101
|
Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 2008; 8:212-26. [PMID: 18292776 PMCID: PMC2484121 DOI: 10.1038/nrc2345] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein - small integrin-binding ligand N-linked glycoproteins (SIBLINGs) - are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Akeila Bellahcène
- Metastasis Research Laboratory, University of Liege, Tour de Pathologie, -1, Bât. B23, Sart Tilman via 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
102
|
Tsuji H, Tohru U, Hirotsugu U, Masanori I, Yuji H, Takashi K. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation. Int J Urol 2007; 14:630-4. [PMID: 17645608 DOI: 10.1111/j.1442-2042.2007.01783.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE In this study, we measured urinary osteopontin (OPN) concentrations in urolithiasis patients as well as in healthy volunteers, and investigated the relationship between urinary excretion of OPN and urinary supersaturation level. METHODS Supersaturation levels (AP indexes) were determined by using Tiselius's index. Crystals with a maximum diameter of 12 ìm or larger and less than 5 ìm were counted by scanning electron microscopy. A sum of cross-sectional areas of crystals was also calculated as the total crystal volume (VT). RESULTS Urinary OPN concentrations in the group with no urinary stone were significantly higher than that in the urolithiasis patients with a tendency toward stone enlargement. AP indexes were observed to be significantly higher in patients with stone enlargement, whereas urinary OPN concentrations bore no definite relation to the urinary supersaturation levels. VT and number of large crystals (12 ìm or larger) in patients with a tendency toward stone enlargement were higher than healthy volunteers, but no differences were found between the number of micro-crystal with the diameter of less than 5 ìm. On the basis of the plots of VT and OPN concentrations, regression analysis revealed that VT and log OPN had a significant correlation. CONCLUSION Urinary OPN tended to be lower in cases with larger crystal volumes and is potentially associated with crystal growth for inhibitory effect.
Collapse
Affiliation(s)
- Hidenori Tsuji
- Departments of Urology, Kinki University School of Medicine, 377-2 Ohnohigashi, Osakasayama city, Osaka 589-8511, Japan.
| | | | | | | | | | | |
Collapse
|
103
|
Grohe B, O'Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 2007; 129:14946-51. [PMID: 17994739 DOI: 10.1021/ja0745613] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mineral-associated proteins have been proposed to regulate many aspects of biomineralization, including the location, type, orientation, shape, and texture of crystals. To understand how proteins achieve this exquisite level of control, we are studying the interaction between the phosphoprotein osteopontin (OPN) and the biomineral calcium oxalate monohydrate (COM). In the present study, we have synthesized peptides corresponding to amino acids 220-235 of rat bone OPN (pSHEpSTEQSDAIDpSAEK), one of several highly phosphorylated, aspartic-, and glutamic acid-rich sequences found in the protein. To investigate the role of phosphorylation in interaction with crystals, peptides containing no (P0), one (P1), or all three (P3) phosphates were prepared. Using a novel combination of confocal microscopy and scanning electron microscopy, we show that these peptides adsorb preferentially to {100} faces of COM and inhibit growth of these faces in a phosphorylation-dependent manner. To characterize the mechanism of adsorption of OPN peptides to COM, we have performed the first atomic-scale molecular-dynamics simulation of a protein-crystal interaction. P3 adsorbs to the {100} face much more rapidly than P1, which in turn adsorbs more rapidly than P0. In all cases, aspartic and glutamic acid, not phosphoserine, are the amino acids in closest contact with the crystal surface. These studies have identified a COM face-specific adsorption motif in OPN and delineated separate roles for carboxylate and phosphate groups in inhibition of crystal growth by mineral-associated phosphoproteins. We propose that the formation of close-range, stable, and face-specific interactions is a key factor in the ability of phosphoproteins to regulate biomineralization processes.
Collapse
Affiliation(s)
- Bernd Grohe
- CIHR Group in Skeletal Development and Remodeling, School of Dentistry, University of Western Ontario, London, Canada
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Selkirk SM, Morrow J, Barone TA, Hoffer A, Lock J, DeChant A, Mangla S, Plunkett RJ, Miller RH. Elevation of osteopontin levels in brain tumor cells reduces burden and promotes survival through the inhibition of cell dispersal. J Neurooncol 2007; 86:285-96. [PMID: 17928956 DOI: 10.1007/s11060-007-9477-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
Abstract
Osteopontin (OPN) is a pleotrophic molecule that has been associated with multiple disorders of the central nervous system (CNS). Its roles in CNS malignancy are unclear but suggest that higher levels of OPN expression correlate with increased tumor grade and increased migratory capacity of tumor cells. In this study OPN cDNA was cloned into a retroviral vector and used to infect F98 Fischer rat-derived glioma cells and U87 human-derived glioblastoma multiforme (GBM) cells in vitro. Cells expressing high levels of OPN migrated less distance than control cells in vitro. This effect was not RGD mediated, but was reversed in the presence of c-Jun N-terminal kinase (JNK) inhibitor suggesting that JNK1 is an essential component of a negative feedback loop affecting OPN activated signaling cascades. Implantation of tumor cells expressing high levels of OPN into adult Fischer rats and nude rats resulted in morphologically distinct tumors and prolonged host survival relative to controls. We propose that local produced, high level OPN expression limits the malignant character of glioma cells and that the downstream mechanisms involved represent pathways that may have therapeutic value in the treatment of human CNS malignancy.
Collapse
Affiliation(s)
- Stephen M Selkirk
- Department of Neurology, University Hospital of Cleveland, Hanna House 5, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:1087-97. [PMID: 17548669 DOI: 10.1158/1055-9965.epi-06-1008] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of cancer biomarkers to anticipate the outlines of disease has been an emerging issue, especially as cancer treatment has made such positive steps in the last few years. Progress in the development of consistent malignancy markers is imminent because advances in genomics and bioinformatics have allowed the examination of immense amounts of data. Osteopontin is a phosphorylated glycoprotein secreted by activated macrophages, leukocytes, and activated T lymphocytes, and is present in extracellular fluids, at sites of inflammation, and in the extracellular matrix of mineralized tissues. Several physiologic roles have been attributed to osteopontin, i.e., in inflammation and immune function, in mineralized tissues, in vascular tissue, and in kidney. Osteopontin interacts with a variety of cell surface receptors, including several integrins and CD44. Binding of osteopontin to these cell surface receptors stimulates cell adhesion, migration, and specific signaling functions. Overexpression of osteopontin has been found in a variety of cancers, including breast cancer, lung cancer, colorectal cancer, stomach cancer, ovarian cancer, and melanoma. Moreover, osteopontin is present in elevated levels in the blood and plasma of some patients with metastatic cancers. Therefore, suppression of the action of osteopontin may confer significant therapeutic activity, and several strategies for bringing about this suppression have been identified. This review looks at the recent advances in understanding the possible mechanisms by which osteopontin may contribute functionally to malignancy, particularly in breast cancer. Furthermore, the measurement of osteopontin in the blood or tumors of patients with cancer, as a way of providing valuable prognostic information, will be discussed based on emerging clinical data.
Collapse
Affiliation(s)
- Lígia R Rodrigues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
106
|
Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, Hayashi Y, Kohri K. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int 2007; 72:592-8. [PMID: 17519954 DOI: 10.1038/sj.ki.5002345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is one of the glycosylated phosphoproteins produced in the kidney that can modulate nephrolithiasis. We had previously found a modest association between OPN gene polymorphisms and the risk for urinary stone formation. In order to determine if sequence variants within the OPN gene could be linked to the risk of nephrolithiasis; we sequenced the entire OPN gene of 45 stone forming patients and 54 control patients of Japanese ancestry. We identified 61 polymorphisms and of these evaluated four haplotype-tagging single nucleotide polymorphisms in a total of 126 kidney stone cases and 214 healthy individuals; all of Japanese ancestry. There was a significant association of two of these haplotypes located in the OPN promoter with the relative probability of nephrolithiasis; one of increased and one of reduced risk. Our findings provide potential support for significant increased and decreased associations between OPN gene haplotypes and the relative potential of stone formation in the Japanese population. We suggest that such genetic findings may help to clarify the function of OPN in nephrolithiasis.
Collapse
Affiliation(s)
- B Gao
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ. Improved model for inhibition of pathological mineralization based on citrate-calcium oxalate monohydrate interaction. Chemphyschem 2007; 7:2081-4. [PMID: 16941562 DOI: 10.1002/cphc.200600371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew L Weaver
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | |
Collapse
|
108
|
Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK. Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 2007; 93:1768-77. [PMID: 17496021 PMCID: PMC1948058 DOI: 10.1529/biophysj.106.101881] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine.
Collapse
Affiliation(s)
- Adam Taller
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
109
|
Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 2007; 282:19463-72. [PMID: 17500062 DOI: 10.1074/jbc.m703055200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a highly modified integrin-binding protein found in all body fluids. Expression of OPN is strongly correlated with poor prognosis in many different human cancers, suggesting an important but poorly understood role for this protein in tumorigenesis and metastasis. The protein exists in a number of different isoforms differing in the degree of post-translational modifications that are likely to exhibit different functional properties. This study examines for the first time the post-translational modifications of OPN from transformed cells and the effects of these modifications on cell biology. We have characterized the complete phosphorylation and glycosylation patterns of OPN expressed by murine ras-transformed fibroblasts (FbOPN) and differentiating osteoblasts (ObOPN) by a combination of mass spectrometric analyses and Edman degradation. Mass spectrometric analysis showed masses of 34.9 and 35.9 kDa for FbOPN and ObOPN, respectively. Enzymatic dephosphorylation, sequence, and mass analyses demonstrated that FbOPN contains approximately four phosphate groups distributed over 16 potential phosphorylation sites, whereas ObOPN contains approximately 21 phosphate groups distributed over 27 sites. Five residues are O-glycosylated in both isoforms. These residues are fully modified in FbOPN, whereas one site is partially glycosylated in ObOPN. Although both forms of OPN mediated robust integrin-mediated adhesion of mouse ras-transformed fibroblasts, the less phosphorylated FbOPN mediated binding of MDA-MD-435 human tumor cells almost 6-fold more than the heavy phosphorylated ObOPN. These results strongly support the hypothesis that the degree of phosphorylation of OPN produced by different cell types can regulate its function.
Collapse
Affiliation(s)
- Brian Christensen
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
110
|
Erikson DW, Way AL, Chapman DA, Killian GJ. Detection of osteopontin on Holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 2007; 133:909-17. [PMID: 17616721 DOI: 10.1530/rep-06-0228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteopontin (OPN) is a secreted extracellular matrix phosphoprotein identified in various tissues and fluids including those of the male and female reproductive tracts. OPN was previously identified as a 55 kDa high fertility marker in Holstein bull seminal plasma, produced by the ampulla and the vesicular gland. The objectives of this study were to characterize OPN on ejaculated and cauda epididymal sperm using immunofluorescence and western blot analysis, and to assess the role of sperm OPN in fertilization. Solubilized sperm membrane proteins from ejaculated and cauda epididymal sperm were separated by 1D SDS-PAGE, transferred to nitrocellulose, and probed with an antibody to bovine milk OPN. A 35 kDa protein was detected by this antibody in both ejaculated and cauda epididymal sperm membranes. Analyses also recognized OPN at 55 and 25 kDa in cauda epididymal fluid and testicular parenchyma homogenates respectively. Immunofluorescent analysis of ejaculated and cauda epididymal sperm showed OPN localization in a well-defined band in the postacrosomal region of the sperm head and also on the midpiece. Results ofin vitrofertilization experiments showed that sperm treated with an antibody to OPN fertilized fewer oocytes than sperm treated with control medium while increasing incidence of polyspermy, suggesting a role of sperm-associated OPN in fertilization and a block to polyspermy. These studies demonstrate that OPN exists at multiple molecular weight forms in the bull reproductive tract and its presence on ejaculated sperm may signal its importance in fertilization by interacting with integrins or other proteins on the oocyte plasma membrane.
Collapse
Affiliation(s)
- David W Erikson
- Department of Dairy & Animal Science, John O Almquist Research Center, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
111
|
Abstract
The production of concentrated urine inevitably leads to the precipitation of poorly soluble waste salts in the renal tubular fluid. These crystallization processes are physiologic and without consequences as long as all crystals are excreted with the urine. The retention of crystals in the renal tubules, however, may lead to tubular nephrocalcinosis. Here, we present a brief survey of the possible mechanisms involved in this process, which seems to depend predominantly on the presence of regenerating/(re)differentiating cells in the renal tubules. Crystal binding to the surface of these cells can be mediated by a number of luminal membrane molecules, including acidic fragment of nucleolin-related protein, annexin-II, osteopontin, and hyaluronan.
Collapse
Affiliation(s)
- C F Verkoelen
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
112
|
Ogbureke KUE, Nikitakis NG, Warburton G, Ord RA, Sauk JJ, Waller JL, Fisher LW. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol 2007; 43:920-32. [PMID: 17306612 DOI: 10.1016/j.oraloncology.2006.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
Various combinations of the SIBLING family of proteins have been found to be up-regulated in many human cancers and have been linked to different stages of tumor progression, including metastasis. Bone sialoprotein (BSP), osteopontin (OPN) and dentin matrix protein 1 (DMP1) specifically bind and activate MMP-2, MMP-3, and MMP-9, respectively. These proteases have also been shown to play important roles in oral squamous cell carcinoma (OSCC) invasion and metastasis. However, with the exception of OPN, there are no reports on the expression of the family of five SIBLING proteins in OSCC. This study examines the expression patterns of the SIBLING family (and MMP partners when known) in OSCC, correlating expression to outcome variables. Archived paraffin sections of 87 cases of primary OSCC were screened by immunohistochemistry for the SIBLINGs and their MMP partners. Three SIBLINGs (BSP, DSPP, and OPN), were expressed in OSCC, while DMP1 and MEPE expression were never observed. Furthermore, BSP and OPN were always expressed with their known MMP partners, MMP-2 and MMP-3, respectively. Poorly differentiated tumors exhibited reduced or no immunoreactivity for BSP and OPN but increased immunoreactivity for DSPP. Seventy eight (90%) cases were positive for BSP and DSPP, while 79 cases (91%) were positive for OPN. Overall, 91% of the cases were positive for at least one SIBLING. There were no correlations between SIBLING expression and tumor size ("T"; of the Union Internationale Contre le Cancer [UICC]-TNM classification for OSCC), and between SIBLING expression and lymph node spread for the T1/T2 tumors. The levels of DSPP expression for floor of mouth and retromolar region tumors were higher than for tongue tumors. Statistically significant correlations were, however, found between the expression levels of BSP and MMP-2 (p<0.0001), BSP and MMP-3 (p<0.0001), and OPN and MMP-3 (p<0.0024). We conclude that BSP, DSPP, and OPN are highly up-regulated in OSCC. While the production of these SIBLINGs is independent of T, they correlate with oral location of tumor, cognate MMP expression, and for DSPP, the degree of tumor differentiation.
Collapse
Affiliation(s)
- Kalu U E Ogbureke
- Department of Oral Biology and Maxillofacial Pathology, AD1442, Medical College of Georgia, 1120 Fifteenth Avenue, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Ogbureke KUE, Fisher LW. SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. J Histochem Cytochem 2007; 55:403-9. [PMID: 17210923 DOI: 10.1369/jhc.6a7075.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family of secreted glycophosphoproteins includes bone sialoprotein (BSP), dentin matrix protein-1 (DMP1), dentin sialophosphoprotein (DSPP), osteopontin (OPN), and matrix extracellular phosphoglycoprotein (MEPE). For many years, they were thought in normal adults to essentially be limited to metabolically active mesenchymal cells that assembled the mineralized matrices of bones and teeth. Over the last decade they have also been upregulated in a variety of tumors. Three of these proteins (BSP, OPN, and DMP1) have been shown to interact with three matrix metalloproteinases (MMP-2, MMP-3, and MMP-9, respectively). Recently, all five SIBLINGs and their MMP partners when known were observed in specific elements of normal ductal epithelia in salivary gland and kidney. We have hypothesized that the SIBLINGs and their MMP partners may be expressed in ductal cells with high metabolic activity. In this paper, we show that all the SIBLINGs (except MEPE) and their MMP partners are expressed in the metabolically active epithelia of human eccrine sweat gland duct but not in the more passive ductal cells of the macaque (monkey) lacrimal gland. It is hypothesized that MEPE expression may be limited to cells involved in active phosphate transport. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Kalu U E Ogbureke
- Department of Oral Biology and Maxillofacial Pathology, AD1442, School of Dentistry, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
114
|
Electrophoretic separation and characterization of urinary glycosaminoglycans and their roles in urolithiasis. Carbohydr Res 2007; 342:79-86. [DOI: 10.1016/j.carres.2006.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/25/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
|
115
|
De Yoreo JJ, Wierzbicki A, Dove PM. New insights into mechanisms of biomolecular control on growth of inorganic crystals. CrystEngComm 2007. [DOI: 10.1039/b713006f] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
116
|
Sikirić MD, Füredi-Milhofer H. The influence of surface active molecules on the crystallization of biominerals in solution. Adv Colloid Interface Sci 2006; 128-130:135-58. [PMID: 17254533 DOI: 10.1016/j.cis.2006.11.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the following article studies pertaining to "in situ" interactions of growing biogenic crystals (calcium phosphates, carbonates and oxalates) with, soluble, surface active molecules, including small, highly charged organic molecules, natural and synthetic polymers and synthetic surfactants, are discussed. Such interactions are at the roots of crystallization processes occurring in nature (biological mineralization) and in the controlled production of materials with well defined crystal structure, morphology and phase composition. The main characteristics of the crystals, including crystallographic data, and of the organic molecules, including their molecular structures, are briefly described. Most of the model crystals are crystal hydrates, whose dominant crystal planes are covered with continuous layers of structural water molecules (hydrated layer). The experimental methods reviewed include kinetic experiments determining induction times and/or the rates and rate controlling mechanisms of seeded and unseeded crystallization, techniques for the characterization of the nascent solid phase(s), and techniques, suitable for the assessment of interactions on the molecular level. Numerous examples show that the dominant mechanism underlying host crystal/additive interactions is selective adsorption of the additive at the crystal/solution interface, with the main driving forces ranging from purely electrostatic to highly specific recognition of crystal faces by the additive. Selective electrostatic interactions take place between growing crystals and flexible, highly charged small and macromolecules and/or surfactants because of differing ionic structures and charges of the crystal planes, some of them being shielded by hydrated layers. As in solution, surfactant molecules at high concentrations self-assemble into various superstructures (hemimicelles, bilayers) at the crystal/solution interface. Recognition of crystal planes by rigid small molecules and macromolecules with partial beta-sheet conformation (such as proteins or polyelectrolytes) is highly specific. It requires a dimensional fit between the distances of constituent ions protruding from the affected crystal plane(s) and the distances between functional groups that are part of the additive molecules. The consequences of selective additive/crystal interactions range from changes in crystal growth morphology to changes in the composition of the crystallizing phase. Examples showing the dual role of macromolecules as initiators and retarders of crystallization are discussed.
Collapse
Affiliation(s)
- M Dutour Sikirić
- Laboratory of Radiochemistry, Department of Physical Chemistry, "Ruder Bosković" Institute, Zagreb Croatia
| | | |
Collapse
|
117
|
De Yoreo JJ, Qiu SR, Hoyer JR. Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol 2006; 291:F1123-31. [PMID: 17082348 DOI: 10.1152/ajprenal.00136.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Calcium oxalate monohydrate (COM) is the primary constituent of the majority of renal stones. Osteopontin (OPN), an aspartic acid-rich urinary protein, and citrate, a much smaller molecule, are potent inhibitors of COM crystallization at levels present in normal urine. Current concepts of the role of site-specific interactions in crystallization derived from studies of biomineralization are reviewed to provide a context for understanding modulation of COM growth at a molecular level. Results from in situ atomic force microscopy (AFM) analyses of the effects of citrate and OPN on growth verified the critical role of site-specific interactions between these growth modulators and individual steps on COM crystal surfaces. Molecular modeling investigations of interactions of citrate with steps and faces on COM crystal surfaces provided links between the stereochemistry of interaction and the binding energy levels that underlie mechanisms of growth modification and changes in overall crystal morphology. The combination of in situ AFM and molecular modeling provides new knowledge that will aid rationale design of therapeutic agents for inhibition of stone formation.
Collapse
Affiliation(s)
- James J De Yoreo
- Biosecurity and NaoSciences Laboratory, Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, CA, USA
| | | | | |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Atomic force microscopy has been used recently to characterize the adhesion force between selected calcium oxalate crystal surfaces and biologically relevant chemical groups attached to the atomic force microscopy probe tip. These measurements have permitted comparisons of the adhesion properties of different, well defined crystal faces, as well as determination of the influence of solution-phase macromolecules on adhesion. These studies have produced new insight into the specific chemical interactions that regulate kidney stone formation. RECENT FINDINGS The adhesion force measurements have demonstrated that the large hexagonal (100) face of calcium oxalate monohydrate is the most adhesive. In contrast, the large (101) face of calcium oxalate dihydrate is the least adhesive. Carboxylate and amidinium groups on the atomic force microscopy tip exhibit equivalently large adhesion at a given crystal face, implicating specific binding to crystal surface lattice ions. Solution-phase macromolecules modulate adhesion in a face-selective manner, dependent on their chemical structures. SUMMARY The low adhesion force for calcium oxalate dihydrate predicts a decreased ability of these crystals to aggregate or attach to cells, and correlates with the relative absence of calcium oxalate dihydrate in kidney stones. These measurements provide new understanding of the macromolecular regulation of crystal aggregation and attachment to cells in stone formation.
Collapse
Affiliation(s)
- Jeffrey A Wesson
- Department of Medicine/Nephrology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53295, USA.
| | | |
Collapse
|
119
|
Wang L, Qiu SR, Zachowicz W, Guan X, Deyoreo JJ, Nancollas GH, Hoyer JR. Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7279-85. [PMID: 16893227 DOI: 10.1021/la060897z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Calcium oxalate monohydrate (COM) kidney stone formation is prevented in most humans by urinary crystallization inhibitors. Urinary osteopontin (OPN) is a prototype of the aspartic acid-rich proteins (AARP) that modulate biomineralization. Synthetic poly(aspartic acids) that resemble functional domains of AARPs provide surrogate molecules for exploring the role of AARPs in biomineralization. Effects of linear aspartic acid-rich peptides on COM growth kinetics and morphology were evaluated by the combination of constant composition (CC) analysis and atomic force microscopy (AFM). A spacer amino acid (either glycine or serine) was incorporated during synthesis after each group of 3 aspartic acids (DDD) in the 27-mer peptide sequences. Kinetic CC studies revealed that the DDD peptide with serine spacers (DDDS) was more than 30 times more effective in inhibiting COM crystal growth than the DDD peptide with glycine spacers (DDDG). AFM revealed changes in morphology on (010) and (-101) COM faces that were generally similar to those previously described for OPN and citrate, respectively. At comparable peptide levels, the effects of step pinning and reduced growth rate caused by DDDS were remarkably greater. In CC nucleation studies, DDDS caused a greater prolongation of induction periods than DDDG. Thus, nucleation studies link changes in interfacial energy caused by peptide adsorption to COM to the CC growth and AFM results. These studies indicate that, in addition to the number of acidic residues, the contributions of other amino acids to the conformation of DDD peptides are also important determinants of the inhibition of COM nucleation and growth.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Chutipongtanate S, Nakagawa Y, Sritippayawan S, Pittayamateekul J, Parichatikanond P, Westley BR, May FEB, Malasit P, Thongboonkerd V. Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J Clin Invest 2005; 115:3613-22. [PMID: 16308573 PMCID: PMC1288833 DOI: 10.1172/jci25342] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022] Open
Abstract
Previous research on proteins that inhibit kidney stone formation has identified a relatively small number of well-characterized inhibitors. Identification of additional stone inhibitors would increase understanding of the pathogenesis and pathophysiology of nephrolithiasis. We have combined conventional biochemical methods with recent advances in mass spectrometry (MS) to identify a novel calcium oxalate (CaOx) crystal growth inhibitor in normal human urine. Anionic proteins were isolated by DEAE adsorption and separated by HiLoad 16/60 Superdex 75 gel filtration. A fraction with potent inhibitory activity against CaOx crystal growth was isolated and purified by anion exchange chromatography. The protein in 2 subfractions that retained inhibitory activity was identified by matrix-assisted laser desorption/ionization-time-of-flight MS and electrospray ionization-quadrupole-time-of-flight tandem MS as human trefoil factor 1 (TFF1). Western blot analysis confirmed the mass spectrometric protein identification. Functional studies of urinary TFF1 demonstrated that its inhibitory potency was similar to that of nephrocalcin. The inhibitory activity of urinary TFF1 was dose dependent and was inhibited by TFF1 antisera. Anti-C-terminal antibody was particularly effective, consistent with our proposed model in which the 4 C-terminal glutamic residues of TFF1 interact with calcium ions to prevent CaOx crystal growth. Concentrations and relative amounts of TFF1 in the urine of patients with idiopathic CaOx kidney stone were significantly less (2.5-fold for the concentrations and 5- to 22-fold for the relative amounts) than those found in controls. These data indicate that TFF1 is a novel potent CaOx crystal growth inhibitor with a potential pathophysiological role in nephrolithiasis.
Collapse
Affiliation(s)
- Somchai Chutipongtanate
- Medical Molecular Biology Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Christensen B, Nielsen M, Haselmann K, Petersen T, Sørensen E. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 2005; 390:285-92. [PMID: 15869464 PMCID: PMC1184582 DOI: 10.1042/bj20050341] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPN (osteopontin) is an integrin-binding highly phosphorylated glycoprotein, recognized as a key molecule in a multitude of biological processes such as bone mineralization, cancer metastasis, cell-mediated immune response, inflammation and cell survival. A significant regulation of OPN function is mediated through PTM (post-translational modification). Using a combination of Edman degradation and MS analyses, we have characterized the complete phosphorylation and glycosylation pattern of native human OPN. A total of 36 phosphoresidues have been localized in the sequence of OPN. There are 29 phosphorylations (Ser8, Ser10, Ser11, Ser46, Ser47, Thr50, Ser60, Ser62, Ser65, Ser83, Ser86, Ser89, Ser92, Ser104, Ser110, Ser113, Thr169, Ser179, Ser208, Ser218, Ser238, Ser247, Ser254, Ser259, Ser264, Ser275, Ser287, Ser292 and Ser294) located in the target sequence of MGCK (mammary gland casein kinase) also known as the Golgi kinase (S/T-X-E/S(P)/D). Six phosphorylations (Ser101, Ser107, Ser175, Ser199, Ser212 and Ser251) are located in the target sequence of CKII (casein kinase II) [S-X-X-E/S(P)/D] and a single phosphorylation, Ser203, is not positioned in the motif of either MGCK or CKII. The 36 phosphoresidues represent the maximal degree of modification since variability at many sites was seen. Five threonine residues are O-glycosylated (Thr118, Thr122, Thr127, Thr131 and Thr136) and two potential sites for N-glycosylation (Asn63 and Asn90) are not occupied in human milk OPN. The phosphorylations are arranged in clusters of three to five phosphoresidues and the regions containing the glycosylations and the RGD (Arg-Gly-Asp) integrin-binding sequence are devoid of phosphorylations. Knowledge about the positions and nature of PTMs in OPN will allow a rational experimental design of functional studies aimed at understanding the structural and functional interdependences in diverse biological processes in which OPN is a key molecule.
Collapse
Affiliation(s)
- Brian Christensen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Mette S. Nielsen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Kim F. Haselmann
- †Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Torben E. Petersen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Esben S. Sørensen
- *Protein Chemistry Laboratory, Department of Molecular Biology, Science Park, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
122
|
Serafini-Cessi F, Monti A, Cavallone D. N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J 2005; 22:383-94. [PMID: 16622944 DOI: 10.1007/s10719-005-2142-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamm-Horsfall glycoprotein (THGP), produced exclusively by renal cells from the thick ascending limb of Henle's loop, is attached by a glycosyl-phosphatidylinositol (GPI)-anchor to the luminal face of the cells. Urinary excretion of THGP (50-100 mg/day) occurs upon proteolytic cleavage of the large ectodomain of the GPI-anchored form. N-Glycans, consisting of a large repertoire of sialylated polyantennary chains and high-mannose structures, account for approximately 30% of the weight of human urinary THGP. We describe: (i) the involvement of urinary THGP high-mannose glycans in defense against infections of the urinary tract, caused by type-1 fimbriated Escherichia coli, which recognize high-mannose structures, (ii) the role of GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4GlcNAcbeta1-3Gal (Sd(a) determinant) carried by human THGP in protecting the distal nephron from colonization of type-S fimbriated E. coli which recognise NeuAcalpha2-3Gal, (iii) the inhibitory effect of sialylated THGP on crystal aggregation of calcium oxalate and calcium phosphate, thus preventing nephrolithiasis. Finally, we outline the importance of N-glycans in promoting the polymerization of THGP, a process resulting in the formation of homopolymers with an M(r) of several million in urine. Since THGP defense against diseases of the urinary tract mainly consists in binding damaging agents, its ability to behave as a multivalent ligand significantly enhances this protective role.
Collapse
Affiliation(s)
- Franca Serafini-Cessi
- Department of Experimental Pathology, University of Bologna, Italy. serafini@.alma.unibo.it
| | | | | |
Collapse
|
123
|
Kumar V, Peña de la Vega L, Farell G, Lieske JC. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 2005; 68:1784-92. [PMID: 16164655 DOI: 10.1111/j.1523-1755.2005.00595.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Retention of microcrystals that form in tubular fluid could be a critical event in kidney stone formation. This study was performed to determine if urinary macromolecules from stone-forming (SF) individuals have reduced ability to inhibit crystal adhesion to renal cells. METHODS A first morning whole urine (WU) sample was obtained from 24 SF subjects (17 males and 7 females) and 24 age-, race-, and sex-matched controls (C). An aliquot of urine was centrifuged and an ultrafiltrate (UF) free of macromolecules >10 kD and 10x concentrate (U(conc)) were prepared. RESULTS Supplementing UF with increasing amounts of U(conc) to return the macromolecule concentration to 0.25x, 0.5x, or 1x of baseline progressively decreased crystal binding to cells. This effect was blunted in the male SF group compared to controls (P < 0.05, SF vs. C, for UF plus 0.25x macromolecules). No difference was apparent in the female groups. In order to identify responsible macromolecule(s), calcium oxalate monohydrate (COM) crystals were coated with U(conc) and adherent proteins then released and probed by Western blot. Coated COM crystals from male controls contained 3.5-fold more Tamm-Horsfall protein (THP) than SF subjects (P < 0.01). COM crystal coating with other proteins did not consistently differ between the groups. COM crystal coating by urinary prothrombin fragment 1 (UPTF1, P < 0.05) and crystal adhesion inhibitor (CAI) (P= 0.09) correlated with decreased crystal binding to cells, whereas coating with osteopontin (OPN) correlated with increased adhesion tendency (P < 0.05). CONCLUSION Urinary macromolecules >10 kD coat COM crystals and block their adhesion to renal cells. This capacity appears to be blunted in male but not female SF individuals. Multiple urinary proteins may play a role in renal cell-urinary crystal interactions, and THP appears to be one of the more important ones.
Collapse
Affiliation(s)
- Vivek Kumar
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
124
|
Ryall RL, Chauvet MC, Grover PK. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 2005; 96:654-63. [PMID: 16104927 DOI: 10.1111/j.1464-410x.2005.05701.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare the ultrastructure and protein content, particularly prothrombin fragment 1 and osteopontin, of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals precipitated from human urine, and their susceptibility to proteolysis, to try to clarify the role of intracrystalline proteins in urolithiasis, as differences between these types of crystal may determine whether calcium oxalate crystals nucleated in urine progress to stone formation. MATERIALS AND METHODS Sodium dodecyl sulphate gel electrophoresis and Western blotting were used to analyse demineralized extracts of COM and/or COD crystals deposited from the same centrifuged and filtered urine (which contains abundant urinary proteins) by adjusting the calcium concentration to 2 and 7 mmol/L, respectively. Similar analyses were performed on COM and COD crystals deposited from ultrafiltered urine (which contains only proteins of < 10 kDa) and then incubated in centrifuged and filtered urine, as well as crystals generated in the presence of increasing concentrations of proteins derived from the organic matrix of urinary calcium oxalate crystals. Field-emission scanning electron microscopy was used to assess effects of proteinase K and cathepsin D on internal and superficial crystal structure. RESULTS Osteopontin was undetectable in COM extracts, but clearly visible in COD. Prothrombin fragment 1 was abundant in COM, but present in COD in lesser amounts than osteopontin. The selectivity was also the same with crystals from ultrafiltered urine that were incubated in centrifuged and filtered urine: prothrombin fragment 1 binding was favoured by low calcium concentration, while osteopontin bound at higher levels. Scanning electron microscopy of COM and COD digested with proteinase K and cathepsin D revealed superficial and internal texture, as wells as surface erosion, in crystals from centrifuged and filtered urine, thus confirming the presence of intracrystalline proteins. Such features were absent from crystals precipitated from ultrafiltered urine. CONCLUSION Binding of osteopontin and prothrombin fragment 1 to calcium oxalate is dictated primarily by ambient calcium concentration. Each protein may inhibit urolithiasis by inhibiting crystallization of its preferred crystal habit, and by facilitating the intracellular disintegration and dissolution of crystals attached to and internalized by renal epithelial cells.
Collapse
Affiliation(s)
- Rosemary L Ryall
- Department of Surgery, Flinders Medical Centre and Flinders University School of Medicine, Bedford Park, South Australia.
| | | | | |
Collapse
|
125
|
Ogbureke KUE, Fisher LW. Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int 2005; 68:155-66. [PMID: 15954904 DOI: 10.1111/j.1523-1755.2005.00389.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Three members of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of proteins have recently been shown to bind and activate specific promatrix metalloproteinases (MMPs) and to overcome the inhibition of tissue inhibitors of MMPs (TIMPs). Although usually associated with mineralized tissues, we have shown that the SIBLINGs and their MMP partners, when known, are coexpressed in salivary gland ductal cells. The present study examined the expression patterns of both the SIBLINGs and their MMP partners in adult kidney. METHODS The expression patterns of all five SIBLINGs known to date, and their MMP partners were determined in monkey kidney using immunohistochemistry and in situ hybridization techniques. RESULTS Bone sialoprotein (BSP) and its partner, MMP-2, were coexpressed in both the proximal and distal tubules. Osteopontin, as previously shown, was expressed in the distal tubules while its partner MMP-3 was expressed in both the proximal tubule and distal tubles. Dentin matrix protein-1 (DMP1) and MMP-9 were coexpressed throughout the nephron, including both parietal cells of Bowman's capsule and the thin limb of the loop of Henle. Dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE) were expressed in the proximal tubule and distal tubule, and proximal tubule, respectively. CONCLUSION In contrast to salivary gland in which all SIBLINGs and their MMP partners were coexpressed throughout the length of the ducts, these proteins were differentially expressed within the normal adult nephron. We hypothesize that the cells use the SIBLING/MMP pairs in the normal turnover of cell surface proteins and/or pericellular matrix proteins such as those in basement membranes.
Collapse
Affiliation(s)
- Kalu U E Ogbureke
- Matrix Biochemistry Section, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, Maryland 20982-4320, USA
| | | |
Collapse
|
126
|
Wesson JA, Ganne V, Beshensky AM, Kleinman JG. Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. ACTA ACUST UNITED AC 2005; 33:206-12. [PMID: 15864572 DOI: 10.1007/s00240-004-0455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/08/2004] [Indexed: 11/30/2022]
Abstract
Based on the structure of kidney stones, it is likely that they form as aggregations of preformed crystals, mostly calcium oxalate monohydrate (COM). In this study, we examined the ability of a macromolecular mixture isolated from the urine of normal individuals and stone formers to inhibit aggregation of preformed COM seed crystals in a simple ionic solution using measurements of changes in the particle size distribution (PSD) of preformed COM crystal aggregates. We also examined the effect in this assay of a number of synthetic homopolymers, naturally occurring urine macromolecules, and binary mixtures thereof. The macromolecular mixtures from urine of normals and most stone formers reduced the degree of aggregation of the seed crystals, whereas 22% of stone former urine macromolecules either did not disaggregate or actually promoted further aggregation. Stone formers within one family shared this property, but a non-stone forming sibling did not. Polyanions, either synthetic or naturally occurring, induced disaggregation to an extent similar to that exhibited by normal urine macromolecules, while polycations had no effect on the PSD. However, mixing a polyanion, either poly-aspartate or osteopontin, with the polycation poly-arginine, changed their behavior from disaggregation to aggregation promotion. The disaggregating behavior of normal urinary macromolecules provides a defense against aggregation, but a minority of stone forming individuals lacks this defense, which may contribute to stone formation.
Collapse
Affiliation(s)
- J A Wesson
- Department of Medicine/Nephrology, Veterans Affairs Medical Center and Medical College of Wisconsin, 5000 W National Avenue (111 K), Milwaukee, WI 53295, USA
| | | | | | | |
Collapse
|
127
|
Ohri R, Tung E, Rajachar R, Giachelli CM. Mitigation of ectopic calcification in osteopontin-deficient mice by exogenous osteopontin. Calcif Tissue Int 2005; 76:307-15. [PMID: 15812576 DOI: 10.1007/s00223-004-0071-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 11/22/2004] [Indexed: 11/27/2022]
Abstract
Ectopic calcification is a major cause of bioprosthetic heart valve failure. New therapeutic opportunities are offered by the growing understanding that ectopic calcification is an actively regulated process involving several key gene products. One of these products, osteopontin (OPN), is a glycosylated phosphoprotein previously shown to inhibit apatite crystal formation, induce carbonic anhydrase II, and promote mineral resorption. In this study, OPN-deficient mice (OPN-/-) were utilized as an in vivo model to stimulate the ectopic calcification of glutaraldehyde-fixed bovine pericardium (GFBP) tissue and to examine OPN delivery and structure-function relationships with respect to its anti-calcific activity. Significant calcification of GFBP tissue was obtained within 7 days of subcutaneous implantation in OPN-/- mice. Direct rescue of the calcification phenotype was achieved by the administration of exogenous recombinant rat, histidine-fused OPN (rat His-OPN) to the implant site via soluble injection (up to 72% mitigation achieved) or adsorption onto the implant materials (up to 91% mitigation achieved). Effects were specific, since neither fibronectin nor polyhistidine alone could mitigate calcification of GFBP. The maximum anti-calcific effect was achieved only when rat His-OPN was adequately phosphorylated and contained a functional arginine-glycine-aspartate (RGD) cell adhesive domain. Furthermore, CAII levels in host cells surrounding GFBP were greatest when phosphorylated, RGD-containing rat His-OPN was adsorbed. These data suggest that both physical inhibition, mediated by phosphorylation sites in OPN, as well as the induction of CAII and mineral regression, mediated by the RGD domain, contribute to the unique ability of OPN to mitigate ectopic calcification of bioprosthetic valve tissue.
Collapse
Affiliation(s)
- Rachit Ohri
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
128
|
Abstract
Calcium oxalate (CaOx) crystals are distributed among all taxonomic levels of photosynthetic organisms from small algae to angiosperms and giant gymnosperms. Accumulation of crystals by these organisms can be substantial. Major functions of CaOx crystal formation in plants include high-capacity calcium (Ca) regulation and protection against herbivory. Ultrastructural and developmental analyses have demonstrated that this biomineralization process is not a simple random physical-chemical precipitation of endogenously synthesized oxalic acid and environmentally derived Ca. Instead, crystals are formed in specific shapes and sizes. Genetic regulation of CaOx formation is indicated by constancy of crystal morphology within species, cell specialization, and the remarkable coordination of crystal growth and cell expansion. Using a variety of approaches, researchers have begun to unravel the exquisite control mechanisms exerted by cells specialized for CaOx formation that include the machinery for uptake and accumulation of Ca, oxalic acid biosynthetic pathways, and regulation of crystal growth.
Collapse
Affiliation(s)
- Vincent R Franceschi
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.
| | | |
Collapse
|
129
|
Sheng X, Jung T, Wesson JA, Ward MD. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci U S A 2004; 102:267-72. [PMID: 15625112 PMCID: PMC544292 DOI: 10.1073/pnas.0406835101] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kidney stones, aggregates of microcrystals, most commonly contain calcium oxalate monohydrate (COM) as the primary constituent. The aggregation of COM microcrystals and their attachment to epithelial cells are thought to involve adhesion at COM crystal surfaces, mediated by anionic molecules or urinary macromolecules. Identification of the most important functional group-crystal face adhesive combinations is crucial to understanding the stability of COM aggregates and the strength of their attachments to epithelial cell surfaces under flow in the renal tubules of the kidney. Here, we describe direct measurements of adhesion forces, by atomic force microscopy, between various functional groups and select faces of COM crystals immersed in aqueous media. Tip-immobilized carboxylate and amidinium groups displayed the largest adhesion forces, and the adhesive strength of the COM crystal faces decreased in the order (100) > (121) > (010), demonstrating that adhesion is sensitive to the structure and composition of crystal faces. The influence of citrate and certain urinary proteins on adhesion was examined, and it was curious that osteopontin, a suspected regulator of stone formation, increased the adhesion force between a carboxylate tip and the (100) crystal face. This behavior was unique among the various combinations of additives and COM crystal faces examined here. Collectively, the force measurements demonstrate that adhesion of functional groups and binding of soluble additives, including urinary macromolecules, to COM crystal surfaces are highly specific in nature, suggesting a path toward a better understanding of kidney stone disease and the eventual design of therapeutic agents.
Collapse
Affiliation(s)
- Xiaoxia Sheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
130
|
Ito S, Saito T, Amano K. In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin. J Biomed Mater Res A 2004; 69:11-6. [PMID: 14999746 DOI: 10.1002/jbm.a.20066] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Noncollagenous phosphoproteins that interact with type I collagen are thought to nucleate the mineral phase to the collagen fibril network of mineralized tissues. We previously reported that a specific dentin phosphoprotein, phosphophoryn, crosslinked to an insoluble substrate such as type I collagen fibrils, was an effective nucleator of apatite. In this study, we investigated the capacity of another phosphoprotein in dentin, osteopontin, for apatite nucleation in vitro. Osteopontin purified from bovine milk was either absorbed to agarose beads or crosslinked to agarose beads. Each preparation was incubated at 37 degrees C in metastable solutions. Apatite was induced by osteopontin that was crosslinked to agarose beads, whereas osteopontin adsorbed to agarose beads failed to induce apatite crystal formation. Using classical nucleation theory, the interfacial energy for hydroxyapatite nucleation on osteopontin crosslinked to agarose beads was determined to be 94.7 ergs/cm(2). This value is larger than that for phosphophoryn, though it is similar to that for hydroxyapatite. The present study indicates that osteopontin, like phosphophoryn, has a high potential to induce apatite formation when it is covalently bound to some substrate in vitro, and suggests the possibility that osteopontin bound to type I collagen may induce apatite formation in vivo.
Collapse
Affiliation(s)
- Shuichi Ito
- Department of Operative Dentistry and Endodontology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Tobetsu, Hokkaido 061-0293, Japan
| | | | | |
Collapse
|
131
|
Abstract
Osteopontin (OPN) is a glyco-phosphoprotein that is expressed and secreted by numerous human cancers. OPN functions in cell adhesion, chemotaxis, macrophage-directed interleukin-10 (IL-10) suppression, stress-dependent angiogenesis, prevention of apoptosis, and anchorage-independent growth of tumor cells by regulating cell-matrix interactions and cellular signaling through binding with integrin and CD44 receptors. While constitutive expression of OPN exists in several cell types, induced expression has been detected in T-lymphocytes, epidermal cells, bone cells, macrophages, and tumor cells in remodeling processes such as inflammation, ischemia-reperfusion, bone resorption, and tumor progression. Recently, substantial evidence has linked OPN with the regulation of metastatic spread by tumor cells. However, the molecular mechanisms that define the role of OPN in tumor metastasis are incompletely understood. Transcriptional regulators that contribute to the induction of OPN expression have received significant attention as potential modulators of the OPN-mediated metastatic phenotype. The following review will discuss the molecular structure of OPN, the evidence for its functional role in tumor cell metastasis, the downstream signals that activate invasive mechanisms, and the recent reports concerning regulation of OPN transcription.
Collapse
Affiliation(s)
- Philip Y Wai
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
132
|
Bleyer AJ, Hart TC, Shihabi Z, Robins V, Hoyer JR. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int 2004; 66:974-7. [PMID: 15327389 DOI: 10.1111/j.1523-1755.2004.00845.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mutations in the uromodulin (UMOD) gene that encodes Tamm-Horsfall protein (THP) cause an autosomal-dominant form of chronic renal failure. We have now investigated effects of UMOD gene mutations on protein expression by quantitatively measuring THP excretion. METHODS THP excretion was determined by enzyme-linked immunosorbent assay (ELISA) of urine collections obtained from 16 related individuals with a 27 bp deletion in the UMOD gene and seven individuals with other UMOD mutations. THP excretion of 22 control subjects (18 genetically related individuals and four spouses in the UMOD deletion family) was also determined. RESULTS The 16 individuals carrying the deletion mutation excreted 5.8 +/- 6.3 mg THP/g creatinine into their urine. The 18 unaffected relatives from the same family excreted 40.8 +/- 9.7 mg THP/g creatinine (P < 0.0001) and the four spouses excreted 43.9 +/- 25.1 mg THP/g creatinine (P < 0.0001 vs. individuals with the deletion mutation). THP excretion of seven individuals with other UMOD gene mutations was also extremely low (range of 0.14 to 5.9 mg THP/g creatinine). All individuals with UMOD mutations had low THP excretion, irrespective of gender, glomerular filtration rate (GFR), or age. CONCLUSION These studies quantitatively show that the autosomal-dominant gene mutations responsible for UMOD-associated kidney disease cause a profound reduction of THP excretion. We speculate that this suppression of normal THP excretion reflects deleterious effects of mutated THP within the kidney. Such effects may also play an important role in the pathogenesis of the progressive renal failure observed in patients with UMOD gene mutations.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest University School of Medicine Medical Center, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | |
Collapse
|
133
|
Abstract
Three members of the SIBLING family of integrin-binding phosphoglycoproteins (bone sialoprotein, BSP; osteopontin, OPN; and dentin matrix protein-1, DMP1) were recently shown to bind with high affinity (nM) and to activate 3 different matrix metalloproteinases (MMP-2, MMP-3, and MMP-9, respectively) in vitro. The current study was designed to document the possible biological relevance of the SIBLING-MMP activation pathway in vivo by showing that these 3 SIBLINGs and their known MMP partners are co-expressed in normal adult tissue. BSP, OPN, and DMP1 were invariably co-expressed with their partner MMPs in salivary glands of humans and mice. The 2 SIBLING proteins without known MMP partners, dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE), were also expressed in salivary glands. Expression of all SIBLINGs in this normal, non-mineralizing epithelial tissue suggests that they serve at least one function in vivo other than directly promoting matrix mineralization--a function we hypothesize involves local activation of MMPs.
Collapse
Affiliation(s)
- K U E Ogbureke
- Craniofacial and Skeletal Diseases Branch, Building 30, Room 228, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, 9000 Rockville Pike, Bethesda, MD 20892-4320, USA
| | | |
Collapse
|
134
|
Evan AP, Bledsoe SB, Smith SB, Bushinsky DA. Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 2004; 65:154-61. [PMID: 14675046 DOI: 10.1111/j.1523-1755.2004.00396.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The inbred genetic hypercalciuric stone-forming (GHS) rats develop calcium phosphate (apatite) stones when fed a normal 1.2% calcium diet. The addition of 1% hydroxyproline to this diet does not alter the type of stone formed, while rats fed this diet with 3% hydroxyproline form mixed apatite and calcium oxalate stones and those with 5% hydroxyproline added form only calcium oxalate stones. The present study was designed to determine the localization of stone formation and if this solid phase resulted in pathologic changes to the kidneys. METHODS GHS rats were fed 15 g of the standard diet or the diet supplemented with 1%, 3%, or 5% hydroxyproline for 18 weeks. A separate group of Sprague-Dawley rats (the parental strain of the GHS rats), fed the standard diet for a similar duration, served as an additional control. At 18 weeks, all kidneys were perfusion-fixed for structural analysis, detection of crystal deposits using the Yasue silver substitution method, and osteopontin immunostaining. RESULTS There were no crystal deposits found in the kidneys of Sprague-Dawley rats. Crystal deposits were found in the kidneys of all GHS rats and this Yasue-stained material was detected only in the urinary space. No crystal deposits were noted within the cortical or medullary segments of the nephron and there was no evidence for tubular damage in any group. The only pathologic changes occurred in 3% and 5% hydroxyproline groups with the 5% group showing the most severe changes. In these rats, which form only calcium oxalate stones, focal sites along the urothelial lining of the papilla and fornix of the urinary space demonstrated a proliferative response characterized by increased density of urothelial cells that surrounded the crystal deposits. At the fornix, some crystals were lodged within the interstitium, deep to the proliferative urothelium. There was increased osteopontin immunostaining in the proliferating urothelium. CONCLUSION Thus in the GHS rat, the initial stone formation occurred solely in the urinary space. Tubular damage was not observed with either apatite or calcium oxalate stones. The apatite stones do not appear to cause any pathological change while those rats forming calcium oxalate stones have a proliferative response of the urothelium, with increased osteopontin immunostaining, around the crystal deposits in the fornix.
Collapse
Affiliation(s)
- Andrew P Evan
- Anatomy Department, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
135
|
Jung T, Sheng X, Choi CK, Kim WS, Wesson JA, Ward MD. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:8587-8596. [PMID: 15379479 DOI: 10.1021/la0488755] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kidney stones are crystal aggregates, most commonly containing calcium oxalate monohydrate (COM) microcrystals as the primary constituent. Macromolecules, specifically proteins rich with anionic side chains, are thought to play an important role in the regulation of COM growth, aggregation, and attachment to cells, all key processes in kidney stone formation. The microscopic events associated with crystal growth on the [010], [121], and [100] faces have been examined with in situ atomic force microscopy (AFM). Lattice images of each face reveal two-dimensional unit cells consistent with the COM crystal structure. Each face exhibits hillocks with step sites that can be assigned to specific crystal planes, enabling direct determination of growth rates along specific crystallographic directions. The rates of growth are found to depend on the degree of supersaturation of calcium oxalate in the growth medium, and the growth rates are very sensitive to the manner in which the growth solutions are prepared and introduced to the AFM cell. The addition of macromolecules with anionic side chains, specifically poly(acrylic acid), poly(aspartic acid), and poly(glutamic acid), results in inhibition of growth on the hillock step planes. The magnitude of this effect depends on the macromolecule structure, macromolecule concentration, and the identity of the step site. Poly(acrylic acid) was the most effective inhibitor of growth. Whereas poly(aspartic acid) inhibited growth on the (021) step planes of the (100) hillocks more than poly(glutamic acid), the opposite was found for the same step planes on the (010) hillocks. This suggests that growth inhibition is due to macromolecule binding to both planes of the step site or pinning of the steps due to binding to the (100) and (010) faces alone. The different profiles observed for these three macromolecules argue that local binding of anionic side chains to crystal surface sites governs growth inhibition rather than any secondary polymer structure. Growth inhibition by cationic macromolecules is negligible, further supporting an important role for proteins rich in anionic side chains in the regulation of kidney stone formation.
Collapse
Affiliation(s)
- Taesung Jung
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
136
|
Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 2004; 378:1083-7. [PMID: 14678013 PMCID: PMC1224036 DOI: 10.1042/bj20031150] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 12/17/2003] [Indexed: 11/17/2022]
Abstract
Osteopontin (OPN) is an acidic phosphoglycoprotein that is believed to function in the prevention of soft tissue calcification. In vitro studies have shown that OPN can inhibit the formation of hydroxyapatite (HA) and other biologically relevant crystal phases, and that this inhibitory activity requires phosphorylation of the protein; however, it is not known which phosphorylated residues are involved. We have synthesized peptides corresponding to four phosphoserine-containing sequences in rat OPN: OPN7-17, containing phosphoserines 10 and 11; OPN41-52, containing phosphoserines 46 and 47; OPN248-264, containing phosphoserines 250, 257 and 262; and OPN290-301, containing phosphoserines 295-297. The abilities of these peptides to inhibit de novo HA formation were determined using a constant-composition autotitration assay. All four OPN phosphopeptides caused a dose-dependent increase in nucleation lag time, but did not significantly affect subsequent formation of the crystals. However, OPN41-52 (inhibitory constant 73.5 min/microM) and OPN290-301 (72.2 min/microM) were approx. 4 times more potent inhibitors than OPN7-17 (19.7 min/microM) and OPN247-264 (16.3 min/microM). 'Scrambling' the amino acid sequence of OPN290-301 resulted in decreased potency (45.6 min/microM), whereas omission of the phosphate groups from this peptide caused a greater decrease (5.20 min/microM). These findings have identified phosphorylated sequences that are important for the ability of rat bone OPN to inhibit HA crystal formation, and suggest that negative-charge density is an important factor in this activity.
Collapse
Affiliation(s)
- David A Pampena
- CIHR (Canadian Institutes of Health Research) Group in Skeletal Development and Remodelling, School of Dentistry and Department of Biochemistry, University of Western Ontario, London, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
137
|
Kramer G, Steiner GE, Neumayer C, Prinz-Kashani M, Hohenfellner M, Gomha M, Ghoneim M, Newman M, Marberger M. Over-expression of anti-CD75 reactive proteins on distal and collecting renal tubular epithelial cells in calcium-oxalate stone-forming kidneys in Egypt. BJU Int 2004; 93:822-6. [PMID: 15049997 DOI: 10.1111/j.1464-410x.2003.04751.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To assess the nature, distribution and expression pattern of CD75, a neuraminidase-sensitive lymphocyte cell surface differentiation antigen, in calcium oxalate (CaOx) stone disease, as cell-surface sialic acid might be involved CaOx crystal binding, and lectin-binding assays suggest that sialic acid in the alpha2,6 position is upregulated in stone-forming kidneys. MATERIALS AND METHODS Human CaOx stone-forming and normal kidneys (13 each) and primary kidney epithelial cells (CAKI-1, three samples) were analysed. The protein pattern, distribution and expression of CD75 were analysed using Western blotting, immunohistology and semi-quantitative confocal laser scanning microscopy (cLSM). Production was investigated by alpha2,6-sialyltransferase specific reverse transcription-polymerase chain reaction. RESULTS Western blotting showed one strong band at approximately 43 kDa that reacted with anti-CD75 when renal epithelial and CAKI-1 tumour cell extracts were analysed. However, in renal tissue extracts of CaOx stone formers there were additional bands at 120 and 205 kDa. Image processing after cLSM showed that anti-CD75 reactivity was significantly greater on E-cadherin-positive distal and collecting tubular cells from CaOx stone-forming kidneys, at a mean (sd) intensity of 87 (7), than on those from normal kidneys, at 41 (5) (P = 0.005). CONCLUSION CD75 expression in human kidney was primarily on the luminal surface of distal tubules and collecting ducts. Whether increased epithelial CD75 expression in CaOx stone disease is a cause or result of the disease remains to be clarified.
Collapse
Affiliation(s)
- G Kramer
- Department of Urology, University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Kumar V, Yu S, Farell G, Toback FG, Lieske JC. Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 2004; 287:F373-83. [PMID: 15100100 DOI: 10.1152/ajprenal.00418.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Attachment of newly formed crystals to renal tubular epithelial cells appears to be a critical step in the development of kidney stones. The present study was undertaken to identify autocrine factors released from renal epithelial cells into the culture medium that inhibit adhesion of calcium oxalate crystals to the cell surface. A 39-kDa glycoprotein that is constitutively secreted by renal cells was purified by gel filtration chromatography. Amino acid microsequencing revealed that it is novel and not structurally related to known inhibitors of calcium oxalate crystallization. Hence, it was named crystal adhesion inhibitor, or CAI. Immunoreactive CAI was detected in diverse rat tissues, including kidney, heart, pancreas, liver, and testis. Immunohistochemistry revealed that CAI is present in the renal cell cytosol and is also on the plasma membrane. Importantly, CAI is present in normal human urine, from which it can be purified using calcium oxalate monohydrate crystal affinity chromatography. CAI could be an important defense against crystal attachment to tubular cells and the subsequent development of renal stones in vivo.
Collapse
Affiliation(s)
- Vivek Kumar
- Division of Nephrology, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
139
|
Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, De Yoreo JJ. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A 2004; 101:1811-5. [PMID: 14766970 PMCID: PMC357009 DOI: 10.1073/pnas.0307900100] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is a source of chronic human disease, forming the major inorganic component of kidney stones. Understanding molecular mechanisms of biological control over COM crystallization is central to development of effective stone disease therapies and can help define general strategies for synthesizing biologically inspired materials. To date, research on COM modification by proteins and small molecules has not resolved the molecular-scale control mechanisms. Moreover, because proteins directing COM inhibition have been identified and sequenced, they provide a basis for general physiochemical investigations of biomineralization. Here, we report molecular-scale views of COM modulation by two urinary constituents, the protein osteopontin and citrate, a common therapeutic agent. Combining force microscopy with molecular modeling, we show that each controls growth habit and kinetics by pinning step motion on different faces through specific interactions in which both size and structure determine the effectiveness. Moreover, the results suggest potential for additive effects of simultaneous action by both modifiers to inhibit the overall growth of the crystal and demonstrate the utility of combining molecular imaging and modeling tools for understanding events underlying aberrant crystallization in disease.
Collapse
Affiliation(s)
- S R Qiu
- Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Kleinman JG, Wesson JA, Hughes J. Osteopontin and Calcium Stone Formation. ACTA ACUST UNITED AC 2004; 98:p43-7. [DOI: 10.1159/000080263] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
141
|
Jung T, Kim WS, Choi CK. Biomineralization of calcium oxalate for controlling crystal structure and morphology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2003.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
142
|
Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 2003; 62:1123-8. [PMID: 14665375 DOI: 10.1016/s0090-4295(03)00764-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To determine whether lipid peroxidation plays a role in patients with calcium oxalate kidney stones and to determine the correlation of lipid peroxidation with tubular damage and the major urinary risk factors. We also used the isoenzymes of glutathione S-transferase (GST) to examine which parts of the renal tubules were injured in patients with renal stones. METHODS This clinical study included two study groups. Group 1 included 32 normal volunteers, and group 2 included 32 patients with calcium oxalate kidney stones. A 24-hour urine sample was collected from each subject, and the levels of Ca, P, Mg, oxalate, citrate, N-acetyl-beta-glucosaminidase (NAG), beta-galactosidase (GAL), alphaGST, piGST, osteopontin (OPN), thiobarbituric acid-reactive substances (TBARS), and malondialdehyde (MDA) were examined. RESULTS Hyperoxaluria, hypocitraturia, and low urinary OPN were the major abnormalities found in the patients with stones. Elevated urinary alphaGST, NAG, and GAL were also noted in the patients with stones; however, urinary piGST showed no statistically significant difference compared with the controls. Urinary TBARS and MDA had statistically significant correlations with alphaGST, GAL, NAG, Ca, and oxalate, but had no correlation with piGST, citrate, OPN, Mg, and P. Urinary citrate had a negative, linear, and statistically significant correlation with alphaGST, GAL, and NAG. CONCLUSIONS Lipid peroxidation correlated with hyperoxaluria and renal tubular damage, indicating that hyperoxaluria can induce tubular cell injury and that this injury may be due to the production of free radicals in patients with calcium oxalate stones. Renal tubular damage in patients with stones may be limited to the proximal tubules.
Collapse
Affiliation(s)
- Ho-Shiang Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
143
|
Li X, Zhang D, Lynch-Holm VJ, Okita TW, Franceschi VR. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. PLANT PHYSIOLOGY 2003; 133:549-59. [PMID: 14555781 PMCID: PMC219031 DOI: 10.1104/pp.103.023556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 05/12/2003] [Accepted: 06/02/2003] [Indexed: 05/17/2023]
Abstract
The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.
Collapse
Affiliation(s)
- Xingxiang Li
- Department of Genetics and Cell Biology, Washington State University, Pullman, WA 99164-4236, USA
| | | | | | | | | |
Collapse
|
144
|
Serafini-Cessi F, Malagolini N, Cavallone D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 2003; 42:658-76. [PMID: 14520616 DOI: 10.1016/s0272-6386(03)00829-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamm-Horsfall glycoprotein (THP) is the most abundant urinary protein in mammals. Urinary excretion occurs by proteolytic cleavage of the large ectodomain of the glycosyl phosphatidylinositol-anchored counterpart exposed at the luminal cell surface of the thick ascending limb of Henle's loop. We describe the physical-chemical structure of human THP and its biosynthesis and interaction with other proteins and leukocytes. The clinical relevance of THP reported here includes: (1) involvement in the pathogenesis of cast nephropathy, urolithiasis, and tubulointerstitial nephritis; (2) abnormalities in urinary excretion in renal diseases; and (3) the recent finding that familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease 2 arise from mutations of the THP gene. We critically examine the literature on the physiological role and mechanism(s) that promote urinary excretion of THP. Some lines of research deal with the in vitro immunoregulatory activity of THP, termed uromodulin when isolated from urine of pregnant women. However, an immunoregulatory function in vivo has not yet been established. In the most recent literature, there is renewed interest in the capacity of urinary THP to compete efficiently with urothelial cell receptors, such as uroplakins, in adhering to type 1 fimbriated Escherichia coli. This property supports the notion that abundant THP excretion in urine is promoted in the host by selective pressure to obtain an efficient defense against urinary tract infections caused by uropathogenic bacteria.
Collapse
|
145
|
Sculean A, Junker R, Donos N, Windisch P, Brecx M, Dünker N. Immunohistochemical evaluation of matrix molecules associated with wound healing following treatment with an enamel matrix protein derivative in humans. Clin Oral Investig 2003; 7:167-74. [PMID: 12827455 DOI: 10.1007/s00784-003-0212-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 05/05/2003] [Indexed: 11/26/2022]
Abstract
Application of enamel matrix protein derivative (EMD) onto a debrided and conditioned root surface has been shown to promote periodontal regeneration in animals and humans. However, until now there is virtually no information from humans describing the expression of different matrix molecules in the newly formed periodontal tissues following treatment with EMD. This study investigated immunohistochemically in humans the expression of matrix molecules associated with periodontal tissues reformed after treatment with EMD. Eight patients with intrabony defects were treated with EMD. Six months after surgery teeth together with some of their surrounding soft and hard tissues were removed, fixed in buffered formalin, decalcified in EDTA, and embedded in paraffin. Serial sections of 6 micro m were cut in mesiodistal direction. Sections were evaluated immunohistochemically by means of polyclonal antibodies against osteopontin, collagen I and collagen III. The original (non-treated) parts of the periodontium served as controls. In all specimens the healing resulted to a varying extent in formation of cementum, periodontal ligament and alveolar bone. In all specimens the expression of the investigated matrix molecules was stronger at the reformed than at the original sites. Osteopontin expression was most intense at the border near the newly formed cementum and bone. In the regenerated periodontal ligament, collagen I and III were localized throughout the entire periodontal ligament connective tissue. Within the newly formed PDL connective tissue the immunohistochemical staining appeared stronger for collagen III than for collagen I. The present findings suggest that (a) treatment of human intrabony defects with EMD creates an environment favourable for periodontal regeneration and, (b) in humans the healing and/or remodelling process of the reformed tissues may be followed immunohistochemically for a period of 6 months.
Collapse
Affiliation(s)
- A Sculean
- Department Conservative Dentistry and Periodontology, Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
146
|
Sørensen S, Justesen SJ, Johnsen AH. Purification and characterization of osteopontin from human milk. Protein Expr Purif 2003; 30:238-45. [PMID: 12880773 DOI: 10.1016/s1046-5928(03)00102-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Osteopontin (OPN) is expressed in many organs and tissues and has different biological properties related to different molecular forms in respect to size and posttranslational modifications. However, a purification procedure for authentic intact OPN as well as fragments of OPN from an accessible biological source is missing. A four-step procedure was used to purify OPN from human milk, based on its crystal growth inhibitory activity, including anion exchange chromatography, the elimination of casein, hydroxyapatite chromatography, and negative affinity chromatography. Purified OPN was further separated into its different molecular forms by means of a two-step procedure, involving size exclusion chromatography and reverse phase chromatography. A rabbit polyclonal antibody was raised to purified intact OPN and high M(r) OPN components; the immunoreactivity of both forms was almost equal when investigated by enzyme immunoassay (EIA). The procedures facilitate the purification of intact OPN and OPN fragments for purposes of standardization, preparation of monospecific antibodies, and functional studies.
Collapse
Affiliation(s)
- Steen Sørensen
- Department of Clinical Biochemistry, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark.
| | | | | |
Collapse
|
147
|
Choi K, Kim D, Lee S. Purification and Properties of Osteopontin from Bovine Milk. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2003. [DOI: 10.5187/jast.2003.45.3.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
148
|
Abstract
OBJECTIVE We evaluated whether osteopontin (OPN) and other proteins with the RGD sequence as in OPN (RGD family proteins) that are present in renal tubular cells (fibronectin [FN], Tamm-Horsfall glycoprotein [THP], vitronectin [VN], and laminin [LN]) inhibit the aggregation and growth of calcium oxalate (CaOx) crystals by a novel seed crystal method using collagen granules (CG) with and without OPN adhered on the surface. We also evaluated the effect of solid phase OPN, FN and THP in which the relationship between their proteins and CaOx crystallization was reported. Moreover, the state and time-course changes in CaOx crystals adhered to CG were observed under scanning electron microscopy (SEM). METHODS The inhibitory activity (IA) on the aggregation and growth of CaOx crystals was measured in vitro by the conventional seed crystal method using isotopes. In this study, the following nine samples were used: OPN alone; FN alone; THP alone; VN alone; LN alone; CG alone; and CG with OPN, FN, or THP adhered on the surface (OPN/FN/THP-immobilized CG). In addition, the state and time-course changes in CaOx crystals adhered to CG were evaluated by SEM. RESULTS Using the conventional seed crystal method, the following values of IA were obtained: 91.7% (37.5 micro g/ml) for OPN, 5.0% (100 micro g/ml) for FN, 2.0% (100 micro g/ml) for THP, 3.0% (100 micro g/ml) for VN, and 1.0% (100 micro g/ml) for LN. However, the value of IA obtained by our seed crystal method using CG was 92.1% (180cm(2)/5ml PBS) when CG alone was used. Although the value of IA was decreased by 33.6% when OPN-immobilized CG was used, it did not significantly change when FN/THP-immobilized CG was used. When CG alone was used, the evaluation of CaOx crystallization by SEM demonstrated mild adherence and aggregation of CaOx crystal suspension (seed crystals) on the CG surface, although newly formed crystals only slightly adhered to the CG surface. When OPN-immobilized CG was used, marked adherence and aggregation of seed crystals were observed, in addition to the relatively increased adherence of newly formed crystals. When FN/THP-immobilized CG was used, newly formed crystals only slightly adhered to the CG surface, although the degree of seed crystal adherence and aggregation did not significantly change. CONCLUSIONS These findings suggest that the immobilization of OPN to the CG surface enhances the adherence and aggregation of seed crystals, as well as enhancing the adherence of newly formed crystals, resulting in decreased IA of CG (overall promotion of crystal deposition). Therefore, the results of this study clarified that OPN enhances the formation and aggregation of CaOx crystals in this experimental system.
Collapse
Affiliation(s)
- Eiji Konya
- Department of Urology, Kinki University School of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | | | | | | |
Collapse
|
149
|
Chau H, El-Maadawy S, McKee MD, Tenenhouse HS. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Miner Res 2003; 18:644-57. [PMID: 12674325 DOI: 10.1359/jbmr.2003.18.4.644] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice homozygous for the disrupted renal type IIa sodium/phosphate (Na/Pi) cotransporter gene (Npt2-/-) exhibit renal Pi wasting, hypophosphatemia, and an adaptive increase in the serum concentration of 1,25-dihydroxyvitamin D with associated hypercalcemia and hypercalciuria. Because hypercalciuria is a risk factor for nephrocalcinosis, we determined whether Npt2-/- mice form renal stones. Analysis of renal sections by von Kossa staining and intact kidneys by microcomputed tomography revealed renal calcification in adult Npt2-/- mice but not in Npt2+/+ littermates. Energy-dispersive spectroscopy and selected-area electron diffraction indicated that the calcifications are comprised of calcium and Pi with an apatitic mineral phase. To determine the age of onset of nephrocalcinosis, we examined renal sections of newborn and weanling mice. At both ages, mutant but not wild-type mice display renal calcification, which is associated with renal Pi wasting and hypercalciuria. Immunohistochemistry revealed that osteopontin co-localizes with the calcifications. Furthermore, renal osteopontin messenger RNA abundance is significantly elevated in Npt2-/- mice compared with Npt2+/+ mice. The onset of renal stones correlated developmentally with the absence of Npt2 expression and the expression of the genes responsible for the renal production (1alpha-hydroxylase) and catabolism (24-hydroxylase) of 1,25-dihydroxyvitamin D. In summary, we show that Npt2 gene ablation is associated with renal calcification and suggest that mutations in the NPT2 gene may contribute to nephrocalcinosis in a subset of patients with familial hypercalciuria.
Collapse
Affiliation(s)
- Hien Chau
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
150
|
Shiba K, Honma T, Minamisawa T, Nishiguchi K, Noda T. Distinct macroscopic structures developed from solutions of chemical compounds and periodic proteins. EMBO Rep 2003; 4:148-53. [PMID: 12612603 PMCID: PMC1315835 DOI: 10.1038/sj.embor.embor737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 12/13/2002] [Indexed: 11/08/2022] Open
Abstract
By controlling the growth of inorganic crystals, macro-biomolecules, including proteins, play pivotal roles in modulating biomineralization. Natural proteins that promote biomineralization are often composed of simple repeats of peptide sequences; however, the relationship between these repetitive structures and their functions remains largely unknown. Here we show that an artificial protein containing a repeated peptide sequence allows NaCl, KCl, CuSO(4) and sucrose to form a variety of macroscopic structures, as represented by their dendritic configurations. Mutational analyses revealed that the physicochemical characteristics of the protein, not the peptide sequence per se, were responsible for formation of the dendritic structures. This suggests that proteins that modulate crystal growth may have evolved as repeat-containing forms at a relatively high rate. These observations could serve as the basis for developing new genetic programming systems for creation of artificial proteins able to modulate crystal growth from inorganic compounds, and may thus provide a new tool for nano-biotechnology.
Collapse
Affiliation(s)
- Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Toshima, Tokyo 170-8455, Japan.
| | | | | | | | | |
Collapse
|