101
|
Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol 2013; 31:185-93. [PMID: 23395485 PMCID: PMC3593784 DOI: 10.1016/j.tibtech.2013.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 11/20/2022]
Abstract
Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications.
Collapse
Affiliation(s)
- Sibao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | |
Collapse
|
102
|
Guidolin AS, Cônsoli FL. Molecular characterization of Wolbachia strains associated with the invasive Asian citrus psyllid Diaphorina citri in Brazil. MICROBIAL ECOLOGY 2013; 65:475-86. [PMID: 23269454 DOI: 10.1007/s00248-012-0150-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/05/2012] [Indexed: 05/26/2023]
Abstract
Wolbachia is a symbiont intensively studied due to its ability to interfere with their host's reproduction, and it has been recently proposed as an alternative tool to control insect pests or vectors of diseases. The Asian citrus psyllid Diaphorina citri is an important pest of citrus since it vectors the bacterium that causes the "Huanglongbing" disease in citrus. The frequency and diversity of Wolbachia associated with D. citri is unknown, limiting the utilization of Wolbachia as an alternative strategy for insect management. Thus, we aimed to determine the natural rate of infection, to characterize the Wolbachia strains associated with this psyllid by "multilocus sequencing typing" (MLST) and wsp analysis, and to verify the association of the symbiont to particular genotypes of the host. Analysis indicated Wolbachia infects 100 % of all specimens tested from all 15 sampled populations. MLST revealed the occurrence of five new sequence types (STs) of Wolbachia, while analysis based on the wsp sequences indicated only four different types of Wolbachia. ST-173 was predominant, while the remaining STs were population specific. Analysis of the host-symbiont relationship did not reveal any particular association of Wolbachia and haplotypes or a decrease in nucleotide diversity of D. citri in populations in which more than one ST was recorded. The consequences of the diversity of STs reported are still unknown, but the fact that Wolbachia infection is fixed and that there is one ST with a broad distribution highlights the use of this symbiont as an alternative strategy to control D. citri.
Collapse
Affiliation(s)
- A S Guidolin
- Department of Entomology and Acarology, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
103
|
Ricci I, Valzano M, Ulissi U, Epis S, Cappelli A, Favia G. Symbiotic control of mosquito borne disease. Pathog Glob Health 2012; 106:380-5. [PMID: 23265608 PMCID: PMC4001619 DOI: 10.1179/2047773212y.0000000051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It is well accepted that the symbiotic relationships insects have established with several microorganisms have had a key role in their evolutionary success. Bacterial symbiosis is also prevalent in insects that are efficient disease vectors, and numerous studies have sought to decrypt the basic mechanisms of the host-symbiont relationships and develop ways to control vector borne diseases. 'Symbiotic control', a new multifaceted approach that uses symbiotic microorganisms to control insect pests or reduce vector competence, seems particularly promising. Three such approaches currently at the cutting edge are: (1) the disruption of microbial symbionts required by insect pests; (2) the manipulation of symbionts that can express anti-pathogen molecules within the host; and (3) the introduction of endogenous microbes that affect life-span and vector capacity of the new hosts in insect populations. This work reviews current knowledge on microbial symbiosis in mosquitoes that holds promise for development of symbiotic control for mosquito borne diseases.
Collapse
Affiliation(s)
- Irene Ricci
- School of Biosciences and Biotechnology, University of Camerino, Italy
| | | | | | | | | | | |
Collapse
|
104
|
Kikuchi Y. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 2012; 24:195-204. [PMID: 21566374 DOI: 10.1264/jsme2.me09140s] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals and plants possess symbiotic microorganisms inside their body, wherein intimate interactions occur between the partners. The Insecta, often rated as the most diverse animal group, show various types of endosymbiotic associations, ranging from obligate mutualism to facultative parasitism. Although technological advancements in culture-independent molecular techniques, such as quantitative PCR, molecular phylogeny and in situ hybridization, as well as genomic and metagenomic analyses, have allowed us to directly observe endosymbiotic associations in vivo, the molecular mechanisms underlying insect-microbe interactions are not well understood, because most of these insect endosymbionts are neither culturable nor genetically manipulatable. However, recent studies have succeeded in the isolation of several facultative symbionts by using insect cell lines or axenic media, revolutionizing studies of insect endosymbiosis. This article reviews the amazing diversity of bacterial endosymbiosis in insects, focusing on several model systems with culturable endosymbionts, which provide a new perspective towards understanding how intimate symbiotic associations may have evolved and how they are maintained within insects.
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
105
|
Wangkeeree J, Miller TA, Hanboonsong Y. Candidates for symbiotic control of sugarcane white leaf disease. Appl Environ Microbiol 2012; 78:6804-11. [PMID: 22798373 PMCID: PMC3457511 DOI: 10.1128/aem.01439-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/29/2012] [Indexed: 11/20/2022] Open
Abstract
The leafhopper Matsumuratettix hiroglyphicus (Matsumura) is the most important vector of a phytoplasma pathogen causing sugarcane white leaf (SCWL) disease. The purpose of this study was to evaluate candidate bacterial symbionts for possible use as vehicles in the control of the disease. 16S rRNA bacterial genes were amplified from whole bodies of M. hiroglyphicus leafhoppers and analyzed by cloning and sequencing. Two dominant groups were found: one belonged to the Betaproteobacteria that did not closely match any sequences in the database and was named bacterium associated with M. hiroglyphicus (BAMH). Another one found to be abundant in this leafhopper is "Candidatus Sulcia muelleri" in the order Bacteroidetes, which was previously reported in the insect members of the Auchenorrhyncha. Most M. hiroglyphicus leafhoppers carry both BAMH and "Ca. Sulcia muelleri." Fluorescent in situ hybridization showed that BAMH and "Ca. Sulcia muelleri" colocalized in the same bacteriomes. BAMH was present in the midgut and ovaries of the leafhopper and was found in all developmental stages, including eggs, nymphs, and adults. Because BAMH appears to be specific for the SCWL vector, we evaluated it as a candidate for symbiotic control of sugarcane white leaf disease.
Collapse
Affiliation(s)
- Jureemart Wangkeeree
- Entomology Division, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Thomas A. Miller
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Yupa Hanboonsong
- Entomology Division, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
106
|
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A 2012; 109:12734-9. [PMID: 22802646 PMCID: PMC3412027 DOI: 10.1073/pnas.1204158109] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Sibao Wang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Anil K. Ghosh
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Nicholas Bongio
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Kevin A. Stebbings
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| |
Collapse
|
107
|
Van Den Abbeele J, Bourtzis K, Weiss B, Cordón-Rosales C, Miller W, Abd-Alla AMM, Parker A. Enhancing tsetse fly refractoriness to trypanosome infection--a new IAEA coordinated research project. J Invertebr Pathol 2012; 112 Suppl:S142-7. [PMID: 22841950 DOI: 10.1016/j.jip.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/15/2022]
Abstract
To date, IAEA-supported Sterile Insect Technique (SIT) projects for tsetse and trypanosomiasis control have been in areas without human sleeping sickness, but future projects could include areas of actual or potential human disease transmission. In this context it would be imperative that released sterile tsetse flies are incompetent to transmit the disease-causing trypanosome parasite. Therefore, development of tsetse fly strains refractory to trypanosome infection is highly desirable as a simple and effective method of ensuring vector incompetence of the released flies. This new IAEA Coordinated Research Project (CRP) focuses on gaining a deeper knowledge of the tripartite interactions between the tsetse fly vectors, their symbionts and trypanosome parasites. The objective of this CRP is to acquire a better understanding of mechanisms that limit the development of trypanosome infections in tsetse and how these may be enhanced.
Collapse
Affiliation(s)
- Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
108
|
Caljon G, De Vooght L, Van Den Abbeele J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J Invertebr Pathol 2012; 112 Suppl:S75-82. [PMID: 22841635 DOI: 10.1016/j.jip.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| | | | | |
Collapse
|
109
|
Rangberg A, Diep DB, Rudi K, Amdam GV. Paratransgenesis: an approach to improve colony health and molecular insight in honey bees (Apis mellifera)? Integr Comp Biol 2012; 52:89-99. [PMID: 22659204 DOI: 10.1093/icb/ics089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The honey bee (Apis mellifera) is highly valued as a commercial crop pollinator and a model animal in research. Over the past several years, governments, beekeepers, and the general public in the United States and Europe have become concerned by increased losses of honey bee colonies, calling for more research on how to keep colonies healthy while still employing them extensively in agriculture. The honey bee, like virtually all multicellular organisms, has a mutually beneficial relationship with specific microbes. The microbiota of the gut can contribute essential nutrients and vitamins and prevent colonization by non-indigenous and potentially harmful species. The gut microbiota is also of interest as a resource for paratransgenesis; a Trojan horse strategy based on genetically modified symbiotic microbes that express effector molecules antagonizing development or transmission of pathogens. Paratransgenesis was originally engineered to combat human diseases and agricultural pests that are vectored by insects. We suggest an alternative use, as a method to promote health of honey bees and to expand the molecular toolbox for research on this beneficial social insect. The honey bees' gut microbiota contains lactic acid bacteria including the genus Lactobacillus that has paratransgenic potential. We present a strategy for transforming one Lactobacillus species, L. kunkeei, for use as a vector to promote health of honey bees and functional genetic research.
Collapse
Affiliation(s)
- Anbjørg Rangberg
- Department of Chemistry, Biotechnology and Food Science, University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | | | | | | |
Collapse
|
110
|
da Mota FF, Marinho LP, Moreira CJDC, Lima MM, Mello CB, Garcia ES, Carels N, Azambuja P. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis 2012; 6:e1631. [PMID: 22563511 PMCID: PMC3341335 DOI: 10.1371/journal.pntd.0001631] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/17/2012] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. Methodology/Principal Findings Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. Conclusions/Significance The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus. Chagas disease is one of the most important endemic diseases of South and Central America. Its causative agent is the protozoan Trypanosoma cruzi, which is transmitted to humans by blood-feeding insects known as triatomine bugs. These vectors mainly belong to Rhodnius, Triatoma and Panstrongylus genera of Reduviidae. The bacterial communities in the guts of these vectors may have important effects on the biology of T. cruzi. For this reason, we analyzed the bacterial diversity hosted in the gut of different species of triatomines using cultivation-independent methods. Among Rhodnius sp., we observed similar bacterial communities from specimens obtained from insectaries or sylvatic conditions. Endosymbionts of the Arsenophonus genus were preferentially associated with insects of the Panstrongylus and Triatoma genera, whereas the bacterial genus Serratia and Candidatus Rohrkolberia were typical of Rhodnius and Dipetalogaster, respectively. The diversity of the microbiota tended to be the largest in the Triatoma genus, with species of both Arsenophonus and Serratia being detected in T. infestans.
Collapse
Affiliation(s)
- Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Marli Maria Lima
- Laboratório de Ecoepidemiologia da Doença de Chagas, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Eloi Souza Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Genômica Funcional e Bioinformática, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
111
|
Balmand S, Lohs C, Aksoy S, Heddi A. Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 2012; 112 Suppl:S116-22. [PMID: 22537833 DOI: 10.1016/j.jip.2012.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
The tsetse fly Glossina is the vector of the protozoan Trypanosoma brucei spp., which causes Human and Animal African Trypanosomiasis in sub-Saharan African countries. To supplement their unbalanced vertebrate bloodmeal diet, flies permanently harbor the obligate bacterium Wigglesworthia glossinidia, which resides in bacteriocytes in the midgut bacteriome organ as well as in milk gland organ. Tsetse flies also harbor the secondary facultative endosymbionts (S-symbiont) Sodalis glossinidius that infects various tissues and Wolbachia that infects germ cells. Tsetse flies display viviparous reproductive biology where a single embryo hatches and completes its entire larval development in utero and receives nourishments in the form of milk secreted by mother's accessory glands (milk glands). To analyze the precise tissue distribution of the three endosymbiotic bacteria and to infer the way by which each symbiotic partner is transmitted from parent to progeny, we conducted a Fluorescence In situ Hybridization (FISH) study to survey bacterial spatial distribution across the fly tissues. We show that bacteriocytes are mono-infected with Wigglesworthia, while both Wigglesworthia and Sodalis are present in the milk gland lumen. Sodalis was further seen in the uterus, spermathecae, fat body, milk and intracellular in the milk gland cells. Contrary to Wigglesworthia and Sodalis, Wolbachia were the only bacteria infecting oocytes, trophocytes, and embryos at early embryonic stages. Furthermore, Wolbachia were not seen in the milk gland and in the fat body. This work further highlights the diversity of symbiont interactions in multipartner associations and supports two maternal routes of symbiont inheritance in the tsetse fly: Wolbachia through oocytes, and, Wigglesworthia and Sodalis by means of milk gland bacterial infection at early post-embryonic stages.
Collapse
Affiliation(s)
- Séverine Balmand
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France.
| | | | | | | |
Collapse
|
112
|
De Vooght L, Caljon G, Stijlemans B, De Baetselier P, Coosemans M, Van Den Abbeele J. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Fact 2012; 11:23. [PMID: 22335892 PMCID: PMC3311065 DOI: 10.1186/1475-2859-11-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sodalis glossinidius, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential in vivo drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of S. glossinidius as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium. RESULTS In this study, S. glossinidius was transformed to express a single domain antibody, (Nanobody®) Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of the parasite Trypanosoma brucei. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of S. glossinidius resulting in significant levels of extracellular release. Finally, S. glossinidius expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by in vitro growth kinetics, compared to the wild-type strain. CONCLUSIONS These data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies® in S. glossinidius. Furthermore, Sodalis strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of S. glossinidius to be developed into a paratransgenic platform organism.
Collapse
Affiliation(s)
- Linda De Vooght
- Department of Biomedical Sciences, Unit of Medical Entomology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
| | - Benoît Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
| | - Patrick De Baetselier
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
| | - Marc Coosemans
- Department of Biomedical Sciences, Unit of Medical Entomology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
113
|
Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies. Appl Environ Microbiol 2012; 78:2638-47. [PMID: 22327580 DOI: 10.1128/aem.07807-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules.
Collapse
|
114
|
Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One 2011; 6:e28484. [PMID: 22163022 PMCID: PMC3232223 DOI: 10.1371/journal.pone.0028484] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 11/09/2011] [Indexed: 01/28/2023] Open
Abstract
The midgut microbiota associated with Anopheles stephensi and Anopheles maculipennis (Diptera: Culicidae) was investigated for development of a paratransgenesis-based approach to control malaria transmission in Eastern Mediterranean Region (EMR). Here, we present the results of a polymerase chain reaction (PCR) and biochemical-based approaches to identify the female adult and larvae mosquitoe microbiota of these two major malaria vectors, originated from South Eastern and North of Iran. Plating the mosquito midgut contents from lab-reared and field-collected Anopheles spp. was used for microbiota isolation. The Gram-negative and Gram-positive bacterial colonies were identified by Gram staining and specific mediums. Selected colonies were identified by differential biochemical tests and 16S rRNA gene sequence analysis. A number of 10 An. stephensi and 32 An. maculipennis adult mosquitoes and 15 An. stephensi and 7 An. maculipennis larvae were analyzed and 13 sequences of 16S rRNA gene bacterial species were retrieved, that were categorized in 3 classes and 8 families. The majority of the identified bacteria were belonged to the γ-proteobacteria class, including Pseudomonas sp. and Aeromonas sp. and the others were some closely related to those found in other vector mosquitoes, including Pantoea, Acinetobacter, Brevundimonas, Bacillus, Sphingomonas, Lysinibacillus and Rahnella. The 16S rRNA sequences in the current study aligned with the reference strains available in GenBank were used for construction of the phylogenetic tree that revealed the relatedness among the bacteria identified. The presented data strongly encourage further investigations, to verify the potential role of the detected bacteria for the malaria control in Iran and neighboring countries.
Collapse
|
115
|
Ursic-Bedoya R, Buchhop J, Joy JB, Durvasula R, Lowenberger C. Prolixicin: a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi. INSECT MOLECULAR BIOLOGY 2011; 20:775-86. [PMID: 21906194 DOI: 10.1111/j.1365-2583.2011.01107.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We identified and characterized the activity of prolixicin, a novel antimicrobial peptide (AMP) isolated from the hemipteran insect, Rhodnius prolixus. Sequence analysis reveals one region of prolixicin that may be related to the diptericin/attacin family of AMPs. Prolixicin is an 11-kDa peptide containing a putative 21 amino acid signal peptide, two putative phosphorylation sites and no glycosylation sites. It is produced by both adult fat body and midgut tissues in response to bacterial infection of the haemolymph or the midgut. Unlike most insect antibacterial peptides, the prolixicin gene does not seem to be regulated by NF-κB binding sites, but its promoter region contains several GATA sites. Recombinant prolixicin has strong activity against the Gram-negative bacterium Escherichia coli and differential activity against several Gram-negative and Gram-positive bacteria. No significant toxicity was demonstrated against Trypanosoma cruzi, the human parasite transmitted by R. prolixus.
Collapse
Affiliation(s)
- R Ursic-Bedoya
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
116
|
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, Durvasula R. Paratransgenic control of vector borne diseases. Int J Biol Sci 2011; 7:1334-44. [PMID: 22110385 PMCID: PMC3221369 DOI: 10.7150/ijbs.7.1334] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/21/2022] Open
Abstract
Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes.
Collapse
Affiliation(s)
| | | | | | | | | | - Angray Kang
- 1. Institute of Dentistry, Queen Mary, University of London, England
| | | |
Collapse
|
117
|
Brucker RM, Bordenstein SR. THE ROLES OF HOST EVOLUTIONARY RELATIONSHIPS (GENUS: NASONIA) AND DEVELOPMENT IN STRUCTURING MICROBIAL COMMUNITIES. Evolution 2011; 66:349-62. [DOI: 10.1111/j.1558-5646.2011.01454.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
118
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
119
|
Identification of yeast associated with the planthopper, Perkinsiella saccharicida: potential applications for Fiji leaf gall control. Curr Microbiol 2011; 63:392-401. [PMID: 21850475 DOI: 10.1007/s00284-011-9990-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Yeasts associate with numerous insects, and they can assist the metabolic processes within their hosts. Two distinct yeasts were identified by PCR within the planthopper Perkinsiella saccharicida, the vector of Fiji disease virus to sugarcane. The utility of both microbes for potential paratransgenic approaches to control Fiji leaf gall (FLG) was assessed. Phylogenetic analysis showed one of the microbes is related to yeast-like symbionts from the planthoppers: Laodelphax striatellus, Nilaparvata lugens, and Sogetella furcifera. The second yeast was a member of the Candida genus, a group that has been identified in beetles and recently described in planthoppers. Microscopy revealed the presence of yeast in the fat body of P. saccharicida. The Candida yeast was cultured, and transformation was accomplished by electroporation of Candida albicans codon optimized plasmids, designed to integrate into the genome via homologous recombination. Transgenic lines conferred resistance to the antibiotic nourseothricin and expression of green fluorescent protein was observed in a proportion of the yeast cells. Stably transformed yeast lines could not be isolated as the integrative plasmids presumably replicated within the yeast without integration into the genome. If stable transformation can be achieved, then this yeast may be useful as an agent for a paratransgenic control of FLG.
Collapse
|
120
|
Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 2011; 77:4669-75. [PMID: 21602368 PMCID: PMC3127683 DOI: 10.1128/aem.00514-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/09/2011] [Indexed: 01/20/2023] Open
Abstract
The insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodium spp.) in the mosquito host. We hypothesized that Pantoea agglomerans, a bacterial symbiont of Anopheles mosquitoes, could be engineered to express and secrete anti-Plasmodium effector proteins, a strategy termed paratransgenesis. To this end, plasmids that include the pelB or hlyA secretion signals from the genes of related species (pectate lyase from Erwinia carotovora and hemolysin A from Escherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodium effector proteins (SM1, anti-Pbs21, and PLA2) in P. agglomerans and E. coli. P. agglomerans successfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodium activity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.
Collapse
Affiliation(s)
- Dawn C. Bisi
- Duquesne University, Department of Biological Sciences, 600 Forbes Ave., Pittsburgh, Pennsylvania 15282
| | - David J. Lampe
- Duquesne University, Department of Biological Sciences, 600 Forbes Ave., Pittsburgh, Pennsylvania 15282
| |
Collapse
|
121
|
Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R. The paratransgenic sand fly: a platform for control of Leishmania transmission. Parasit Vectors 2011; 4:82. [PMID: 21595907 PMCID: PMC3121692 DOI: 10.1186/1756-3305-4-82] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022] Open
Abstract
Background Leishmania donovani is transmitted by the bite of the sand fly, Phlebotomus argentipes. This parasite is the agent of visceral leishmaniasis (VL), an endemic disease in Bihar, India, where prevention has relied mainly on DDT spraying. Pesticide resistance in sand fly populations, environmental toxicity, and limited resources confound this approach. A novel paratransgenic strategy aimed at control of vectorial transmission of L. donovani is presented using Bacillus subtilis, a commensal bacterium isolated from the sand fly gut. In this work, B. subtilis expressing Green Fluorescent Protein (GFP) was added to sterilized larval chow. Control pots contained larval chow spiked either with untransformed B. subtilis or phosphate-buffered saline. Fourth-instar P. argentipes larvae were transferred into the media and allowed to mature. The number of bacterial colony forming units, relative abundance and the mean microbial load were determined per developmental stage. Results Addition of B. subtilis to larval chow did not affect sand fly emergence rates. B. cereus and Lys fusiformis were identified at each developmental stage, revealing transstadial passage of endogenous microbes. Larvae exposed to an exogenous bolus of B. subtilis harbored significantly larger numbers of bacteria. Bacterial load decreased to a range comparable to sand flies from control pots, suggesting an upper limit to the number of bacteria harbored. Emerging flies reared in larval chow containing transformed B. subtilis carried large numbers of these bacteria in their gut lumens. Strong GFP expression was detected in these paratransgenic flies with no spread of transformed bacteria to other compartments of the insects. This is the first demonstration of paratransgenic manipulation of P. argentipes. Conclusions Paratransgenic manipulation of P. argentipes appears feasible. Expression of leishmanicidal molecules via commensal bacteria commonly found at breeding sites of P. argentipes could render adult sand flies refractory to L. donovani infection.
Collapse
Affiliation(s)
- Ivy Hurwitz
- Center for Global Health, Department of Internal Medicine, University of New Mexico, New Mexico, USA.
| | | | | | | | | |
Collapse
|
122
|
Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasit Vectors 2011; 4:77. [PMID: 21569540 PMCID: PMC3117810 DOI: 10.1186/1756-3305-4-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/14/2011] [Indexed: 11/20/2022] Open
Abstract
Background Paratransgenesis is an approach to reducing arthropod vector competence using genetically modified symbionts. When applied to control of Chagas disease, the symbiont bacterium Rhodococcus rhodnii, resident in the gut lumen of the triatomine vector Rhodnius prolixus (Hemiptera: Reduviidae), is transformed to export cecropin A, an insect immune peptide. Cecropin A is active against Trypanosoma cruzi, the causative agent of Chagas disease. While proof of concept has been achieved in laboratory studies, a rigorous and comprehensive risk assessment is required prior to consideration of field release. An important part of this assessment involves estimating probability of transgene horizontal transfer to environmental organisms (HGT). This article presents a two-part risk assessment methodology: a theoretical model predicting HGT in the gut of R. prolixus from the genetically transformed symbiont R. rhodnii to a closely related non-target bacterium, Gordona rubropertinctus, in the absence of selection pressure, and a series of laboratory trials designed to test the model. Results The model predicted an HGT frequency of less than 1.14 × 10-16 per 100,000 generations at the 99% certainty level. The model was iterated twenty times, with the mean of the ten highest outputs evaluated at the 99% certainty level. Laboratory trials indicated no horizontal gene transfer, supporting the conclusions of the model. Conclusions The model treats HGT as a composite event, the probability of which is determined by the joint probability of three independent events: gene transfer through the modalities of transformation, transduction, and conjugation. Genes are represented in matrices and Monte Carlo method and Markov chain analysis are used to simulate and evaluate environmental conditions. The model is intended as a risk assessment instrument and predicts HGT frequency of less than 1.14 × 10-16 per 100,000 generations. With laboratory studies that support the predictions of this model, it may be possible to argue that HGT is a negligible consideration in risk assessment of genetically modified R. rhodnii released for control of Chagas disease.
Collapse
Affiliation(s)
- Scott Matthews
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
123
|
Abstract
African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse - species composition, survival and abundance - were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.
Collapse
Affiliation(s)
- Stephen Davis
- Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
124
|
Zindel R, Gottlieb Y, Aebi A. Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 2011. [DOI: 10.1111/j.1365-2664.2011.01984.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
125
|
Joyce JD, Nogueira JR, Bales AA, Pittman KE, Anderson JR. Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:389-394. [PMID: 21485378 DOI: 10.1603/me09268] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aedes albopictus (Skuse) is a potential vector for many arboviruses, including La Crosse virus (LACV), the leading cause of pediatric encephalitis in North America. Bacteria isolated from the midgut and diverticula of field-caught female Ae. albopictus were cultured and identified using 16S ribosomal RNA gene amplification and sequencing. Members of seven and six bacterial families were identified from the midguts and diverticula, respectively, with nearly half of the isolates identified to the family Enterobacteriaceae. Many are related to bacteria identified in other invertebrates, and several may represent previously unknown species or genera. Of the 24 isolated bacteria, 12 (50%) showed a significant reduction in infectivity of LACV for Vero cells. Inhibition of infectivity ranged from 0 to 44% and was not dependent on bacterial classification. The antiviral activity of these bacteria warrants further investigation as an alternate means to interrupt the LACV transmission cycle.
Collapse
Affiliation(s)
- Jonathan D Joyce
- Department of Biology, Radford University, Radford, VA 24142, USA
| | | | | | | | | |
Collapse
|
126
|
Hail D, Lauzìere I, Dowd SE, Bextine B. Culture independent survey of the microbiota of the glassy-winged sharpshooter (Homalodisca vitripennis) using 454 pyrosequencing. ENVIRONMENTAL ENTOMOLOGY 2011; 40:23-29. [PMID: 22182607 DOI: 10.1603/en10115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), is an invasive pest that has spread across the southern and western United States. H. vitripennis is highly polyphagous and voracious, feeding on at least 100 plant species and consuming up to 100 times its weight in xylem fluid daily. The insect is a vector of the phytopathogen Xylella fastidiosa (Wells), which is the causative agent of Pierce's disease in grapevines. To evaluate the microbial flora associated with H. vitripennis, total DNA extracts from hemolymph, alimentary canal excretions, and whole insect bodies were subjected to 16S rDNA pyrosequencing using the bTEFAP methodology and the resulting sequences (370-520 bp in length) were compared with a curated high quality 16S database derived from GenBank http://www.ncbi.nlm.nih.gov. Species from the genera Wolbachia, Delftia (formerly Pseudomonas), Pectobacterium, Moraxella, Serratia, Bacillus, and many others were detected and a comprehensive picture of the microbiome associated with H. vitripennis was established. Some of the bacteria identified in this report are initial discoveries; providing a breadth of knowledge to the microbial flora of this insect pest can serve as a reservoir of information for developing biological control strategies.
Collapse
Affiliation(s)
- Daymon Hail
- University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| | | | | | | |
Collapse
|
127
|
|
128
|
Fieck A, Hurwitz I, S.Kang A, Durvasula R. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 2010; 125:342-7. [PMID: 20206169 PMCID: PMC2875304 DOI: 10.1016/j.exppara.2010.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
The parasite Trypanasoma cruzi is responsible for Chagas disease and its triatomine vector, Rhodnius prolixus, has a symbiotic relationship with the soil bacterium, Rhodococcus rhodnii. R. rhodnii that was previously genetically engineered to produce the anti-microbial peptide, cecropin A was co-infected with T. cruzi into R. prolixus resulting in clearance of the infectious T. cruzi in 65% of the vectors. Similar anti-microbial peptides have been isolated elsewhere and were studied for differential toxicity against T. cruzi and R. rhodnii. Of the six anti-microbial peptides tested, apidaecin, magainin II, melittin, and cecropin A were deemed potential candidates for the Chagas paratransgenic system as they were capable of killing T.cruzi at concentrations that exhibit little or no toxic effects on R. rhodnii. Subsequent treatments of T. cruzi with these peptides in pair-wise combinations resulted in synergistic killing, indicating that improvement of the 65% parasite clearance seen in previous experiments may be possible utilizing combinations of different anti-microbial peptides.
Collapse
Affiliation(s)
- Annabeth Fieck
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Ivy Hurwitz
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Angray S.Kang
- Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Ravi Durvasula
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
129
|
Ramalho-Ortigao M, Saraiva EM, Traub-Csekö YM. Sand fly- Leishmania interactions: long relationships are not necessarily easy. ACTA ACUST UNITED AC 2010; 4:195-204. [PMID: 24159365 DOI: 10.2174/1874421401004010195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sand fly and Leishmania are one of the best studied vector-parasite models. Much is known about the development of these parasites within the sand fly, and how transmission to a suitable vertebrate host takes place. Various molecules secreted by the vector assist the establishment of the infection in a vertebrate, and changes to the vector are promoted by the parasites in order to facilitate or enhance transmission. Despite a generally accepted view that sand flies and Leishmania are also one of the oldest vector-pathogen pairs known, such long history has not been translated into a harmonic relationship. Leishmania are faced with many barriers to the establishment of a successful infection within the sand fly vector, and specific associations have been developed which are thought to represent aspects of a co-evolution between the parasite and its vectors. In this review, we highlight the journey taken by Leishmania during its development within the vector, and describe the issues associated with the natural barriers encountered by the parasite. Recent data revealed sexual replication of Leishmania within the sand fly, but it is yet unknown if such reproduction affects disease outcome. New approaches targeting sand fly molecules to prevent parasite transmission are being sought, and various techniques related to genetic manipulation of sand flies are being utilized.
Collapse
|
130
|
Chaves S, Neto M, Tenreiro R. Insect-symbiont systems: from complex relationships to biotechnological applications. Biotechnol J 2010; 4:1753-65. [PMID: 19844913 DOI: 10.1002/biot.200800237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microbial symbiosis is a ubiquitous aspect of life and was a major element in the ability of insects to explore several adverse environments. To date, the study of symbiosis in insects has been impaired by the unculturability of most symbionts. However, some molecular methods represent powerful tools to help understand insect-microorganism associations and to disclose new symbiont-host systems. Beyond playing an essential role in nutrition and development of the insects, symbionts can produce bioactive compounds that protect the host against adverse environmental conditions, predators and/or direct competitors. Since the search for natural bioactive products and new enzymes is a developing area, understanding the diversity and nature of symbiont-host relationships paves the way for the exploitation of new resources in biotechnology. Furthermore, genetic transformation of the symbionts with genes that code for compounds that are toxic for pathogenic and phytopathogenic agents is also a promising area of application of the insect-symbiont relationships. The search for new bioactive compounds, the use of symbionts for pest and disease control and the molecular strategies applied for these purposes are issues of particular interest for innovative biotechnological applications and are addressed in the present review.
Collapse
Affiliation(s)
- Sandra Chaves
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Lisboa, Portugal
| | | | | |
Collapse
|
131
|
McGwire BS, Kulkarni MM. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Exp Parasitol 2010; 126:397-405. [PMID: 20159013 DOI: 10.1016/j.exppara.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/03/2010] [Accepted: 02/06/2010] [Indexed: 01/30/2023]
Abstract
Antimicrobial peptides (AMPs) are multifunctional components of the innate systems of both insect and mammalian hosts of the pathogenic trypanosomatids Leishmania and Trypanosoma species. Structurally diverse AMPs from a wide range of organisms have in vitro activity against these parasites acting mainly to disrupt surface-membranes. In some cases AMPs also localize intracellularly to affect calcium levels, mitochondrial function and induce autophagy, necrosis and apoptosis. In this review we discuss the work done in the area of AMP interactions with trypanosomatid protozoa, propose potential targets of AMP activity at the cellular level and discuss how AMPs might influence parasite growth and differentiation in their hosts to determine the outcome of natural infection.
Collapse
Affiliation(s)
- Bradford S McGwire
- Center for Microbial Interface Biology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
132
|
Wang Y, Carolan JC, Hao F, Nicholson JK, Wilkinson TL, Douglas AE. Integrated Metabonomic−Proteomic Analysis of an Insect−Bacterial Symbiotic System. J Proteome Res 2010; 9:1257-67. [DOI: 10.1021/pr9007392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yulan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| | - James C. Carolan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| | - FuHua Hao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| | - Jeremy K. Nicholson
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| | - Thomas L. Wilkinson
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| | - Angela E. Douglas
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China, UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, Department of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, U.K., Department of
| |
Collapse
|
133
|
Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitol Int 2009; 59:1-8. [PMID: 19819346 DOI: 10.1016/j.parint.2009.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/29/2009] [Accepted: 10/03/2009] [Indexed: 11/23/2022]
Abstract
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases.
Collapse
|
134
|
Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of Citrus variegated chlorosis. J Microbiol 2009; 47:448-54. [DOI: 10.1007/s12275-008-0303-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
135
|
Aikawa T, Anbutsu H, Nikoh N, Kikuchi T, Shibata F, Fukatsu T. Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome. Proc Biol Sci 2009; 276:3791-8. [PMID: 19692404 DOI: 10.1098/rspb.2009.1022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ(+) insects were nearly twice as high as those in heterozygotic ftsZ(+) insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms.
Collapse
Affiliation(s)
- Takuya Aikawa
- Tohoku Research Center, Forestry and Forest Product Research Institute, Morioka, Japan.
| | | | | | | | | | | |
Collapse
|
136
|
Geiger A, Fardeau ML, Falsen E, Ollivier B, Cuny G. Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. Int J Syst Evol Microbiol 2009; 60:1261-1265. [PMID: 19667382 DOI: 10.1099/ijs.0.013441-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the isolation of a novel bacterium, strain C1(T), from the midgut of the tsetse fly Glossina palpalis gambiensis, one of the vector insects responsible for transmission of the trypanosomes that cause sleeping sickness in sub-Saharan African countries. Strain C1(T) is a motile, facultatively anaerobic, rod-like bacterium (0.8-1.0 microm in diameter; 2-6 microm long) that grows as single cells or in chains. Optimum growth occurred at 25-35 degrees C, at pH 6.7-8.4 and in medium containing 5-20 g NaCl l(-1). The bacterium hydrolysed urea and used L-lysine, L-ornithine, citrate, pyruvate, D-glucose, D-mannitol, inositol, D-sorbitol, melibiose, amygdalin, L-arabinose, arbutin, aesculin, D-fructose, D-galactose, glycerol, maltose, D-mannose, raffinose, trehalose and d-xylose; it produced acetoin, reduced nitrate to nitrite and was positive for beta-galactosidase and catalase. The DNA G+C content was 53.6 mol%. It was related phylogenetically to members of the genus Serratia, family Enterobacteriaceae, the type strain of Serratia fonticola being its closest relative (99 % similarity between 16S rRNA gene sequences). However, DNA-DNA relatedness between strain C1(T) and S. fonticola DSM 4576(T) was only 37.15 %. Therefore, on the basis of morphological, nutritional, physiological and fatty acid analysis and genetic criteria, strain C1(T) is proposed to be assigned to a novel Serratia species, Serratia glossinae sp. nov. (type strain C1(T) =DSM 22080(T) =CCUG 57457(T)).
Collapse
Affiliation(s)
- A Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - M-L Fardeau
- Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, ESIL, case 925, 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | - E Falsen
- CCUG, Culture Collection, University of Göteborg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
| | - B Ollivier
- Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, ESIL, case 925, 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | - G Cuny
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| |
Collapse
|
137
|
Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One 2009; 4:e6388. [PMID: 19633721 PMCID: PMC2712238 DOI: 10.1371/journal.pone.0006388] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022] Open
Abstract
Background Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated Wolbachia and cultivable bacteria that persist through generations in Ae. albopictus organs known to host transmitted arboviruses, such as dengue and chikungunya. Methodology/Principal Findings We used culturing, diagnostic and quantitative PCR, as well as in situ hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. Wolbachia, cultivable bacteria of the genera Acinetobacter, Comamonas, Delftia and Pseudomonas co-occurred and persisted in the bodies of both males and females of Ae. albopictus initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, Wolbachia and the cultivable Acinetobacter can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that Wolbachia densities are highest in ovaries, lower than those of Acinetobacter in the gut, and approximately equal to those of Acinetobacter in the salivary glands. Hybridization using specific fluorescent probes successfully localized Wolbachia in all germ cells, including the oocytes, and in the salivary glands, whereas the Acinetobacter hybridizing signal was mostly located in the foregut and in the anterior midgut. Conclusions/Significance Our results show that Proteobacteria are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector Ae. albopictus. Improved understanding of the vectorial system, including the role of bacteria in the vector's biology and competence, could have major implications for understanding viral emergences and for disease control.
Collapse
|
138
|
Subhadra B, Hurwitz I, Fieck A, Rao DVS, Subba Rao G, Durvasula R. Development of paratransgenic Artemia as a platform for control of infectious diseases in shrimp mariculture. J Appl Microbiol 2009; 108:831-840. [PMID: 19702854 DOI: 10.1111/j.1365-2672.2009.04479.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM To study the accumulation and retention of recombinant proteins in Artemia gut for optimizing paratransgenic disease control in shrimp aquaculture. METHODS AND RESULTS Transgenic Escherichia coli expressing fluorescent marker proteins and the transgenic cyanobacterium Synechococcus bacillarus expressing a functional murine single chain antibody, DB3, were fed to Artemia franciscana. Stable expression and retention of several marker molecules (e.g. GFP, DS Red and DB3) up to 10 h after of feeding with E. coli were evident within the gut of Artemia. Engineered strains of S. bacillarus expressing DB3 accumulated within the gut of Artemia with detectable antibody activity for 8-10 h of feeding via ELISA, coincident with the time period of the highest density of transgenic S. bacillarus in the Artemia gut. CONCLUSIONS Artemia fed transgenic bacteria or algae accumulated recombinant proteins for up to 10 h that retained biological activity. Co-delivery of multiple recombinant proteins simultaneously in the gut of Artemia was also demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Expression of molecules that target infectious agents of mariculture in shrimp via commonly deployed feed organisms such as Artemia could potentially offer powerful new tools in the ongoing global effort to increase food supply.
Collapse
Affiliation(s)
- B Subhadra
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - I Hurwitz
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - A Fieck
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - D V S Rao
- Emeritus Scientist, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - G Subba Rao
- Shree Vasudha Laboratories, Visakhapatnam, India
| | - R Durvasula
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
139
|
Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol 2009; 75:5676-86. [PMID: 19592535 DOI: 10.1128/aem.01172-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia endosymbionts are ubiquitously found in diverse insects including many medical and hygienic pests, causing a variety of reproductive phenotypes, such as cytoplasmic incompatibility, and thereby efficiently spreading in host insect populations. Recently, Wolbachia-mediated approaches to pest control and management have been proposed, but the application of these approaches has been hindered by the lack of genetic transformation techniques for symbiotic bacteria. Here, we report the genome and structure of active bacteriophages from a Wolbachia endosymbiont. From the Wolbachia strain wCauB infecting the moth Ephestia kuehniella two closely related WO prophages, WOcauB2 of 43,016 bp with 47 open reading frames (ORFs) and WOcauB3 of 45,078 bp with 46 ORFs, were characterized. In each of the prophage genomes, an integrase gene and an attachment site core sequence were identified, which are putatively involved in integration and excision of the mobile genetic elements. The 3' region of the prophages encoded genes with sequence motifs related to bacterial virulence and protein-protein interactions, which might represent effector molecules that affect cellular processes and functions of their host bacterium and/or insect. Database searches and phylogenetic analyses revealed that the prophage genes have experienced dynamic evolutionary trajectories. Genes similar to the prophage genes were found across divergent bacterial phyla, highlighting the active and mobile nature of the genetic elements. We suggest that the active WO prophage genomes and their constituent sequence elements would provide a clue to development of a genetic transformation vector for Wolbachia endosymbionts.
Collapse
|
140
|
Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 2009; 9:96. [PMID: 19450290 PMCID: PMC2698833 DOI: 10.1186/1471-2180-9-96] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/19/2009] [Indexed: 11/16/2022] Open
Abstract
Background Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms. Results Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant. Conclusion More than fifty percent of the phylotypes were related to uncultured class of bacteria. Interestingly, several of the bacteria identified are related to the known symbionts in other insects. Few of the isolates identified in our study are found to be novel species within the gammaproteobacteria which could not be phylogenetically placed within known classes. To the best of our knowledge, this is the first attempt to study the midgut microbiota of A. stephensi from lab-reared and field-collected adult and larvae using "culture-dependent and independent methods".
Collapse
Affiliation(s)
- Asha Rani
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | | | | | |
Collapse
|
141
|
Abstract
Malaria is one of today's most serious diseases with an enormous socioeconomic impact. While anti-malarial drugs have existed for some time and vaccines development may be underway, the most successful malaria eradication programs have thus far relied on attacking the mosquito vector that spreads the disease causing agent Plasmodium. Here we will review past, current and future perspectives of malaria vector control strategies and how these approaches have taken a promising turn thanks recent advances in functional genomics and molecular biology.
Collapse
Affiliation(s)
- José L. Ramirez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of PublicHealth, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of PublicHealth, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of PublicHealth, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| |
Collapse
|
142
|
Medina F, Li H, Vinson SB, Coates CJ. Genetic Transformation of Midgut Bacteria from the Red Imported Fire Ant (Solenopsis invicta). Curr Microbiol 2009; 58:478-82. [DOI: 10.1007/s00284-008-9350-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
143
|
Aksoy S, Weiss B, Attardo G. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:35-48. [PMID: 18510012 DOI: 10.1007/978-0-387-78225-6_3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.
Collapse
Affiliation(s)
- Serap Aksoy
- Yale University School of Medicine, Department of Epidemiology and Public Health, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
144
|
O'Brochta DA, Handler AM. Perspectives on the state of insect transgenics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:1-18. [PMID: 18510010 DOI: 10.1007/978-0-387-78225-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.
Collapse
Affiliation(s)
- David A O'Brochta
- University of Maryland Biotechnology Institute, Center for Biosystems Research, Rockville, MD, USA.
| | | |
Collapse
|
145
|
Hughes GL, Allsopp PG, Brumbley SM, Johnson KN, O'Neill SL. In vitro rearing of Perkinsiella saccharicida and the use of leaf segments to assay Fiji disease virus transmission. PHYTOPATHOLOGY 2008; 98:810-814. [PMID: 18943257 DOI: 10.1094/phyto-98-7-0810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fiji leaf gall (FLG) is caused by the Reovirus, Fiji disease virus (FDV), which is transmitted to sugarcane by planthoppers of the genus Perkinsiella. Low vector transmission rates and slow disease symptom development make experimentation within the FDV-Perkinsiella-sugarcane system inherently difficult. A laboratory-based technique was devised to rear the vector using sugarcane leaves as a food source. Planthoppers were reared on sugarcane leaf segments embedded in agarose enclosed within plastic containers. To provide a nondestructive assay for determination of the inoculation potential of planthoppers, FDV was detected by reverse transcription-polymerase chain reaction (RT-PCR) in newly infected sugarcane leaf segments following exposure to viruliferous planthoppers. Leaf segment inoculation correlated with development of FLG symptoms in whole plants that were fed on by the same planthoppers. Analysis of FDV RNAs within the planthopper, measured by quantitative RT-PCR (qRT-PCR), indicated that FDV RNA concentration was associated with successful inoculation of the leaf segment, transmission of FDV to sugarcane and subsequent development of FLG in plants. Quantification of FDV RNA within planthoppers provided an additional measure to assess vector competence in individuals.
Collapse
Affiliation(s)
- G L Hughes
- School of Integrative Biology, The University of Queensland, Qld, Australia
| | | | | | | | | |
Collapse
|
146
|
Assessment of gut bacteria for a paratransgenic approach to control Dermolepida albohirtum larvae. Appl Environ Microbiol 2008; 74:4036-43. [PMID: 18456847 DOI: 10.1128/aem.02609-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria from the hindguts of Dermolepida albohirtum larvae were assessed for their potential to be used in paratransgenic strategies that target scarab pests of sugarcane. Bacteria isolated in pure culture from the hindguts of D. albohirtum larvae were from the Proteobacteria, Firmicutes, and Actinobacteria phyla and matched closely with taxa from intestinal and rhizosphere environments. However, these isolates were not the most common gut-associated bacteria identified in denaturing gradient gel electrophoresis (DGGE) hindgut profiles. Subsequently, eight species of gut bacteria were fed to larvae, and RNA-based DGGE analysis of 16S rRNA was used to detect the persistence of these isolates in the hindgut environment. One of these isolates (Da-11) remained metabolically active in the hindgut for 19 days postconsumption. Da-11 most likely forms a new genus within the Burkholderiales order, along with taxa independently identified from larvae of the European scarab pest, Melolontha melolontha. Using the EZ::Tn5 transposon system, a kanamycin resistance gene was inserted into the chromosome of Da-11, thus establishing a stable transformation technique for this species. A second feeding trial that included inoculating approximately 400 transgenic Da-11 cells onto a food source resulted in a density of 1 x 10(6) transgenic Da-11 cells/ml in the hindguts of larvae at 9 days postconsumption. These populations were maintained in the hindgut for at least another 12 days. The successful isolation, genetic transformation, and establishment of transgenic Da-11 cells in the hindguts of D. albohirtum larvae fulfill fundamental requirements for the future development of a paratransgenic approach to control scarab pests of sugarcane.
Collapse
|
147
|
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, Beard CB. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol 2008; 119:94-8. [PMID: 18331732 PMCID: PMC2635415 DOI: 10.1016/j.exppara.2007.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/20/2007] [Accepted: 12/30/2007] [Indexed: 11/27/2022]
Abstract
Insect-borne diseases have experienced a troubling resurgence in recent years. Emergence of resistance to pesticides greatly hampers control efforts. Paratransgenesis, or the genetic transformation of bacterial symbionts of disease vectors, is an alternative to traditional approaches. Previously, we developed paratransgenic lines of Rhodnius prolixus, a vector of Chagas disease in Central America. Here, we report identification of a Corynebacterial species as a symbiont of Triatoma infestans, a leading vector of Chagas disease in South America. We have modified this bacterium to produce an immunologically active single chain antibody fragment, termed rDB3. This study establishes the basis for generating paratransgenic T. infestans as a strategy for control of Chagas disease.
Collapse
Affiliation(s)
- Ravi V Durvasula
- Department of Internal Medicine, University of New Mexico, 915 Camino Del Salud NE, CRF 305, Albuquerque, NM 87131, USA. <>
| | | | | | | | | | | | | |
Collapse
|
148
|
Li C, Marrelli MT, Yan G, Jacobs-Lorena M. Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter. J Hered 2008; 99:275-82. [PMID: 18334506 DOI: 10.1093/jhered/esn004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Three transgenic Anopheles stephensi lines were established that strongly inhibit transmission of the mouse malaria parasite Plasmodium berghei. Fitness of the transgenic mosquitoes was assessed based on life table analysis and competition experiments between transgenic and wild-type mosquitoes. Life table analysis indicated low fitness load for the 2 single-insertion transgenic mosquito lines VD35 and VD26 and no load for the double-insertion transgenic mosquito line VD9. However, in cage experiments, where each of the 3 homozygous transgenic mosquitoes was mixed with nontransgenic mosquitoes, transgene frequency of all 3 lines decreased with time. Further experiments suggested that reduction of transgene frequency is a consequence of reduced mating success, reduced reproductive capacity, and/or insertional mutagenesis, rather than expression of the transgene itself. Thus, for transgenic mosquitoes released in the field to be effective in reducing malaria transmission, a driving mechanism will be required.
Collapse
Affiliation(s)
- Chaoyang Li
- Johns Hopkins University, Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615 North Wolfe Street, Baltimore MD 21205, USA
| | | | | | | |
Collapse
|
149
|
Sundaram RK, Hurwitz I, Matthews S, Hoy E, Kurapati S, Crawford C, Sundaram P, Durvasula RV. Expression of a functional single-chain antibody via Corynebacterium pseudodiphtheriticum. Eur J Clin Microbiol Infect Dis 2008; 27:617-22. [PMID: 18322717 DOI: 10.1007/s10096-008-0483-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 02/01/2008] [Indexed: 11/24/2022]
Abstract
Antibody-based therapeutics are effective against conditions ranging from acute infections to malignancy. They may prove crucial in combating bioterrorism and responding to drug-resistant and emerging pathogens. At present the cost of producing therapeutic monoclonal antibodies is between $1,000 to $6,000 per gram. The need to administer antibodies parenterally at frequent intervals further drives the cost of this treatment. Here we present an antibody delivery system, termed paratransgenesis, with the potential to overcome these limitations. The paratransgenic approach involves genetically transforming a commensal or symbiont bacterium to express foreign molecules that target pathogens. We describe transformation of Corynebacterium pseudodiptheriticum, a commensal bacterium found in the human respiratory tract, to express a murine single-chain antibody binding progesterone. The antibody was functional and bound specifically to progesterone in a concentration-dependent manner. This marker antibody system is the precursor to development of expression systems producing recombinant humanized single-chain antibodies. Studies are in progress evaluating fitness, transgene stablility, and pathogenecity of the genetically engineered C. pseudodiptheriticum. We anticipate developing a repertoire of expressed molecules targeting infectious agents and surface epitopes of pulmonary mass lesions. If expression systems for anti-pathogen molecules in C. pseudodiptheriticum and other respiratory commensal bacteria can be optimized, these bacteria have the potential for a range of therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- R K Sundaram
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Pulido XC, Pérez G, Vallejo GA. Preliminary characterization of a Rhodnius prolixus hemolymph trypanolytic protein, this being a determinant of Trypanosoma rangeli KP1(+) and KP1(-) subpopulations' vectorial ability. Mem Inst Oswaldo Cruz 2008; 103:172-9. [DOI: 10.1590/s0074-02762008000200008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/18/2008] [Indexed: 11/22/2022] Open
|