s)
- Ramin Abdoli
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | | | - Shahla Nematollahian
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Reza Sourati Zanjani
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rahim Abdollahi Mesbah
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India.
| |
Collapse
|
116
|
Zhang Y, Shen Z, Meng X, Zhang L, Liu Z, Liu M, Zhang F, Zhao J. Codon usage patterns across seven Rosales species. BMC PLANT BIOLOGY 2022; 22:65. [PMID: 35123393 PMCID: PMC8817548 DOI: 10.1186/s12870-022-03450-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Codon usage bias (CUB) analysis is an effective method for studying specificity, evolutionary relationships, and mRNA translation and discovering new genes among various species. In general, CUB analysis is mainly performed within one species or between closely related species and no such study has been applied among species with distant genetic relationships. Here, seven Rosales species with high economic value were selected to conduct CUB analysis. RESULTS The results showed that the average GC1, GC2 and GC3 contents were 51.08, 40.52 and 43.12%, respectively, indicating that the A/T content is more abundant and the Rosales species prefer A/T as the last codon. Neutrality plot and ENc plot analysis revealed that natural selection was the main factor leading to CUB during the evolution of Rosales species. All 7 Rosales species contained three high-frequency codons, AGA, GTT and TTG, encoding Arg, Val and Leu, respectively. The 7 Rosales species differed in high-frequency codon pairs and the distribution of GC3, though the usage patterns of closely related species were more consistent. The results of the biclustering heat map among 7 Rosales species and 20 other species were basically consistent with the results of genome data, suggesting that CUB analysis is an effective method for revealing evolutionary relationships among species at the family or order level. In addition, chlorophytes prefer using G/C as ending codon, while monocotyledonous and dicotyledonous plants prefer using A/T as ending codon. CONCLUSIONS The CUB pattern among Rosales species was mainly affected by natural selection. This work is the first to highlight the CUB patterns and characteristics of Rosales species and provides a new perspective for studying genetic relationships across a wide range of species.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zenan Shen
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xiangrui Meng
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
117
|
Codon Usage for Genetic Diversity, and Evolutionary Dynamics of Novel Porcine Parvoviruses 2 through 7 (PPV2–PPV7). Viruses 2022; 14:v14020170. [PMID: 35215764 PMCID: PMC8876854 DOI: 10.3390/v14020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine parvovirus (PPV) is the main pathogen of reproductive disorders. In recent years, a new type of porcine parvovirus has been discovered and named porcine parvovirus 2 to 7 (PPV2–PPV7), and it is associated with porcine circovirus type 2 in pigs. Codon usage patterns and their effects on the evolution and host adaptation of different PPV sub-types are still largely unknown. Here, we define six main sub-types based on the Bayesian method of structural proteins of each sub-type of PPV, including PPV2, PPV3, PPV4, PPV5, PPV6, and PPV7, which show different degrees of codon usage preferences. The effective number of codons (ENC) indicates that all PPV sub-types have low codon bias. According to the codon adaptation index (CAI), PPV3 and PPV7 have the highest similarity with the host, which is related to the main popular tendency of the host in the field; according to the frequency of optimal codons (FOP), PPV7 has the highest frequency of optimal codons, indicating the most frequently used codons in its genes; and according to the relative codon deoptimization index (RCDI), PPV3 has a higher degree. Therefore, it is determined that mutational stress has a certain impact on the codon usage preference of PPV genes, and natural selection plays a very decisive and dominant role in the codon usage pattern. Our research provides a new perspective on the evolution of porcine parvovirus (PPV) and may help provide a new method for future research on the origin, evolutionary model, and host adaptation of PPV.
Collapse
|
118
|
Rahman SU, Abdullah M, Khan AW, Haq MIU, Haq NU, Aziz A, Tao S. A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 2022; 308:198646. [PMID: 34822954 DOI: 10.1016/j.virusres.2021.198646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan; College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | - Muhammad Abdullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Wajid Khan
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Muhammad Inam Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Noor Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
119
|
Begum NS, Chakraborty S. Influencing elements of codon usage bias in Birnaviridae and its evolutionary analysis. Virus Res 2022; 310:198672. [PMID: 34986367 DOI: 10.1016/j.virusres.2021.198672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Birnaviridae is a family of double stranded (ds) RNA virus with non-enveloped virions and 2-segmented genomes. These viruses are known to cause diseases in many hosts. Virus of this family has affected the fish and poultry economy in a wide sector. Unevenness in the use of synonymous codons for a particular amino acid in the coding strand of DNA is known as codon usage bias (CUB). Codons that code the same amino acid are used with variable frequency in a variety of life forms. To understand the pattern of CUB in Birnaviridae, we carried out bioinformatics study to understand the properties of coding sequences of proteins. ENC value of Birnaviridae suggested low CUB. Nucleotide analysis revealed high GC content. Parameters such as RSCU values, nucleotide skewness, translational selection, parity plot and neutrality plot were studied to investigate the pattern of codon use and it was clear that both mutational pressure and natural selection contributed to the designing of CUB in Birnaviridae family. The neutrality plot revealed natural selection to dominate the structuring of CUB and hence remained the major CUB determinant in Birnaviridae. Outcome of our study exemplified the pattern of codon use in the Birnaviridae genomes and contributed the basic primary data for fundamental evolutionary research on them.
Collapse
Affiliation(s)
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
120
|
Andargie M, Congyi Z. Genome-wide analysis of codon usage in sesame ( Sesamum indicum L.). Heliyon 2022; 8:e08687. [PMID: 35106386 PMCID: PMC8789531 DOI: 10.1016/j.heliyon.2021.e08687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 10/28/2022] Open
Abstract
Sesamum indicum is an ancient oil crop grown in tropical and subtropical areas of the world. We have analyzed 23,538 coding sequences (CDS) of S. indicum to understand the factors shaping codon usage in this important oil crop plant. We identified eleven highly preferred codons in S. indicum that have AT-endings. The slope of a neutrality plot was less than one while effective number of codons (ENC) plot showed distribution above and below the standard curve. There is a significant relationship between protein length and relative synonymous codon usage (RSCU) at the primary axis while there is a weak correlation between protein length and Nc values. Correspondence analysis conducted on RSCU values differentiated CDS based on their GC content and their characteristic feature and showed a discrete distribution. Moreover, by determining codon usage, we found out that majority of the lignan biosynthesis related genes showed a weaker codon usage bias. These results provide insights into understanding codon evolution in sesame.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- University of Goettingen, Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Zhu Congyi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
121
|
Tikhomirova TS, Matyunin MA, Lobanov MY, Galzitskaya OV. In-depth analysis of amino acid and nucleotide sequences of Hsp60: how conserved is this protein? Proteins 2021; 90:1119-1141. [PMID: 34964171 DOI: 10.1002/prot.26294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022]
Abstract
Chaperonin Hsp60, as a protein found in all organisms, is of great interest in medicine, since it is present in many tissues and can be used both as a drug and as an object of targeted therapy. Hence, Hsp60 deserves a fundamental comparative analysis to assess its evolutionary characteristics. It was found that the percent identity of Hsp60 amino acid sequences both within and between phyla was not high enough to identify Hsp60s as highly conserved proteins. However, their ATP binding sites are largely conserved. The amino acid composition of Hsp60s remained relatively constant. At the same time, the analysis of the nucleotide sequences showed that GC content in the Hsp60 genes was comparable to or greater than the genomic values, which may indicate a high resistance to mutations due to tight control of the nucleotide composition by DNA repair systems. Natural selection plays a dominant role in the evolution of Hsp60 genes. The degree of mutational pressure affecting the Hsp60 genes is quite low, and its direction does not depend on taxonomy. Interestingly, for the Hsp60 genes from Chordata, Arthropoda, and Proteobacteria the exact direction of mutational pressure could not be determined. However, upon further division into classes, it was found that the direction of the mutational pressure for Hsp60 genes from Fish differs from that for other chordates. The direction of the mutational pressure affects the synonymous codon usage bias. The number of high and low represented codons increases with increasing GC content, which can improve codon usage. Special server has been created for bioinformatics analysis of Hsp60: http://oka.protres.ru:4202/.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Maxim A Matyunin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Michail Yu Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
122
|
Nair RR, Mohan M, Rudramurthy GR, Vivekanandam R, Satheshkumar PS. Strategies and Patterns of Codon Bias in Molluscum Contagiosum Virus. Pathogens 2021; 10:1649. [PMID: 34959603 PMCID: PMC8703355 DOI: 10.3390/pathogens10121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Vadavalli Post, Coimbatore 641041, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA 30605, USA;
| | | | - Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore 641046, India;
| | | |
Collapse
|
123
|
Zhang P, Xu W, Lu X, Wang L. Analysis of codon usage bias of chloroplast genomes in Gynostemma species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2727-2737. [PMID: 35035132 PMCID: PMC8720125 DOI: 10.1007/s12298-021-01105-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Gynostemma plants are important Chinese medicinal material and economic crops. Codon usage analysis is a good way to understand organism evolution and phylogeny. There is no report yet about analysis of codon usage bias of chloroplast genomes in Gynostemma species. In this study, the chloroplast genomes in nine Gynostemma species were analyzed systematically to explore the factors affecting the formation of codon usage bias. The codon usage indicators were analyzed. Multivariate statistical analysis including analysis of neutrality plot, effective number of codons plot, parity rule 2 plot and correspondence were performed. Composition analysis of codons showed that the frequency of GC in chloroplast genes of all nine Gynostemma species was less than 50%, and the protein-coding sequences of chloroplast genes preferred to end with A/T at the third codon position. The chloroplast genes had an overall weak codon usage bias. A total of 29 high frequency codons and 12 optimal codons were identified. These could provide useful information in optimizing and modifying codons thus improving the gene expression of Gynostemma species. The results of multivariate analysis showed that the codon usage patterns were not only affected by single one factor but multiple factors. Mutation pressure, natural selection and base composition might have an influence on the codon usage patterns while natural selection might be the main determinant. The study could provide a reference for organism evolution and phylogeny of Gynostemma species and help to understand the patterns of codons in chloroplast genomes in other plant species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01105-z.
Collapse
Affiliation(s)
- Peipei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| | - Wenbo Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| | - Xu Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| | - Long Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| |
Collapse
|
124
|
Chakraborty S, Basumatary P, Nath D, Paul S, Uddin A. Compositional features and pattern of codon usage for mitochondrial CO genes among reptiles. Mitochondrion 2021; 62:111-121. [PMID: 34793987 DOI: 10.1016/j.mito.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
The phenomenon of non-random occurrence of synonymous nucleotide triplets (codons) in the coding sequences of genes is the codon usage bias (CUB). In this study, we used bioinformatic tool kit to analyze the compositional pattern and CUB of mitogenes namely COI, COII and COIII across different orders of reptiles. Estimation of overall base composition in the protein-coding sequences of COI, COII and COIII genes of the reptilian orders revealed an uneven usage of nucleotides. The overall count of A nucleotide was found to be the highest while the overall count of G nucleotide was the least. The CO genes across the three reptilian orders were prominently AT biased. Comparison of the GC proportion at each codon position displayed that GC1 percentage ranked the highest in all the three CO genes of the reptilian orders. SCUO values indicated weaker CUB, while considerable variation of SCUO values existed in the three CO genes across the studied reptiles. Relative synonymous codon usage (RSCU) values indicated that mostly the A ending codons were preferred. Based on the parameters namely neutrality plot, mutational responsive index and translational selection, we could conclude that natural selection was the major evolutionary force in COI, COII and COIII genes in the studied reptilian orders. However, correspondence analysis, parity plot and correlation studies indicated the existence of mutation pressure as well on the CO genes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | | | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Sunanda Paul
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi788150, Assam, India.
| |
Collapse
|
125
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
126
|
Wang L, Yu X, Xu W, Zhang J, Lin H, Zhao Y. Complete chloroplast genome sequencing support Angelica decursiva is an independent species from Peucedanum praeruptorum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2503-2515. [PMID: 34924707 PMCID: PMC8639966 DOI: 10.1007/s12298-021-01097-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/11/2023]
Abstract
UNLABELLED Peucedani Radix is the dry root of Peucedanum praeruptorum of the umbelliferous family, but the dry root of Angelica decursiva was also the source of Peucedani Radix in the past. As one of the most popular traditional Chinese medicinal herbs, the certified source of Peucedani Radix is still disputed. To better understand the relationship between A. decursiva and P. praeruptorum, we sequenced their chloroplast (cp) genomes. The gene structure, codon usage bias, repeat, simple sequence repeat (SSR), as well as their borders of inverted repeat (IR) regions of the two cp genomes are analyzed to identify potential genetic markers. Great variation is exhibited in the repeat sequences of IR, large single copy regions and the SSRs of the two cp genomes, which can be used as molecular markers to distinguish them. The phylogenetic analysis also indicates that they belong to two different genera in Apiaceae family: A. decursiva is an Angelica plant and P. praeruptorum is a Peucedanum plant. Our observations suggest that the two species are somewhere different in gene features, which contributes to support A. decursiva as an independent species from P. praeruptorum. The results also provide new evidence that A. decursiva should not be regarded as the certified source of Peucedani Radix in taxonomy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01097-w.
Collapse
Affiliation(s)
- Long Wang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Xiangxu Yu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Wenbo Xu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Junqing Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Hanfeng Lin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
127
|
Mazumder TH, Alqahtani AM, Alqahtani T, Emran TB, A. Aldahish A, Uddin A. Analysis of Codon Usage of Speech Gene FoxP2 among Animals. BIOLOGY 2021; 10:biology10111078. [PMID: 34827071 PMCID: PMC8614651 DOI: 10.3390/biology10111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary We evaluated codon usage bias in the FoxP2 gene in fishes, birds, reptiles, and mammals. Fishes use C or G—ending codons, while birds, reptiles, and mammals employ T or A—ending codons. Apart from the nucleotide composition, natural selection and mutation pressure might influence the CUB. The ENC observed/ENC expected ratio demonstrated that mutation pressure influences FoxP2 codon usage patterns. Natural selection may have had a key influence in shaping the CUB, although mutation pressure may have played a minor role. FoxP2 gene codon usage is affected by the base composition under mutation bias. Abstract The protein-coding gene FoxP2 (fork head box protein P2) plays a major role in communication and evolutionary changes. The present study carried out a comprehensive codon usage bias analysis in the FoxP2 gene among a diverse group of animals including fishes, birds, reptiles, and mammals. We observed that in the genome of fishes for the FoxP2 gene, codons ending with C or G were most frequently used, while in birds, reptiles, and mammals, codons ending with T or A were most frequently used. A higher ENC value was observed for the FoxP2 gene indicating a lower CUB. Parity role two-bias plots suggested that apart from mutation pressure, other factors such as natural selection might have influenced the CUB. The frequency distribution of the ENC observed and ENC expected ratio revealed that mutation pressure plays a key role in the patterns of codon usage of FoxP2. Besides, correspondence analysis exposed the composition of the nucleobase under mutation bias affects the codon usage of the FoxP2 gene. However, neutrality plots revealed the major role of natural selection over mutation pressure in the CUB of FoxP2. In addition, the codon usage patterns for FoxP2 among the selected genomes suggested that nature has favored nearly all the synonymous codons for encoding the corresponding amino acid. The uniform usage of 12 synonymous codons for FoxP2 was observed among the species of birds. The amino acid usage frequency for FoxP2 revealed that the amino acids Leucine, Glutamine, and Serine were predominant over other amino acids among all the species of fishes, birds, reptiles, and mammals.
Collapse
Affiliation(s)
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial College, Hailakandi 788150, Assam, India
- Correspondence:
| |
Collapse
|
128
|
Moqtaderi Z, Brown S, Bender W. Genome-wide oscillations in G + C density and sequence conservation. Genome Res 2021; 31:2050-2057. [PMID: 34649930 PMCID: PMC8559709 DOI: 10.1101/gr.274332.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes typically show a uniform G + C content among chromosomes, but on smaller scales, many species have a G + C density that fluctuates with a characteristic wavelength. This oscillation is evident in many insect species, with wavelengths ranging between 700 bp and 4 kb. Measures of evolutionary conservation oscillate in phase with G + C content, with conserved regions having higher G + C. Loci with large regulatory regions show more regular oscillations; coding sequences and heterochromatic regions show little or no oscillation. There is little oscillation in vertebrate genomes in regions with densely distributed mobile repetitive elements. However, species with few repeats show oscillation in both G + C density and sequence conservation. These oscillations may reflect optimal spacing of cis-regulatory elements.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Susan Brown
- Department of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
129
|
Sheng J, She X, Liu X, Wang J, Hu Z. Comparative analysis of codon usage patterns in chloroplast genomes of five Miscanthus species and related species. PeerJ 2021; 9:e12173. [PMID: 34631315 PMCID: PMC8466072 DOI: 10.7717/peerj.12173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Miscanthus is not only a perennial fiber biomass crop, but also valuable breeding resource for its low-nutrient requirements, photosynthetic efficiency and strong adaptability to environment. In the present study, the codon usage patterns of five different Miscanthus plants and other two related species were systematically analyzed. The results indicated that the cp genomes of the seven representative species were preference to A/T bases and A/T-ending codons. In addition, 21 common high-frequency codons and 4–11 optimal codons were detected in the seven chloroplast genomes. The results of ENc-plot, PR2-plot and neutrality analysis revealed the codon usage patterns of the seven chloroplast genomes are influenced by multiple factors, in which nature selection is the main influencing factor. Comparative analysis of the codon usage frequencies between the seven representative species and four model organisms suggested that Arabidopsis thaliana, Populus trichocarpa and Saccharomyces cerevisiae could be considered as preferential appropriate exogenous expression receptors. These results might not only provide important reference information for evolutionary analysis, but also shed light on the way to improve the expression efficiency of exogenous gene in transgenic research based on codon optimization.
Collapse
Affiliation(s)
- Jiajing Sheng
- Nantong University, School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, China
| | | | - Xiaoyu Liu
- Nantong University, School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, China
| | - Jia Wang
- Anhui University of Science and Technology, Huainan, China
| | | |
Collapse
|
130
|
Mazumder GA, Uddin A, Chakraborty S. Analysis of codon usage bias in mitochondrial CO gene among platyhelminthes. Mol Biochem Parasitol 2021; 245:111410. [PMID: 34487743 DOI: 10.1016/j.molbiopara.2021.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
The phenomenon of non-uniform usage of the synonymous codons, where some codons are given more preference to others, is known as codon usage bias (CUB). CUB is known to be determined by two major evolutionary forces i.e. mutation pressure and selection. We used various approaches to understand the codon usage pattern in mitochondrial CO (MT-CO) genes involved in complex IV of the respiratory chain (RC) as no work was reported yet. Our present study revealed that CUB was relatively high and the coding sequences were rich in A and T. Correspondence analysis further indicated that A/T compositional properties under mutational pressure might be affecting the codon usage pattern and was different in different classes for MT-CO gene. A highly significant correlation between A% and A3%, T% and T3%, G% and G3%, C% and C3%, GC% and GC3% in all the classes indicated that compositional constraints under mutational pressure and natural selection might affect the CUB. Neutrality plot indicated that both natural selection and mutational bias affected the CUB, where, natural selection played the major role as compared to mutational pressure.
Collapse
Affiliation(s)
- Gulshana A Mazumder
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
131
|
|
132
|
Bordoloi H, Nirmala SR. Codon usage bias analysis of genes linked with esophagus cancer. Bioinformation 2021; 17:731-740. [PMID: 35540696 PMCID: PMC9049095 DOI: 10.6026/97320630017731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Esophageal cancer involves multiple genetic alternations. A systematic codon usage bias analysis was completed to investigate the bias among the esophageal cancer responsive genes. GC-rich genes were low (average effective number of codon value was 49.28). CAG and GTA are over-represented and under-represented codons, respectively. Correspondence analysis, neutrality plot, and parity rule 2 plot analysis confirmed the dominance over mutation pressure in modulating the codon usage pattern of genes linked with esophageal cancer.
Collapse
Affiliation(s)
- Hemashree Bordoloi
- Deptartment of Electronics and Communication Engineering, Gauhati University, Assam, Indi
- Department of Electronics and Communication Engineering, Assam Don Bosco University, Assam, India
| | - SR Nirmala
- School of Electronics and Communication Engineering, KLE Technological University, Karnataka, India
| |
Collapse
|
133
|
Li G, Zhang L, Xue P. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species. Gene 2021; 802:145866. [PMID: 34352297 DOI: 10.1016/j.gene.2021.145866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Exploring the molecular identities and the genetic diversity of a plant species is crucial in figuring out the evolutionary pressure of genes as well as in molecular breeding application. Nineteen chloroplast genomes of Panicum species in the National Center for Biotechnology Information database were downloaded and analyzed. The base composition, the effective number of codons, the relative synonymous codon usage, the codon bias index and the codon adaptation index of all genes in all chloroplast genomes, as well as the correlation coefficient among them, were calculated and discussed. The correspondence analysis and the clustering characteristics among nineteen genomes base on the relative synonymous codon usage values of nineteen chloroplast genomes were calculated and analyzed. In order to figuring out the evolutionary diversity of certain genes, the codon usage pattern of forty-one typical genes were separately counted and compared. Summations of their standard deviations were considered to evaluate their genetic diversities. The results of codon usage pattern showed that all genes were obvious AU-rich ones in chloroplast genomes of Panicum species, revealing that the natural selection was the main factor that influenced their evolutionary process. The correspondence and clustering analysis among nineteen chloroplast genomes showed that the overall evolutionary differences among them were not significant. However, the analysis on the genetic diversity of tyical genes showed that the degrees of diversity are different, and that the shorter sequences are more prone to instability. These findings would improve our understanding on the evolution of chloroplast genomes of Panicum species and be useful for further study on their evolutionary phenomenon.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronics Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronics Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronics Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
134
|
Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB. Genes (Basel) 2021; 12:genes12081169. [PMID: 34440343 PMCID: PMC8393687 DOI: 10.3390/genes12081169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Giardia duodenalis, a flagellated parasitic protozoan, the most common cause of parasite-induced diarrheal diseases worldwide. Codon usage bias (CUB) is an important evolutionary character in most species. However, G. duodenalis CUB remains unclear. Thus, this study analyzes codon usage patterns to assess the restriction factors and obtain useful information in shaping G. duodenalis CUB. The neutrality analysis result indicates that G. duodenalis has a wide GC3 distribution, which significantly correlates with GC12. ENC-plot result—suggesting that most genes were close to the expected curve with only a few strayed away points. This indicates that mutational pressure and natural selection played an important role in the development of CUB. The Parity Rule 2 plot (PR2) result demonstrates that the usage of GC and AT was out of proportion. Interestingly, we identified 26 optimal codons in the G. duodenalis genome, ending with G or C. In addition, GC content, gene expression, and protein size also influence G. duodenalis CUB formation. This study systematically analyzes G. duodenalis codon usage pattern and clarifies the mechanisms of G. duodenalis CUB. These results will be very useful to identify new genes, molecular genetic manipulation, and study of G. duodenalis evolution.
Collapse
|
135
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
136
|
Abstract
Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III). Phylogroups I and II included viral strains from China, while phylogroup III contained strains from Europe, North America, and Asia. Phylogroups I and II are tentatively thought to be of Chinese origin. Next, compositional property analysis revealed that a high frequency of nucleotide A and A-end codons was used in the APPV genome. Intriguingly, the analysis of preferred codons revealed that the AGA[Arg] and AGG[Arg] were overrepresented. Dinucleotide CC was found to be overrepresented, and dinucleotide CG was underrepresented. Furthermore, it was found that the weak codon usage bias of APPV was mainly dominated by selection pressures versus mutational forces. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses showed that the codon usage patterns of phylogroup II and III were more similar to the one of a pig than phylogroup I, suggesting that phylogroup II and III may be more adaptive to pigs. Overall, this study provides insights into APPV evolution through phylogeny and codon usage pattern analysis.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
137
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
138
|
Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics 2021; 113:2177-2188. [PMID: 34019999 PMCID: PMC8131179 DOI: 10.1016/j.ygeno.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, MD, USA.
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India.
| |
Collapse
|
139
|
Hussain S, Rasool ST, Pottathil S. The Evolution of Severe Acute Respiratory Syndrome Coronavirus-2 during Pandemic and Adaptation to the Host. J Mol Evol 2021; 89:341-356. [PMID: 33993372 PMCID: PMC8123100 DOI: 10.1007/s00239-021-10008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 12/02/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 is a zoonotic virus with a possible origin in bats and potential transmission to humans through an intermediate host. When zoonotic viruses jump to a new host, they undergo both mutational and natural selective pressures that result in non-synonymous and synonymous adaptive changes, necessary for efficient replication and rapid spread of diseases in new host species. The nucleotide composition and codon usage pattern of SARS-CoV-2 indicate the presence of a highly conserved, gene-specific codon usage bias. The codon usage pattern of SARS-CoV-2 is mostly antagonistic to human and bat codon usage. SARS-CoV-2 codon usage bias is mainly shaped by the natural selection, while mutational pressure plays a minor role. The time-series analysis of SARS-CoV-2 genome indicates that the virus is slowly evolving. Virus isolates from later stages of the outbreak have more biased codon usage and nucleotide composition than virus isolates from early stages of the outbreak.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia.
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
140
|
Chakraborty S, Sophiarani Y, Uddin A. Free energy of mRNA positively correlates with GC content in chloroplast transcriptomes of edible legumes. Genomics 2021; 113:2826-2838. [PMID: 34147635 DOI: 10.1016/j.ygeno.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/01/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
In the present study, the results of nucleotide composition analysis showed that the legume chloroplast (cp) transcriptomes were AT rich. From the neutrality plot, we observed that natural selection might have played a major role, while mutation pressure played a minor role in the CUB of cp transcriptomes. Highly significant (p < 0.05) negative correlation was found between mRNA free energy (mFE) and scaled chi-square for entire mRNA in Cicer arietinum and Lens culinaris suggesting that the release of higher energy by entire mRNA molecule might be associated with higher degree of codon usage bias in these two crop plants. Further, highly significant (p < 0.01, p < 0.05) positive correlation of mFE for entire mRNA was found with GC3 and that of mFE for 39 bases with GC, GC1, GC2 and GC3 contents among all the legumes. This indicated that higher GC content might induce the release of more free energy by cp transcriptomes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | | | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, India
| |
Collapse
|
141
|
Genome-Wide Analysis of Codon Usage Patterns of SARS-CoV-2 Virus Reveals Global Heterogeneity of COVID-19. Biomolecules 2021; 11:biom11060912. [PMID: 34207362 PMCID: PMC8233742 DOI: 10.3390/biom11060912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons' A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome's level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.
Collapse
|
142
|
Guo F, Roy A, Wang R, Yang J, Zhang Z, Luo W, Shen X, Chen RA, Irwin DM, Shen Y. Host Adaptive Evolution of Avian-Origin H3N2 Canine Influenza Virus. Front Microbiol 2021; 12:655228. [PMID: 34194404 PMCID: PMC8236823 DOI: 10.3389/fmicb.2021.655228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first isolation in around 2007, the avian-origin H3N2 canine influenza virus (CIV) has become established and continues to circulate in dog populations. This virus serves as a useful model for deciphering the complex evolutionary process of interspecies transmission of influenza A virus (IAV) from one species to its subsequent circulation in another mammalian host. The present investigation is a comprehensive effort to identify and characterize genetic changes that accumulated in the avian-origin H3N2 CIV during its circulation in the dog. We revealed that H3N2 CIV experiences greater selection pressure with extremely high global non-synonymous to synonymous substitution ratios per codon (dN/dS ratio) for each gene compared to the avian reservoir viruses. A total of 54 amino acid substitutions were observed to have accumulated and become fixed in the H3N2 CIV population based on our comprehensive codon-based frequency diagram analysis. Of these substitutions, 11 sites also display high prevalence in H3N8 CIV, indicating that convergent evolution has occurred on different lineages of CIV. Notably, six substitutions, including HA-G146S, M1-V15I, NS1-E227K, PA-C241Y, PB2-K251R, and PB2-G590S, have been reported to play imperative roles in facilitating the transmission and spillover of IAVs across species barriers. Most of these substitutions were found to have become fixed in around 2015, which might have been a favorable factor that facilitating the spread of these CIV lineages from South Asia to North America and subsequent further circulation in these areas. We also detected 12 sites in six viral genes with evidence for positive selection by comparing the rates of non-synonymous and synonymous substitutions at each site. Besides, our study reports trends of enhanced ongoing adaptation of H3N2 CIV to their respective host cellular systems, based on the codon adaptation index analysis, which points toward increasing fitness for efficient viral replication. In addition, a reduction in the abundance of the CpG motif, as evident from an analysis of relative dinucleotide abundance, may contribute to the successful evasion of host immune recognition. The present study provides key insights into the adaptive changes that have accumulated in the avian-origin H3N2 viral genomes during its establishment and circulation into dog populations.
Collapse
Affiliation(s)
- Fucheng Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Ruichen Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinjin Yang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Rui-Ai Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
143
|
Wang L, Li Y, Guo Z, Yi Y, Zhang H, Shangguan H, Huang C, Ge J. Genetic changes and evolutionary analysis of canine circovirus. Arch Virol 2021; 166:2235-2247. [PMID: 34104994 DOI: 10.1007/s00705-021-05125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
Canine circovirus (canineCV) has been found to be associated with vasculitis, hemorrhage, hemorrhagic enteritis, and diarrhea of canines. CanineCV, like other circoviruses, may also be associated with lymphoid depletion and immunosuppression. This circovirus has been detected worldwide in different countries and species. Recombination and mutation events in the canineCV genome have been described, indicating that the virus is continuing to evolve. However, the origin, codon usage patterns, and host adaptation of canineCV remain to be studied. Here, the coding sequences of 93 canineCV sequences available in the GenBank database were used for analysis. The results showed that canineCV sequences could be classified into five genotypes, as confirmed by phylogenetic and principal component analysis (PCA). Maximum clade credibility (MCC) and maximum-likelihood (ML) trees suggested that canineCV originated from bat circovirus. G/T and A/C nucleotide biases were observed in ORF1 and ORF2, respectively, and a low codon usage bias (CUB) was found in canineCV using an effective number of codon (ENC) analysis. Correlation analysis, ENC plot analysis and neutrality plot analysis indicated that the codon usage pattern was mainly shaped by natural selection. Codon adaptation index (CAI) analysis, relative codon deoptimization index (RCDI) analysis, and similarity index (SiD) analysis revealed a better adaption to Vulpes vulpes than to Canis familiaris. Furthermore, a cross-species transmission hypothesis that canineCV may have evolved from bats (origin analysis) and subsequently adapted to wolves, arctic foxes, dogs, and red foxes, was proposed. This study contributes to our understanding of the factors related to canineCV evolution and host adaption.
Collapse
Affiliation(s)
- Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Han Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chengshi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, China.
| |
Collapse
|
144
|
Patil SS, Indrabalan UB, Suresh KP, Shome BR. Analysis of codon usage bias of classical swine fever virus. Vet World 2021; 14:1450-1458. [PMID: 34316191 PMCID: PMC8304411 DOI: 10.14202/vetworld.2021.1450-1458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease in pigs causing 100% mortality in susceptible adult pigs and piglets. High mortality rate in pigs causes huge economic loss to pig farmers. CSFV has a positive-sense RNA genome of 12.3 kb in length flanked by untranslated regions at 5’ and 3’ end. The genome codes for a large polyprotein of 3900 amino acids coding for 11 viral proteins. The 1300 codons in the polyprotein are coded by different combinations of three nucleotides which help the infectious agent to evolve itself and adapt to the host environment. This study performed and employed various methods/techniques to estimate the changes occurring in the process of CSFV evolution by analyzing the codon usage pattern. Materials and Methods: The evolution of viruses is widely studied by analyzing their nucleotides and coding regions/codons using various methods. A total of 115 complete coding regions of CSFVs including one complete genome from our laboratory (MH734359) were included in this study and analysis was carried out using various methods in estimating codon usage bias and evolution. This study elaborates on the factors that influence the codon usage pattern. Results: The effective number of codons (ENC) and relative synonymous codon usage showed the presence of codon usage bias. The mononucleotide (A) has a higher frequency compared to the other mononucleotides (G, C, and T). The dinucleotides CG and CC are underrepresented and overrepresented. The codons CGT was underrepresented and AGG was overrepresented. The codon adaptation index value of 0.71 was obtained indicating that there is a similarity in the codon usage bias. The principal component analysis, ENC-plot, Neutrality plot, and Parity Rule 2 plot produced in this article indicate that the CSFV is influenced by the codon usage bias. The mutational pressure and natural selection are the important factors that influence the codon usage bias. Conclusion: The study provides useful information on the codon usage analysis of CSFV and may be utilized to understand the host adaptation to virus environment and its evolution. Further, such findings help in new gene discovery, design of primers/probes, design of transgenes, determination of the origin of species, prediction of gene expression level, and gene function of CSFV. To the best of our knowledge, this is the first study on codon usage bias involving such a large number of complete CSFVs including one sequence of CSFV from India.
Collapse
Affiliation(s)
- Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
145
|
Kumar U, Khandia R, Singhal S, Puranik N, Tripathi M, Pateriya AK, Khan R, Emran TB, Dhama K, Munjal A, Alqahtani T, Alqahtani AM. Insight into Codon Utilization Pattern of Tumor Suppressor Gene EPB41L3 from Different Mammalian Species Indicates Dominant Role of Selection Force. Cancers (Basel) 2021; 13:cancers13112739. [PMID: 34205890 PMCID: PMC8198080 DOI: 10.3390/cancers13112739] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present study envisaged the codon usage pattern analysis of tumor suppressor gene EPB41L3 for the human, brown rat, domesticated cattle, and Sumatran orangutan. Most amino acids are coded by more than one synonymous codon, but they are used in a biased manner. The codon usage bias results from multiple factors like compositional properties, dinucleotide abundance, neutrality, parity, tRNA pool, etc. Understanding codon bias is central to fields as diverse as molecular evolution, gene expressivity, protein translation, and protein folding. This kind of studies is important to see the effects of various evolutionary forces on codon usage. The present study indicated that the selection force is dominant over other forces shaping codon usage in the envisaged organisms. Abstract Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
- Correspondence: (R.K.); (K.D.)
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Meghna Tripathi
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Atul Kumar Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Raju Khan
- Microfluidics & MEMS Center, (MRS & CFC), CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- Correspondence: (R.K.); (K.D.)
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| |
Collapse
|
146
|
Analysis of synonymous codon usage bias in human monocytes, B, and T lymphocytes based on transcriptome data. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
147
|
Evolutionary Patterns of Codon Usage in Major Lineages of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2021; 13:v13061044. [PMID: 34072978 PMCID: PMC8228872 DOI: 10.3390/v13061044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is economically important and characterized by its extensive variation. The codon usage patterns and their influence on viral evolution and host adaptation among different PRRSV strains remain largely unknown. Here, the codon usage of ORF5 genes from lineages 1, 3, 5, and 8, and MLV strains of type 2 PRRSV in China was analyzed. A compositional property analysis of ORF5 genes revealed that nucleotide C is most frequently used at the third position of codons, accompanied by rich GC3s. The effective number of codon (ENC) and codon pair bias (CPB) values indicate that all ORF5 genes have low codon bias and the differences in CPB scores among four lineages are almost not significant. When compared with host codon usage patterns, lineage 1 strains show higher CAI and SiD values, with a high similarity to pig, which might relate to its predominant epidemic propensity in the field. The CAI, RCDI, and SiD values of ORF5 genes from different passages of MLV JXA1R indicate no relation between attenuation and CPB or codon adaptation decrease during serial passage on non-host cells. These findings provide a novel way of understanding the PRRSV's evolution, related to viral survival, host adaptation, and virulence.
Collapse
|
148
|
Guo Z, Wang L, Niu L, Shangguan H, Huang C, Yi Y, Zhang Y, Gao M, Ge J. Genetic and evolutionary analysis of emerging HoBi-like pestivirus. Res Vet Sci 2021; 137:217-225. [PMID: 34023545 DOI: 10.1016/j.rvsc.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
HoBi-like pestivirus, an emerging species within the Pestivirus genus, is an important pathogen associated with a variety of clinical manifestations of ruminants, especially cattle. HoBi-like pestiviruses were identified in several countries and from different hosts, and raised concerns with regard to their acute and persistent infections, which is implicated in economic losses for cattle farmers. However, the transmission path, codon usage bias, and host adaptation of the virus has not been studied. Hence, we performed the analysis the spatio-temporal transmission based on the available 5'-UTR sequences of HoBi-like pestivirus, and then conducted codon analysis of the complete coding sequence of the virus. The results show the virus appeared in 1952 (95% HPD: 1905-1985) and may have originated in India. In addition, Italy is the hub for the spread of the virus. Moreover, six potential recombination events and two complex recombination events were discovered. Analysis of codon usage patterns revealed that the effective number of codon (ENC) values with an average of 50.85, and the codon usage bias is greatly affected by natural selection, which is different from the previous BVDV-1, 2. Finally, codon adaptation index (CAI) analysis shows that pigs may be the potential origin species of the HoBi-like pestivirus. These findings will contribute to more effective control of the spread of the virus, extend the knowledge about the genetic and evolutionary features of HoBi-like viruses and provide some information for vaccine research.
Collapse
Affiliation(s)
- Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengshi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ying Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yannan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
149
|
Yang J, Ding H, Kan X. Codon usage patterns and evolution of HSP60 in birds. Int J Biol Macromol 2021; 183:1002-1012. [PMID: 33971236 DOI: 10.1016/j.ijbiomac.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein 60 (HSP60) is highly conserved from prokaryotic to eukaryotic organisms, acting as molecular chaperone and other vital biological functions. In spite of increasing knowledge of HSP60, its evolutionary mechanism on functional adaption is still far from completely understood. Moreover, analysis of codon usage bias (CUB) is a powerful tool to understand evolutionary association studies. However, so far, as we know, no scientific work on CUB of HSP60 in birds has been reported. In this study, we provide a comprehensive analysis on the codon usage and molecular evolution of HSP60 across birds. The results indicated that HSP60 had a weak codon usage bias with high ENC values (range from 52.66 to 61), low RSCU, and A/T-ending codons were mostly preferred. Meanwhile, it was considered that mutation, natural selection, and genetic drift combined to shape codon usage patterns with different strength proportions among various birds for HSP60. Then, the LRT tests suggested that different lineages of birds might be under similar selective pressures. Besides, the two positive selection sites (151 and 131) were detected and might undergo radical changes. These findings would contribute to understand function diversity and molecular evolution of HSP60 in birds.
Collapse
Affiliation(s)
- Jianke Yang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China.
| |
Collapse
|
150
|
de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, Wolf JB. Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias. Mol Biol Evol 2021; 38:3247-3266. [PMID: 33871580 PMCID: PMC8321536 DOI: 10.1093/molbev/msab099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.
Collapse
Affiliation(s)
- Janaina Lima de Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.,Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Atahualpa Castillo Morales
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Laurence D Hurst
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico 04510, Mexico
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|