101
|
Rafique S, Idrees M, Ali A, Sahibzada KI, Iqbal M. Generation of infectious HCV pseudo typed particles and its utilization for studying the role of CD81 & SRBI receptors in HCV infection. Mol Biol Rep 2014; 41:3813-9. [PMID: 24549717 DOI: 10.1007/s11033-014-3247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
Abstract
Hepatitis C virus (HCV) entry into isolated primary liver cells and cell lines requires interaction with the cell surface receptors. The study of HCV attachment with host cell surface receptors has been hindered by the unavailability of competent cell culture based system for HCV propagation. This problem has been overcome by the development of genetically tagged infectious HCV pseudo particles (HCVpp) harboring unmodified E1 and E2 glycoproteins. Studies using cell binding assays together with infection assays using HCVpp have shown that CD81 and scavenger receptor (SRBI) are actively involved in binding with envelope proteins facilitating the viral entrance process. This paper aimed to develop HCVpp of local HCV 3a Pakistani isolate and to study the viral tropism role of CD81 and SRBI receptors in HCV infectivity. HCV E1 and E2 genes were amplified and cloned in mammalian expression vector pcDNA 3.1/myc. The expressing plasmid of HCV E1-E2 glycoprotein in native form was co-transfected into 293FT cells with lentiviral packaging plasmid encoding the MLV Gag-Pol core proteins, and a packaging competent MLV-derived genome (pMLVYCMV-Luc) encoding the luciferase marker protein to produce infectious HCVpp. Anti-CD81 antibody (CBL579), anti-SRBI type II antibody (sc-20441) HCV anti-E2 mouse IgG1 (sc-65457) and HCV anti-E1 antibody mouse IgG1 (sc-65459) were used in this setup. We showed that primary site of viral replication is liver which involve CD81 and SRBI receptors for HCV gp-dependent infection with HCVpp. This is the preliminary reported cell cultured based mechanism from Pakistan which facilitated functional studies of different antiviral agents. Understanding of this technique will help in development of new antiviral therapeutics focusing on earlier steps of HCV life cycle. We have developed infectious pseudo particles of local 3a-isolate and concluded that a number of liver-specific surface proteins function along with CD81 and SRBI receptor regarding HCV infectivity. To endeavors and to identify this liver specific co-receptor molecule(s) will provide insights into the role of these molecules in the initial steps of HCV life cycle.
Collapse
Affiliation(s)
- Shazia Rafique
- Centre of Applied Molecular Biology, Ministry of Science & Technology Govt. of Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan,
| | | | | | | | | |
Collapse
|
102
|
Llanes MS, Palacios NS, Piccione M, Ruiz MG, Layana C. [Molecular aspects of the antiviral response against hepatitis C virus implicated in vaccines development]. Enferm Infecc Microbiol Clin 2014; 33:273-80. [PMID: 24529681 DOI: 10.1016/j.eimc.2013.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Hepatitis C is a contagious liver disease caused by hepacivirus of the Flaviviridae family. It has a RNA genome, a unique highly variable molecule. It encodes ten proteins which are necessary to infect cells and multiply. Replication occurs only in hepatocytes. Because of its wide genomic variability and the absence of symptoms, it is difficult to make an early diagnosis and successful treatment. In this review we analyze the molecular mechanism by which the virus infects the hepatocytes and causes the disease. We focused the analysis on different therapies, with the possibility of improving treatment with the use of new specific vaccines. We highlight the use of new therapies based on nucleic acids, mainly DNA vectors. In the near future, once this treatment is adequately evaluated in clinical trials, and the costs are calculated, it could be a very beneficial alternative to conventional methods.
Collapse
Affiliation(s)
- María Soledad Llanes
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Soledad Palacios
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Piccione
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - María Guillermina Ruiz
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Carla Layana
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| |
Collapse
|
103
|
Abstract
We present a rigorous mathematical analysis of a deterministic model, for the transmission dynamics of hepatitis C, using a standard incidence function. The infected population is divided into three distinct compartments featuring two distinct infection stages (acute and chronic) along with an isolation compartment. It is shown that for basic reproduction number R0≤1, the disease-free equilibrium is locally and globally asymptotically stable. The model also has an endemic equilibrium for R0>1. Uncertainty and sensitivity analyses are carried out to identify and study the impact of critical parameters on R0. In addition, we have presented the numerical simulations to investigate the influence of different important parameters on R0. Since we have a locally stable endemic equilibrium, optimal control is applied to the deterministic model to reduce the total infected population. Two different optimal control strategies (vaccination and isolation) are designed to control the disease and reduce the infected population. Pontryagin’s Maximum Principle is used to characterize the optimal controls in terms of an optimality system which is solved numerically. Numerical results for the optimal controls are compared against the constant controls and their effectiveness is discussed.
Collapse
|
104
|
Cox AL, Thomas DL. Hepatitis C virus vaccines among people who inject drugs. Clin Infect Dis 2014; 57 Suppl 2:S46-50. [PMID: 23884065 DOI: 10.1093/cid/cit329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most people who inject drugs (PWID) are infected with hepatitis C virus (HCV), and PWID have the highest risk of HCV infection of any risk group. The incidence of HCV infection is 5%-25% per year, demonstrating continued need for HCV infection prevention in PWID. Existing data in chimpanzees and PWID suggest that protective immunity against persistent HCV infection is achievable. Due to the high incidence of infection, PWID are both the most likely to benefit from a vaccine and a population in which vaccine efficacy could be tested. Challenges to testing a vaccine in PWID are significant. However, the first HCV vaccine trial in at-risk HCV-uninfected PWID was initiated in 2012. The results will likely guide future vaccine development and strategies for vaccination of this and other high-risk populations.
Collapse
Affiliation(s)
- Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
105
|
Martinez-Donato G, Amador-Cañizares Y, Alvarez-Lajonchere L, Guerra I, Pérez A, Dubuisson J, Wychowsk C, Musacchio A, Aguilar D, Dueñas-Carrera S. Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation. Vaccine 2014; 32:1720-6. [PMID: 24486345 DOI: 10.1016/j.vaccine.2014.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/01/2023]
Abstract
HCV is a worldwide health problem despite the recent advances in the development of more effective therapies. No preventive vaccine is available against this pathogen. However, non-sterilizing immunity has been demonstrated and supports the potential success of HCV vaccines. Induction of cross-neutralizing antibodies and T cell responses targeting several conserved epitopes, have been related to hepatitis C virus (HCV) clearance. Therefore, in this work, the immunogenicity of a preparation (MixprotHC) based on protein variants of HCV Core, E1, E2 and NS3 was evaluated in mice and monkeys. IgG from MixprotHC immunized mice and monkeys neutralized the infectivity of heterologous HCVcc. Moreover, strong CD4+ and CD8+ T cells proliferative and IFN-γ secretion responses were elicited against HCV proteins. Remarkably, immunization with MixprotHC induced control of viremia in a surrogate challenge model in mice. These results suggest that MixprotHC might constitute an effective immunogen against HCV in humans with potential for reducing the likelihood of immune escape and viral persistence.
Collapse
Affiliation(s)
- Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba.
| | - Yalena Amador-Cañizares
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Liz Alvarez-Lajonchere
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Ivis Guerra
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Angel Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowsk
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Alexis Musacchio
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Daylen Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Santiago Dueñas-Carrera
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
106
|
Hepatitis C virus and vaccine development. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:207-15. [PMID: 25635247 PMCID: PMC4293608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/02/2014] [Accepted: 09/10/2014] [Indexed: 12/05/2022]
Abstract
The prevalence of Hepatitis C virus (HCV) is approximately 3% around the world. This virus causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The effectiveness of interferon-α and ribavirin therapy is about 50% and is associated with significant toxicity and cost. Hence, generating new vaccines or drugs is an obligation. However, there is no vaccine available for clinical use. DNA vaccines have some advantages such as producing feasibility and generating intensive cellular and humoral immune responses. Activation and improvement of natural immune defense mechanisms is a necessity for the development of an effective HCV vaccine. This article discusses the current status of therapies for hepatitis C, the promising new therapies and the experimental strategies to develop an HCV vaccine.
Collapse
|
107
|
Ranjbar MM, Ghorban K, Alavian SM, Keyvani H, Dadmanesh M, Roayaei Ardakany A, Motedayen MH, Sazmand A. GB Virus C/Hepatitis G Virus Envelope Glycoprotein E2: Computational Molecular Features and Immunoinformatics Study. HEPATITIS MONTHLY 2013; 13:e15342. [PMID: 24403917 PMCID: PMC3877655 DOI: 10.5812/hepatmon.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
INTRODUCTION GB virus C (GBV-C) or hepatitis G virus (HGV) is an enveloped, RNA positive-stranded flavivirus-like particle. E2 envelope protein of GBV-C plays an important role in virus entry into the cytosol, genotyping and as a marker for diagnosing GBV-C infections. Also, there is discussion on relations between E2 protein and gp41 protein of HIV. The purposes of our study are to multi aspect molecular evaluation of GB virus C E2 protein from its characteristics, mutations, structures and antigenicity which would help to new directions for future researches. EVIDENCE ACQUISITION Briefly, steps followed here were; retrieving reference sequences of E2 protein, entropy plot evaluation for finding the mutational /conservative regions, analyzing potential Glycosylation, Phosphorylation and Palmitoylation sites, prediction of primary, secondary and tertiary structures, then amino acid distributions and transmembrane topology, prediction of T and B cell epitopes, and finally visualization of epitopes and variations regions in 3D structure. RESULTS Based on the entropy plot, 3 hypervariable regions (HVR) observed along E2 protein located in residues 133-135, 256-260 and 279-281. Analyzing primary structure of protein sequence revealed basic nature, instability, and low hydrophilicity of this protein. Transmembrane topology prediction showed that residues 257-270 presented outside, while residues 234- 256 and 271-293 were transmembrane regions. Just one N-glycosylation site, 5 potential phosphorylated peptides and two palmitoylation were found. Secondary structure revealed that this protein has 6 α-helix, 12 β-strand 17 Coil structures. Prediction of T-cell epitopes based on HLA-A*02:01 showed that epitope NH3-LLLDFVFVL-COOH is the best antigen icepitope. Comparative analysis for consensus B-cell epitopes regarding transmembrane topology, based on physico-chemical and machine learning approaches revealed that residue 231- 296 (NH2- EARLVPLILLLLWWWVNQLAVLGLPAVEAAVAGEVFAGPALSWCLGLPVVSMILGLANLVLYFRWL-COOH) is most effective and probable B cell epitope for E2 protein. CONCLUSIONS The comprehensive analysis of a protein with important roles has never been easy, and in case of E2 envelope glycoprotein of HGV, there is no much data on its molecular and immunological features, clinical significance and its pathogenic potential in hepatitis or any other GBV-C related diseases. So, results of the present study may explain some structural, physiological and immunological functions of this protein in GBV-C, as well as designing new diagnostic kits and besides, help to better understandingE2 protein characteristic and other members of Flavivirus family, especially HCV.
Collapse
Affiliation(s)
| | - Khodayar Ghorban
- Department of Immunology, School of Medicine, AJA University of Medical Sciences, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Middle East Liver Diseases Center (MELD), Tehran, IR Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallh University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Seyed Moayed Alavian, Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallh University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2188945186, E-mail:
| | - Hossein Keyvani
- Department of Virology, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, School of Medicine, AJA University of Medical Sciences, Tehran, IR Iran
| | | | | | - Alireza Sazmand
- Department of Agriculture, Payame Noor University, Yazd, IR Iran
| |
Collapse
|
108
|
Zingaretti C, De Francesco R, Abrignani S. Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clin Microbiol Infect 2013; 20 Suppl 5:103-9. [PMID: 24829939 DOI: 10.1111/1469-0691.12493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With an estimated 3% of the world's population chronically infected, hepatitis C virus (HCV) represents a major health problem for which an efficient vaccination strategy would be highly desirable. Indeed, chronic hepatitis C is recognized as one of the major causes of cirrhosis, hepatocarcinoma and liver failure worldwide and it is the most common indication for liver transplantation, accounting for 40-50% of liver transplants. Much progress has been made in the prevention of HCV transmission and in therapeutic intervention. However, even if a new wave of directly acting antivirals promise to overcome the problems of low efficacy and adverse effects observed for the current standard of care, which include interferon-α and ribavirin, an effective vaccine would be the only means to definitively eradicate infection and to diminish the burden of HCV-related diseases at affordable costs. Although there is strong evidence that the goal of a prophylactic vaccine could be achieved, there are huge development issues that have impeded reaching this goal and that still have to be addressed. In this article we address the question of whether an HCV vaccine is needed, whether it will eventually be feasible, and why it is so difficult to produce.
Collapse
|
109
|
Ruwona TB, Mcbride R, Chappel R, Head SR, Ordoukhanian P, Burton DR, Law M. Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes. J Immunol Methods 2013; 402:35-42. [PMID: 24269751 DOI: 10.1016/j.jim.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/22/2013] [Accepted: 11/12/2013] [Indexed: 02/02/2023]
Abstract
Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology and improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays was confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Mcbride
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Rebecca Chappel
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Steven R Head
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Phillip Ordoukhanian
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
110
|
Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49-86. [PMID: 23463197 DOI: 10.1007/978-3-642-27340-7_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C remains a global epidemic. Approximately 3 % of the world's population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)-a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.
Collapse
Affiliation(s)
- Eva Billerbeck
- Center for the Study of Hepatitis C, The Rockefeller University, NY, USA
| | | | | | | | | |
Collapse
|
111
|
|
112
|
Liang TJ. Current progress in development of hepatitis C virus vaccines. Nat Med 2013; 19:869-78. [PMID: 23836237 PMCID: PMC6263146 DOI: 10.1038/nm.3183] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
Despite major advances in the understanding and treatment of hepatitis C, a preventive vaccine remains elusive. The marked genetic diversity and multiple mechanisms of persistence of hepatitis C virus, combined with the relatively poor immune response of the infected host against the virus, are major barriers. The lack of robust and convenient model systems further hampers the effort to develop an effective vaccine. Advances in our understanding of virus-host interactions and protective immunity in hepatitis C virus infection provide an important roadmap to develop potent and broadly directed vaccine candidates targeting both humoral and cellular immune responses. Multiple approaches to generating and testing viral immunogens have met with variable success. Several candidates have advanced to clinical trials based on promising results in chimpanzees. The ultimate path to a successful preventive vaccine requires comprehensive evaluations of all aspects of protective immunity, innovative application of state-of-the-art vaccine technology and properly designed vaccine trials that can affirm definitive endpoints of efficacy.
Collapse
Affiliation(s)
- T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
113
|
Abstract
Introduction With 3 – 4 million new infections occurring annually, hepatitis C virus (HCV) is a major global health problem. There is increasing evidence to suggest that HCV will be highly amenable to a vaccine approach, and despite advances in treatment, a vaccine remains the most cost-effective and realistic means to significantly reduce the worldwide mortality and morbidity associated with persistent HCV infection. Areas covered In this review we discuss immune responses to HCV during natural infection, and describe how they may inform vaccine design. We introduce the current candidate vaccines for HCV and compare how these fare against the expected requirements of an effective prophylactic HCV vaccine in relation to the breadth, functionality, magnitude and phenotype of the vaccine-induced immune response. Expert opinion Although the correlates of immune protection against HCV are not completely defined, we now have vaccine technologies capable of inducing HCV-specific adaptive immune responses to an order of magnitude that are associated with protection during natural infection. The challenge next is to i) establish well-characterised cohorts of people at risk of HCV infection for vaccine efficacy testing and ii) to better understand the correlates of protection in natural history studies. If these can be achieved, a vaccine against HCV appears a realistic goal.
Collapse
Affiliation(s)
- Leo Swadling
- University of Oxford, NDM and Jenner Institute, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | | | | |
Collapse
|
114
|
Beaumont E, Patient R, Hourioux C, Dimier-Poisson I, Roingeard P. Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology 2013; 57:1303-13. [PMID: 23150224 DOI: 10.1002/hep.26132] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED The development of a prophylactic vaccine against hepatitis C virus (HCV) has become an important medical priority, because 3-4 million new HCV infections are thought to occur each year worldwide. Hepatitis B virus (HBV) is another major human pathogen, but infections with this virus can be prevented with a safe, efficient vaccine, based on the remarkable ability of the envelope protein (S) of this virus to self-assemble into highly immunogenic subviral particles. Chimeric HBV-HCV envelope proteins in which the N-terminal transmembrane domain of S was replaced with the transmembrane domain of the HCV envelope proteins (E1 or E2) were efficiently coassembled with the wild-type HBV S protein into subviral particles. These chimeric particles presented the full-length E1 and E2 proteins from a genotype 1a virus in an appropriate conformation for formation of the E1-E2 heterodimer. Produced in stably transduced Chinese hamster ovary cells and used to immunize New Zealand rabbits, these particles induced a strong specific antibody (Ab) response against the HCV and HBV envelope proteins in immunized animals. Sera containing anti-E1 or anti-E2 Abs elicited by these particles neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b, 2a, and 3 strains. Moreover, the anti-hepatitis B surface response induced by these chimeric particles was equivalent to the response induced by a commercial HBV vaccine. CONCLUSIONS Our results provide support for approaches based on the development of bivalent HBV-HCV prophylactic vaccine candidates potentially able to prevent initial infection with either of these two hepatotropic viruses.
Collapse
Affiliation(s)
- Elodie Beaumont
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | | | | | | | | |
Collapse
|
115
|
Law JLM, Chen C, Wong J, Hockman D, Santer DM, Frey SE, Belshe RB, Wakita T, Bukh J, Jones CT, Rice CM, Abrignani S, Tyrrell DL, Houghton M. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PLoS One 2013; 8:e59776. [PMID: 23527266 PMCID: PMC3602185 DOI: 10.1371/journal.pone.0059776] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/18/2013] [Indexed: 12/20/2022] Open
Abstract
Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1 of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1–7. Vaccination induced significant neutralizing antibodies against heterologous HCV genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development of a human vaccine against this common, global pathogen.
Collapse
Affiliation(s)
- John Lok Man Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- * E-mail: (JLML); (MH)
| | - Chao Chen
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jason Wong
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Darren Hockman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Sharon E. Frey
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Robert B. Belshe
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher T. Jones
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | | | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- * E-mail: (JLML); (MH)
| |
Collapse
|
116
|
Fauvelle C, Lepiller Q, Felmlee DJ, Fofana I, Habersetzer F, Stoll-Keller F, Baumert TF, Fafi-Kremer S. Hepatitis C virus vaccines--progress and perspectives. Microb Pathog 2013; 58:66-72. [PMID: 23499591 DOI: 10.1016/j.micpath.2013.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approximately 170 million individuals, representing 3% of the global population, are infected with hepatitis C virus (HCV). Whereas strategies for antiviral therapies have markedly improved resulting in clinical licensing of direct-acting antivirals, the development of vaccines has been hampered by the high genetic variability of the virus as well as by the lack of suitable animal models for proof-of-concept studies. Nevertheless, there are several promising vaccine candidates in preclinical and clinical development. After a brief summary of the molecular virology and immunology relevant to vaccine development, this review explains the model systems used for preclinical vaccine development, and highlights examples for most recently developed HCV vaccine candidates.
Collapse
Affiliation(s)
- Catherine Fauvelle
- Inserm, U1110, Institut de Virologie, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Beaumont E, Roingeard P. Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Hum Vaccin Immunother 2013; 9:1112-8. [PMID: 23406827 DOI: 10.4161/hv.23900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Given the global prevalence and long-term complications of chronic hepatitis C virus (HCV) infection, HCV constitutes one of the greatest challenges to human health of this decade. Considerable efforts have focused on the development of new effective treatments, but about three to four million individuals become infected each year, adding to the world reservoir of HCV infection. The development of a prophylactic vaccine against hepatitis C virus has thus become an important medical priority. Only a few vaccine candidates have progressed to the clinical phase, and published data on both the efficacy and safety of these vaccines are limited, due to many scientific, logistic and bioethic challenges. Fortunately, new innovative vaccine formulations, modes of vaccination and delivery technologies have been developed in recent years. Several preclinical trials of virus-like particle (VLP)-based vaccination strategies are currently underway and have already generated very promising results. In this commentary, we consider the current state of prophylactic HCV vaccines, the hurdles to be overcome in the future and the various VLP-based vaccination approaches currently being developed.
Collapse
Affiliation(s)
- Elodie Beaumont
- 1 INSERM U966; Université François Rabelais and CHRU de Tours; Tours, France
| | | |
Collapse
|
118
|
Shi C, Ploss A. Hepatitis C virus vaccines in the era of new direct-acting antivirals. Expert Rev Gastroenterol Hepatol 2013; 7:171-85. [PMID: 23363265 DOI: 10.1586/egh.12.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem as it has a high propensity for establishing chronicity. Chronic HCV carriers are at risk of developing severe liver disease including fibrosis, cirrhosis and liver cancer. While treatment has considerably improved over the years, therapy is still only partially effective, and is plagued by side effects, which contribute to treatment failure and is expensive to manage. The drug development pipeline contains several compounds that hold promise to achieve the goal of a short and more tolerable therapy, and are also likely to improve treatment response rates. It remains to be seen, however, how potent antiviral drug cocktails will affect the hepatitis C burden worldwide. In resource-poor environments, considerable costs, inadequate infrastructure for medical supervision and distribution may diminish the impact of future therapies. Consequently, development of novel therapeutic and prophylactic strategies is imperative to contain HCV infection globally.
Collapse
Affiliation(s)
- Chao Shi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
119
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
120
|
Reyes-del Valle J, de la Fuente C, Turner MA, Springfeld C, Apte-Sengupta S, Frenzke ME, Forest A, Whidby J, Marcotrigiano J, Rice CM, Cattaneo R. Broadly neutralizing immune responses against hepatitis C virus induced by vectored measles viruses and a recombinant envelope protein booster. J Virol 2012; 86:11558-66. [PMID: 22896607 PMCID: PMC3486281 DOI: 10.1128/jvi.01776-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/06/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.
Collapse
Affiliation(s)
- Jorge Reyes-del Valle
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Cynthia de la Fuente
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, Rockefeller University, New York, New York, USA
| | - Mallory A. Turner
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Christoph Springfeld
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Swapna Apte-Sengupta
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marie E. Frenzke
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Amelie Forest
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, Rockefeller University, New York, New York, USA
| | - Jillian Whidby
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, Rockefeller University, New York, New York, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
121
|
Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS One 2012; 7:e47492. [PMID: 23091628 PMCID: PMC3472981 DOI: 10.1371/journal.pone.0047492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/12/2012] [Indexed: 01/10/2023] Open
Abstract
Although many studies provide strong evidence supporting the development of HCV virus-like particle (VLP)-based vaccines, the fact that heterologous viral vectors and/or multiple dosing regimes are required to induce protective immunity indicates that it is necessary to improve their immunogenicity. In this study, we have evaluated the use of an anionic self-adjuvanting lipopeptide containing the TLR2 agonist Pam2Cys (E8Pam2Cys) to enhance the immunogenicity of VLPs containing the HCV structural proteins (core, E1 and E2) of genotype 1a. While co-formulation of this lipopeptide with VLPs only resulted in marginal improvements in dendritic cell (DC) uptake, its ability to concomitantly induce DC maturation at very small doses is a feature not observed using VLPs alone or in the presence of an aluminium hydroxide-based adjuvant (Alum). Dramatically improved VLP and E2-specific antibody responses were observed in VLP+E8Pam2Cys vaccinated mice where up to 3 doses of non-adjuvanted or traditionally alum-adjuvanted VLPs was required to match the antibody titres obtained with a single dose of VLPs formulated with this lipopeptide. This result also correlated with significantly higher numbers of specific antibody secreting cells that was detected in the spleens of VLP+E8Pam2Cys vaccinated mice and greater ability of sera from these mice to neutralise the binding and uptake of VLPs by Huh7 cells. Moreover, vaccination of HLA-A2 transgenic mice with this formulation also induced better VLP-specific IFN-γ-mediated responses compared to non-adjuvanted VLPs but comparable levels to that achieved when coadministered with complete freund’s adjuvant. These results suggest overall that the immunogenicity of HCV VLPs can be significantly improved by the addition of this novel adjuvant by targeting their delivery to DCs and could therefore constitute a viable vaccine strategy for the treatment of HCV.
Collapse
|
122
|
Ip PP, Nijman HW, Wilschut J, Daemen T. Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Res 2012; 96:36-50. [PMID: 22841700 DOI: 10.1016/j.antiviral.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 12/12/2022]
Abstract
Approximately 170 million people worldwide are chronic carriers of Hepatitis C virus (HCV). To date, there is no prophylactic vaccine available against HCV. The standard-of-care therapy for HCV infection involves a combination of pegylated interferon-α and ribavirin. This therapy, which is commonly associated with side effects, has a curative rate varying from 43% (HCV genotype 1) to 80% (HCV genotype 2). In 2011, two direct-acting antiviral agents, telaprevir and boceprevir, were approved by the US Food and drug Administration and are now being used in combination with standard-of-care therapy in selected patients infected with HCV genotype 1. Although both drugs are promising, resulting in a shortening of therapy, these drugs also induce additional side effects and have reduced efficacy in patients who did not respond to standard-of-care previously. An alternative approach would be to treat HCV by stimulating the immune system with a therapeutic vaccine ideally aimed at (i) the eradication of HCV-infected cells and (ii) neutralization of infectious HCV particles. The challenge is to develop therapeutic vaccination strategies that are either at least as effective as antiviral drugs but with lower side effects, or vaccines that, when combined with antiviral drugs, can circumvent long-term use of these drugs thereby reducing their side effects. In this review, we summarize and discuss recent preclinical developments in the area of therapeutic vaccination against chronic HCV infection. Although neutralizing antibodies have been described to exert protective immunity, clinical studies on the induction of neutralizing antibodies in therapeutic settings are limited. Therefore, we will primarily discuss therapeutic vaccines which aim to induce effective cellular immune response against HCV.
Collapse
Affiliation(s)
- Peng Peng Ip
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|
123
|
Lambotin M, Barth H, Moog C, Habersetzer F, Baumert TF, Stoll-Keller F, Fafi-Kremer S. Challenges for HCV vaccine development in HIV-HCV coinfection. Expert Rev Vaccines 2012; 11:791-804. [PMID: 22913257 DOI: 10.1586/erv.12.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is estimated that 4-5 million HIV-infected patients are coinfected with HCV. The impact of HIV on the natural course of HCV infection is deleterious. This includes a higher rate of HCV persistence and a faster rate of fibrosis progression. Coinfected patients show poor treatment outcome following standard HCV therapy. Although direct antiviral agents offer new therapeutic options, their use is hindered by potential drug interactions and toxicity in HIV-infected patients under HAART. Overtime, a large reservoir of HCV genotype 1 patients will accumulate in resource poor countries where the hepatitis C treatment is not easily affordable and HIV therapy remains the primary health issue for coinfected individuals. HCV vaccines represent a promising strategy as an adjunct or alternative to current HCV therapy. Here, the authors review the pathogenesis of hepatitis C in HIV-infected patients, with a focus on the impact of HIV on HCV-specific immune responses and discuss the challenges for vaccine development in HIV-HCV coinfection.
Collapse
|
124
|
Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A 2012; 109:9499-504. [PMID: 22623528 DOI: 10.1073/pnas.1202924109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-Å resolution reveal that the epitope is a β-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu(413) and Trp(420) on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn(415) on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.
Collapse
|
125
|
Bukh J. Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology 2012; 142:1279-1287.e3. [PMID: 22537434 DOI: 10.1053/j.gastro.2012.02.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) causes liver-related death in more than 300,000 people annually. Treatments for patients with chronic HCV are suboptimal, despite the introduction of directly acting antiviral agents. There is no vaccine that prevents HCV infection. Relevant animal models are important for HCV research and development of drugs and vaccines. Chimpanzees are the best model for studies of HCV infection and related innate and adaptive host immune responses. They can be used in immunogenicity and efficacy studies of HCV vaccines. The only small animal models of robust HCV infection are T- and B- cell deficient mice with human chimeric livers. Although these mice cannot be used in studies of adaptive immunity, they have provided new insights into HCV neutralization, interactions between virus and receptors, innate host responses, and therapeutic approaches. Recent progress in developing genetically humanized mice is exciting, but these models only permit studies of specific steps in the HCV life cycle and have limited or no viral replication.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
126
|
Burke KP, Munshaw S, Osburn WO, Levine J, Liu L, Sidney J, Sette A, Ray SC, Cox AL. Immunogenicity and cross-reactivity of a representative ancestral sequence in hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:5177-88. [PMID: 22508927 DOI: 10.4049/jimmunol.1103008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vaccines designed to prevent or to treat hepatitis C viral infection must achieve maximum cross-reactivity against widely divergent circulating strains. Rational approaches for sequence selection to maximize immunogenicity and minimize genetic distance across circulating strains may enhance vaccine induction of optimal cytotoxic T cell responses. We assessed T cell recognition of potential hepatitis C virus (HCV) vaccine sequences generated using three rational approaches: combining epitopes with predicted tight binding to the MHC, consensus sequence (most common amino acid at each position), and representative ancestral sequence that had been derived using bayesian phylogenetic tools. No correlation was seen between peptide-MHC binding affinity and frequency of recognition, as measured by an IFN-γ T cell response in HLA-matched HCV-infected individuals. Peptides encoding representative, consensus, and natural variant sequences were then tested for the capacity to expand CD8 T cell populations and to elicit cross-reactive CD8 T cell responses. CD8(+) T cells expanded with representative sequence HCV generally more broadly and robustly recognized highly diverse circulating HCV strains than did T cells expanded with either consensus sequence or naturally occurring sequence variants. These data support the use of representative sequence in HCV vaccine design.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Weigand K, Voigt F, Encke J, Hoyler B, Stremmel W, Eisenbach C. Vaccination with dendritic cells pulsed with hepatitis C pseudo particles induces specific immune responses in mice. World J Gastroenterol 2012; 18:785-93. [PMID: 22371638 PMCID: PMC3286141 DOI: 10.3748/wjg.v18.i8.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/26/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole "viral surface" induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further.
Collapse
|
128
|
Campo DS, Dimitrova Z, Yokosawa J, Hoang D, Perez NO, Ramachandran S, Khudyakov Y. Hepatitis C virus antigenic convergence. Sci Rep 2012; 2:267. [PMID: 22355779 PMCID: PMC3279735 DOI: 10.1038/srep00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
Vaccine development against hepatitis C virus (HCV) is hindered by poor understanding of factors defining cross-immunoreactivity among heterogeneous epitopes. Using synthetic peptides and mouse immunization as a model, we conducted a quantitative analysis of cross-immunoreactivity among variants of the HCV hypervariable region 1 (HVR1). Analysis of 26,883 immunological reactions among pairs of peptides showed that the distribution of cross-immunoreactivity among HVR1 variants was skewed, with antibodies against a few variants reacting with all tested peptides. The HVR1 cross-immunoreactivity was accurately modeled based on amino acid sequence alone. The tested peptides were mapped in the HVR1 sequence space, which was visualized as a network of 11,319 sequences. The HVR1 variants with a greater network centrality showed a broader cross-immunoreactivity. The entire sequence space is explored by each HCV genotype and subtype. These findings indicate that HVR1 antigenic diversity is extensively convergent and effectively limited, suggesting significant implications for vaccine development.
Collapse
Affiliation(s)
- David S. Campo
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Zoya Dimitrova
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Jonny Yokosawa
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Duc Hoang
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nestor O. Perez
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Probiomed S.A., Tenancingo, Mexico
| | - Sumathi Ramachandran
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Yury Khudyakov
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| |
Collapse
|
129
|
Meunier JC, Gottwein JM, Houghton M, Russell RS, Emerson SU, Bukh J, Purcell RH. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus. J Infect Dis 2011; 204:1186-90. [PMID: 21917891 DOI: 10.1093/infdis/jir511] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77 (genotype 1a) HCVpp assay. All animals had developed NtAb after the second vaccination; 4 animals had reciprocal titers of ≥200 at the time of challenge. Using genotypes 1a-6a HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) assays, cross-reactive NtAb were detected against 1a, 4a, 5a, and 6a, with limited reactivity against 2a and 3a. Our study provides encouragement for the development of a recombinant envelope-based vaccine against hepatitis C.
Collapse
Affiliation(s)
- Jean-Christophe Meunier
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
131
|
Edwards VC, Tarr AW, Urbanowicz RA, Ball JK. The role of neutralizing antibodies in hepatitis C virus infection. J Gen Virol 2011; 93:1-19. [PMID: 22049091 DOI: 10.1099/vir.0.035956-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is a blood-borne virus estimated to infect around 170 million people worldwide and is, therefore, a major disease burden. In some individuals the virus is spontaneously cleared during the acute phase of infection, whilst in others a persistent infection ensues. Of those persistently infected, severe liver diseases such as cirrhosis and primary liver cancer may develop, although many individuals remain asymptomatic. A range of factors shape the course of HCV infection, not least host genetic polymorphisms and host immunity. A number of studies have shown that neutralizing antibodies (nAb) arise during HCV infection, but that these antibodies differ in their breadth and mechanism of neutralization. Recent studies, using both mAbs and polyclonal sera, have provided an insight into neutralizing determinants and the likely protective role of antibodies during infection. This understanding has helped to shape our knowledge of the overall structure of the HCV envelope glycoproteins--the natural target for nAb. Most nAb identified to date target receptor-binding sites within the envelope glycoprotein E2. However, there is some evidence that other viral epitopes may be targets for antibody neutralization, suggesting the need to broaden the search for neutralization epitopes beyond E2. This review provides a comprehensive overview of our current understanding of the role played by nAb in HCV infection and disease outcome and explores the limitations in the study systems currently used. In addition, we briefly discuss the potential therapeutic benefits of nAb and efforts to develop nAb-based therapies.
Collapse
Affiliation(s)
- Victoria C Edwards
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Richard A Urbanowicz
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jonathan K Ball
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
132
|
Verstrepen BE, Depla E, Rollier CS, Mares G, Drexhage JAR, Priem S, Verschoor EJ, Koopman G, Granier C, Dreux M, Cosset FL, Maertens G, Heeney JL. Clearance of genotype 1b hepatitis C virus in chimpanzees in the presence of vaccine-induced E1-neutralizing antibodies. J Infect Dis 2011; 204:837-44. [PMID: 21849281 PMCID: PMC3156919 DOI: 10.1093/infdis/jir423] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/12/2011] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that neutralizing antibodies play an important role in protection from chronic hepatitis C virus (HCV) infection. Efforts to elicit such responses by immunization with intact heterodimeric E1E2 envelope proteins have met with limited success. To determine whether antigenic sites, which are not exposed by the combined E1E2 heterodimer structure, are capable of eliciting neutralizing antibody responses, we expressed and purified each as separate recombinant proteins E1 and E2, from which the immunodominant hypervariable region (HVR-1) was deleted. Immunization of chimpanzees with either E1 or E2 alone induced antigen-specific T-helper cytokines of similar magnitude. Unexpectedly, the capacity to neutralize HCV was observed in E1 but not in animals immunized with E2 devoid of HVR-1. Furthermore, in vivo only E1-vaccinated animals exposed to the heterologous HCV-1b inoculum cleared HCV infection.
Collapse
Affiliation(s)
- Babs E. Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik Depla
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Christine S. Rollier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Gwenny Mares
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Joost A. R. Drexhage
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Sofie Priem
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Christelle Granier
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - Marlène Dreux
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - François L. Cosset
- Université de Lyon, UCB Lyon-1, INSERM, U758, Human Virology laboratory, EVIR Team, Lyon; Ecole Normale Supérieure de Lyon, France
| | - Geert Maertens
- Innogenetics N.V, Industriepark Zwijnaarde, Ghent, Belgium
| | - Jonathan L. Heeney
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Laboratory of Viral Zoonotics, University of Cambridge, CB3-OES, United Kingdom
| |
Collapse
|
133
|
Houghton M. Prospects for prophylactic and therapeutic vaccines against the hepatitis C viruses. Immunol Rev 2011; 239:99-108. [PMID: 21198667 DOI: 10.1111/j.1600-065x.2010.00977.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Encouraging efficacy data have been obtained in the hepatitis C virus (HCV) chimpanzee model using prophylactic vaccines comprising adjuvanted recombinant envelope gpE1/gpE2 glycoproteins or prime/boost immunization regimens using defective adenoviruses and plasmid DNA expressing non-structural genes. While usually not resulting in sterilizing immunity after experimental challenge, the progression to chronic, persistent infection (which is responsible for HCV-associated pathogenicity in human) is inhibited. These and other vaccine candidates are in clinical development for both prophylactic as well as possible therapeutic applications. Given that other vaccines tested in the chimpanzee model may be possibly increasing the rate of chronicity, it is very important that this model continues to be available and used prior to initiation of clinical development. Several vaccine monotherapy trials in chronically infected HCV patients are resulting in small declines in viral load, suggesting that in future, combining vaccination with antiviral drug treatment may be beneficial.
Collapse
Affiliation(s)
- Michael Houghton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
134
|
Sabo MC, Luca VC, Prentoe J, Hopcraft SE, Blight KJ, Yi M, Lemon SM, Ball JK, Bukh J, Evans MJ, Fremont DH, Diamond MS. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step. J Virol 2011; 85:7005-19. [PMID: 21543495 PMCID: PMC3126585 DOI: 10.1128/jvi.00586-11] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/22/2011] [Indexed: 12/16/2022] Open
Abstract
The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies (MAbs) against E2 proteins from genotype 1a and 2a HCV strains. Using high-throughput focus-forming reduction or luciferase-based neutralization assays with chimeric infectious HCV containing structural proteins from both genotypes, we defined eight MAbs that significantly inhibited infection of the homologous HCV strain in cell culture. Two of these bound E2 proteins from strains representative of HCV genotypes 1 to 6, and one of these MAbs, H77.39, neutralized infection of strains from five of these genotypes. The three most potent neutralizing MAbs in our panel, H77.16, H77.39, and J6.36, inhibited infection at an early postattachment step. Receptor binding studies demonstrated that H77.39 inhibited binding of soluble E2 protein to both CD81 and SR-B1, J6.36 blocked attachment to SR-B1 and modestly reduced binding to CD81, and H77.16 blocked attachment to SR-B1 only. Using yeast surface display, we localized epitopes for the neutralizing MAbs on the E2 protein. Two of the strongly inhibitory MAbs, H77.16 and J6.36, showed markedly reduced binding when amino acids within hypervariable region 1 (HVR1) and at sites ∼100 to 200 residues away were changed, suggesting binding to a discontinuous epitope. Collectively, these studies help to define the structural and functional complexity of antibodies against HCV E2 protein with neutralizing potential.
Collapse
Affiliation(s)
| | | | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sharon E. Hopcraft
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | - Keril J. Blight
- Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77559-1073
| | - Stanley M. Lemon
- Division of Infectious Diseases, Department of Medicine, Inflammatory Diseases Institute, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292
| | - Jonathan K. Ball
- School of Molecular Medical Sciences and the Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Evans
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | - Daved H. Fremont
- Departments of Pathology and Immunology
- Biochemistry and Molecular Biophysics
| | - Michael S. Diamond
- Departments of Pathology and Immunology
- Medicine
- Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
135
|
Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54:1273-85. [PMID: 21236312 DOI: 10.1016/j.jhep.2010.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.
Collapse
Affiliation(s)
- Joseph Torresi
- Austin Centre for Infection Research, Department of Infectious Diseases Austin Hospital, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
136
|
Abstract
Hepatitis C virus (HCV) infects more than 170 million people globally and is a leading cause of liver cirrhosis, transplantation and hepatocellular carcinoma. Current gold-standard therapy often fails, has significant side effects in many cases and is expensive. No vaccine is currently available. The fact that a significant proportion of infected people spontaneously control HCV infection in the setting of an appropriate immune response suggests that a vaccine for HCV is a realistic goal. A comparative analysis of infected people with distinct clinical outcomes has enabled the characterization of many important innate and adaptive immune processes associated with viral control. It is clear that a successful HCV vaccine will need to exploit and enhance these natural immune defense mechanisms. New HCV vaccine approaches, including peptide, recombinant protein, DNA and vector-based vaccines, have recently reached Phase I/II human clinical trials. Some of these technologies have generated robust antiviral immunity in healthy volunteers and infected patients. The challenge now is to move forward into larger at-risk or infected populations to truly test efficacy.
Collapse
Affiliation(s)
- John Halliday
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
137
|
Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 2011; 29:2910-7. [PMID: 21338680 DOI: 10.1016/j.vaccine.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/16/2010] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
Abstract
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.
Collapse
|
138
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
139
|
El-Attar LMR, Partidos CD, Howard CR. A peptide mimotope of hepatitis C virus E2 protein is immunogenic in mice and block human anti-HCV sera. J Med Virol 2010; 82:1655-65. [PMID: 20827761 DOI: 10.1002/jmv.21857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conformational B-cell epitopes on the HCV E2 protein recognized by human antibodies were characterized by the use of a peptide mimotope named K1. K1 was identified by two HCV anti-E2 monoclonal antibodies (mAbs) following selection and purification of phage clones containing a 15-mer random peptide insert. Murine antisera to the mimotope K1 recognized the E2 protein. Five of eight human sera from patients who had cleared HCV recognized the K1 mimotope. Binding to E2 in four individuals with the capacity to block E2-CD81 interaction was inhibited by the mimotope K1. The results demonstrate that anti-E2 antibodies in sera from patients who have cleared HCV infection are directed against a conformational B-cell epitope on E2 that can be mimicked with linear synthetic peptides. These findings could have implications for vaccine design by employing linear mimotopes to direct B-cell responses against those specific E2 epitopes that may correlate with immunity.
Collapse
Affiliation(s)
- L M R El-Attar
- Department of Pathology and Infectious Diseases, Royal Veterinary College, London, UK.
| | | | | |
Collapse
|
140
|
Ray R, Meyer K, Banerjee A, Basu A, Coates S, Abrignani S, Houghton M, Frey SE, Belshe RB. Characterization of antibodies induced by vaccination with hepatitis C virus envelope glycoproteins. J Infect Dis 2010; 202:862-6. [PMID: 20677942 PMCID: PMC2931414 DOI: 10.1086/655902] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 04/19/2010] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 were used with MF59 adjuvant as a candidate vaccine for a phase 1 safety and immunogenicity trial. Ten of 41 vaccinee serum samples displayed a neutralization titer of > or =1:20 against vesicular stomatitis virus (VSV)-HCV pseudotype, 15 of 36 serum samples tested had a neutralization titer of > or =1:400 against human immunodeficiency virus (HIV)-HCV pseudotype, and 10 of 36 serum samples tested had a neutralization titer of > or =1:20 against cell culture-grown HCV genotype 1a. Neutralizing serum samples had increased affinity levels and displayed >2-fold higher specific activity levels to well-characterized epitopes on E1/E2, especially to the hypervariable region 1 of E2.
Collapse
Affiliation(s)
- Ranjit Ray
- Department of Internal Medicine and Vaccine and Treatment Evaluation Unit, Saint Louis University, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Dahari H, Feinstone SM, Major ME. Meta-analysis of hepatitis C virus vaccine efficacy in chimpanzees indicates an importance for structural proteins. Gastroenterology 2010; 139:965-74. [PMID: 20621699 PMCID: PMC3075980 DOI: 10.1053/j.gastro.2010.05.077] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/06/2010] [Accepted: 05/26/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Studies in patients and chimpanzees that spontaneously cleared hepatitis C virus (HCV) infections demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism about prophylactic HCV vaccines, and several studies were performed in chimpanzees, although most included fewer than 6 animals. To draw meaningful conclusions about the efficacy of HCV vaccines in chimpanzees, we performed statistical analyses of data from previously published studies from different groups. METHODS We performed a meta-analysis that compared parameters among naïve (n = 63), vaccinated (n = 53), and rechallenged (n = 36) animals, including peak RNA titer postchallenge, time points of peak RNA titer, duration of viremia, and proportion of persistent infections. RESULTS Each vaccination study induced immune responses that were effective in rapidly controlling HCV replication. Levels of induced T-cell responses did not indicate vaccine success. There was no reduction in the rate of HCV persistence in vaccinated animals, compared with naïve animals, when nonstructural proteins were included in the vaccine. Vaccines that contained only structural proteins had clearance rates that were significantly higher than vaccines that contained nonstructural components (P = .015). CONCLUSIONS The inclusion of nonstructural proteins in HCV vaccines might be detrimental to protective immune responses, and/or structural proteins might activate T-cell responses that mediate viral clearance.
Collapse
Affiliation(s)
- Harel Dahari
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Stephen M. Feinstone
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Marian E. Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| |
Collapse
|
142
|
Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D, Pileri P, Ray R, Di Bisceglie AM, Rinella P, Hill H, Wolff MC, Schultze V, Han JH, Scharschmidt B, Belshe RB. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine 2010; 28:6367-73. [PMID: 20619382 PMCID: PMC2923449 DOI: 10.1016/j.vaccine.2010.06.084] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 06/17/2010] [Accepted: 06/25/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) causes chronic liver disease that often leads to cirrhosis and hepatocellular carcinoma. In animal studies, chimpanzees were protected against chronic infection following experimental challenge with either homologous or heterologous HCV genotype 1a strains which predominate in the USA and Canada. We describe the first in humans clinical trial of this prophylactic HCV vaccine. METHODS HCV E1E2 adjuvanted with MF59C.1 (an oil-in-water emulsion) was given at 3 different dosages on day 0 and weeks 4, 24 and 48 in a phase 1, placebo-controlled, dose escalation trial to healthy HCV-negative adults. RESULTS There was no significant difference in the proportion of subjects reporting adverse events across the groups. Following vaccination subjects developed antibodies detectable by ELISA, CD81 neutralization and VSV/HCV pseudotype neutralization. There were no significant differences between vaccine groups in the number of responders and geometric mean titers for each of the three assays. All subjects developed lymphocyte proliferation responses to E1E2 and an inverse response to increasing amounts of antigen was noted. CONCLUSIONS The vaccine was safe and generally well-tolerated at each of the 3 dosage levels and induced antibody and lymphoproliferative responses. A larger study to further evaluate safety and immunogenicity is warranted.
Collapse
Affiliation(s)
- Sharon E Frey
- Saint Louis University School of Medicine, Division of Infectious Diseases and Immunology, St. Louis, MO 63104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Ratio of HCV structural antigens in protein-based vaccine formulations is critical for functional immune response induction. Biotechnol Appl Biochem 2010; 56:111-8. [PMID: 20515441 DOI: 10.1042/ba20090216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HCV (hepatitis C virus) infection is among the leading causes of chronic liver disease, but currently there is no vaccine available. Data have accumulated about the importance of targeting different HCV antigens in vaccine candidate preparations. Here, a surface response study to select the optimal ratio of recombinant HCV structural antigens in a vaccine preparation, capable of generating in vivo functional cellular immune response in mice, was performed. The immunogenicity of the selected HCV structural protein mixture (Co-E1-E2) in mice and African green monkeys, after five doses of immunization, was also demonstrated. Specific T-cell proliferative response against HCV structural antigens was induced in vaccinated mice. Moreover, on challenge with recombinant HCV VV (vaccinia virus), all mice controlled the viraemia and 80% were protected. On the other hand, monkeys immunized with Co-E1-E2 developed antibodies, specifically directed to region 412-438 of E2 protein, that include an epitope implicated in HCV neutralization, in addition to a specific proliferative response against HCV Core and E2 proteins. These results indicated that the optimal amount and ratio of HCV recombinant proteins should be taken into account to elicit a successful immune response against HCV and therefore have important implications for vaccine design.
Collapse
|
144
|
Expression and structural properties of a chimeric protein based on the ectodomains of E1 and E2 hepatitis C virus envelope glycoproteins. Protein Expr Purif 2010; 71:123-31. [DOI: 10.1016/j.pep.2010.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 12/19/2022]
|
145
|
|
146
|
Abstract
This review describes work conducted largely in my laboratory at the Chiron Corporation between 1982 and 1989 that led to the identification of the hepatitis C virus (HCV). Key colleagues included Dr. Qui-Lim Choo in my laboratory and Dr. George Kuo also of Chiron as well as my collaborator Dr. Daniel Bradley at the CDC who provided many biological samples from the NANBH chimpanzee model. Numerous molecular approaches were explored including the screening of tens of millions of bacterial cDNA clones derived from these materials. While this early genomics approach resulted in the identification of many host gene activities associated with NANBH, no genes of proven infectious etiology could be identified. A separate avenue of our research led to the molecular characterization of the complete hepatitis delta viral genome but unfortunately, this could not be used as a molecular handle for HCV. Largely following input from Dr. Kuo, I initiated a blind cDNA immunoscreening approach involving the large-scale screening of bacterial proteomic cDNA libraries derived from NANBH-infectious chimpanzee materials (prior to the development of PCR technology) using sera from NANBH patients as a presumptive source of viral antibodies. Eventually, this novel approach to identifying agents of infectious etiology led to the isolation of a single small cDNA clone that was proven to be derived from the HCV genome using various molecular and serological criteria. This discovery has facilitated the development of effective diagnostics, blood screening tests and the elucidation of promising drug and vaccine targets to control this global pathogen.
Collapse
|
147
|
Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol 2009; 83:11078-89. [PMID: 19710151 DOI: 10.1128/jvi.00800-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
More than 120 million people worldwide are chronically infected with hepatitis C virus (HCV), making HCV infection the leading cause of liver transplantation in developed countries. Treatment is limited, and efficacy depends upon the infecting strain and the initial viral load. The HCV envelope glycoproteins (E1 and E2) are involved in receptor binding, virus-cell fusion, and entry into the host cell. HCV infection proceeds by endosomal acidification, suggesting that fusion of the viral envelope with cellular membranes is a pH-triggered event. E2 consists of an amino-terminal ectodomain, an amphipathic helix that forms a stem region, and a carboxy-terminal membrane-associating segment. We have devised a novel expression system for the production of a secreted form of E2 ectodomain (eE2) from mammalian cells and performed a comprehensive biochemical and biophysical characterization. eE2 is properly folded, as determined by binding to human CD81, blocking of infection of cell culture-derived HCV, and recognition by antibodies from patients chronically infected with different genotypes of HCV. The glycosylation pattern, number of disulfide bonds, oligomerization state, and secondary structure of eE2 have been characterized using mass spectrometry, size exclusion chromatography, circular dichroism, and analytical ultracentrifugation. These results advance the understanding of E2 and may assist in the design of an HCV vaccine and entry inhibitor.
Collapse
|
148
|
Major ME. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV): Developments and Future Perspectives. Viruses 2009; 1:144-65. [PMID: 21994543 PMCID: PMC3185488 DOI: 10.3390/v1020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/25/2009] [Accepted: 08/11/2009] [Indexed: 12/15/2022] Open
Abstract
Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV) have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.
Collapse
Affiliation(s)
- Marian E Major
- Division of Viral Products, Center for Biologics, Food and Drug Administration, Bldg29A/Rm1D10, 8800 Rockville Pike, Bethesda, MD 20892, USA; E-mail: ; Tel.: +1-301-827-1881
| |
Collapse
|
149
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009. [PMID: 19473491 DOI: 10.1186/1743-422x-6-66.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009; 6:66. [PMID: 19473491 PMCID: PMC2694788 DOI: 10.1186/1743-422x-6-66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Ashraf A Tabll
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Yasmine S El-Abd
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Hassan Yousif
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohsen Hegab
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohamed Reda
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Reem El Shenawy
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Rehab I Moustafa
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Nabila Degheidy
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
| | | |
Collapse
|