101
|
Xiang D, He J, Wang H, Xiong F, Cheng H, Ai J, Shan R, Wan R, Zhang L, Shi J. Liver transplantation for decompensated liver cirrhosis caused by progressive familial intrahepatic cholestasis type 3: A case report. Medicine (Baltimore) 2017; 96:e9158. [PMID: 29390323 PMCID: PMC5815735 DOI: 10.1097/md.0000000000009158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Progressive familial intrahepatic cholestasis (PFIC) type 3, characterized by high gamma glutamyl transferase (GGT), is an autosomal recessive genetic disease. It often occurs in patients' first years of age. However, high GGT type PFIC is still rare. PATIENT CONCERNS The present study reports a case of liver transplantation for decompensated liver cirrhosis caused by PFIC type 3. An 18-year-old male presented with a history of abdominal distension and jaundice for 2 months. He had abdominal tenderness but no rebounding pain. Moreover, his dullness was felt over the liver and the spleen was palpable 8 cm below the ribs. DIAGNOSES Computed tomography and magnetic resonance cholangiopancreato graphy of the upper abdomen revealed cirrhosis, portal hypertension, collateral circulation formation, large spleen, and ascites. Blood biochemistry showed high alanine transaminase, aspartate transaminase, and GGT. The diagnosis of decompensated liver cirrhosis caused by PFIC-3 was finally confirmed by plasma gene detecting. INTERVENTIONS The patient received an open surgery named allogeneic liver transplantation after successful matching of immune types between the recipient and donor. Peritoneal puncture and catheter drainage under B-ultrasound was performed when an encapsulated effusion between the liver and stomach arose. OUTCOMES The patient was discharged without specific discomfort and was almost free of fluid accumulation 51 days after the surgery. At the 6-month follow-up, he had no discomfort and the blood routine, liver functions showed no abnormalities. LESSONS We found a new mutant fragment of ABCB4 gene in the process of diagnosis. Liver transplantation remains the most definitive treatment for PFIC. Current medical therapies and surgical interventions such as biliary diversion have potentially created a synergistic outcome.
Collapse
Affiliation(s)
- Deng Xiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Jiannan He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Hongmei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Fangfang Xiong
- Basic Nursing Teaching and Research Office, Nanchang City Health School
| | - Hao Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Lunli Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
102
|
Affiliation(s)
- Debra H Pan
- Division of Pediatric Gastroenterology and Nutrition, The Children's Hospital at Montefiore, Bronx, NY
| | - Yolanda Rivas
- Division of Pediatric Gastroenterology and Nutrition, The Children's Hospital at Montefiore, Bronx, NY
| |
Collapse
|
103
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
104
|
Cariello M, Peres C, Zerlotin R, Porru E, Sabbà C, Roda A, Moschetta A. Long-term Administration of Nuclear Bile Acid Receptor FXR Agonist Prevents Spontaneous Hepatocarcinogenesis in Abcb4 -/- Mice. Sci Rep 2017; 7:11203. [PMID: 28894223 PMCID: PMC5593831 DOI: 10.1038/s41598-017-11549-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Altered bile acid (BA) signaling is associated with hepatotoxicity. The farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates BA homeostasis. Mice with FXR ablation present hepatocarcinoma (HCC) due to high toxic BA levels. Mice with Abcb4 ablation accumulate toxic BA within the bile ducts and present HCC. We have previously shown that intestinal specific activation of FXR by transgenic VP16-FXR chimera is able to reduce BA pool size and prevent HCC. Here we tested chemical FXR activation by administering for 15 months the dual FXR/ membrane G protein-coupled receptor (TGR5) agonist INT-767 (6α-ethyl-3α,7α,23-trihydroxy-24-nor-5β-cholan-23-sulphate) to Fxr-/- and Abcb4-/- mice. HCC number and size were significantly reduced by INT-767 administration. In contrast, no changes in HCC tumor number and size were observed in Fxr-/- mice fed with or without INT-767. Notably, INT-767 preserved the hepatic parenchyma, improved hepatic function and down-regulated pro-inflammatory cytokines. Moreover, in Abcb4-/- mice INT-767 prevented fibrosis by reducing collagen expression and deposition. Thus, long term activation of FXR is able to reduce BA pool, reprogram BA metabolism and prevent HCC. These data provide the impetus to address the bona fide therapeutic potential of FXR activation in disease with BA-associated development of HCC.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
| | - Claudia Peres
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy
| | - Roberta Zerlotin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy
| | - Emanuele Porru
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
| | - Aldo Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy.
- National Cancer Research Center, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy.
| |
Collapse
|
105
|
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull 2017; 7:339-348. [PMID: 29071215 PMCID: PMC5651054 DOI: 10.15171/apb.2017.041] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 12/11/2022] Open
Abstract
Anticancer drugs resistance is a complex process that arises from altering in the drug targets. Advances in the DNA microarray, proteomics technology and the development of targeted therapies provide the new strategies to overcome the drug resistance. Although a design of the new chemotherapy agents is growing quickly, effective chemotherapy agent has not been discovered against the advanced stage of cancer (such as invasion and metastasis). The cancer cell resistance against the anticancer agents can be due to many factors such as the individual's genetic differences, especially in tumoral somatic cells. Also, the cancer drug resistance is acquired, the drug resistance can be occurred by different mechanisms, including multi-drug resistance, cell death inhibiting (apoptosis suppression), altering in the drug metabolism, epigenetic and drug targets, enhancing DNA repair and gene amplification. In this review, we outlined the mechanisms of cancer drug resistance and in following, the treatment failures by common chemotherapy agents in the different type of cancers.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Davudian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
106
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
107
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
108
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
109
|
Kulecka M, Habior A, Paziewska A, Goryca K, Dąbrowska M, Ambrozkiewicz F, Walewska-Zielecka B, Gabriel A, Mikula M, Ostrowski J. Clinical Applicability of Whole-Exome Sequencing Exemplified by a Study in Young Adults with the Advanced Cryptogenic Cholestatic Liver Diseases. Gastroenterol Res Pract 2017; 2017:4761962. [PMID: 28626473 PMCID: PMC5463139 DOI: 10.1155/2017/4761962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The proper use of new medical tests in clinical practice requires the establishment of their value and range of diagnostic usefulness. While whole-exome sequencing (WES) has already entered the medical practice, recognizing its diagnostic usefulness in multifactorial diseases has not yet been achieved. AIMS The objective of this study was to establish usability of WES in determining genetic background of chronic cholestatic liver disease (CLD) in young patients. METHODS WES was performed on six young patients (between 17 and 22 years old) with advanced fibrosis or cirrhosis due to CLD and their immediate families. Sequencing was performed on an Ion Proton sequencer. RESULTS On average, 19,673 variants were identified, of which from 7 to 14 variants of an individual were nonsynonymous, homozygous, recessively inherited, and considered in silico as pathogenic. Although monogenic cause of CLD has not been determined, several heterozygous rare variants and polymorphisms were uncovered in genes previously known to be associated with CLD, including ATP8B1, ABCB11, RXRA, and ABCC4, indicative of multifactorial genetic background. CONCLUSIONS WES is a potentially useful diagnostic tool in determining genetic background of multifactorial diseases, but its main limitation results from the lack of opportunities for direct linkage between the uncovered genetic variants and molecular mechanisms of disease.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Andrzej Habior
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Bożena Walewska-Zielecka
- Department of Public Health, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Andrzej Gabriel
- Department of Pathomorphology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Michal Mikula
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
110
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
111
|
Qiu Y, Gong J, Feng J, Wang R, Han J, Liu T, Lu Y, Li L, Zhang M, Sheps JA, Wang N, Yan Y, Li J, Chen L, Borchers CH, Sipos B, Knisely A, Ling V, Xing Q, Wang J. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis. Hepatology 2017; 65:1655-1669. [PMID: 28027573 PMCID: PMC5413810 DOI: 10.1002/hep.29020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/16/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Hereditary cholestasis in childhood and infancy with normal serum gamma-glutamyltransferase (GGT) activity is linked to several genes. Many patients, however, remain genetically undiagnosed. Defects in myosin VB (MYO5B; encoded by MYO5B) cause microvillus inclusion disease (MVID; MIM251850) with recurrent watery diarrhea. Cholestasis, reported as an atypical presentation in MVID, has been considered a side effect of parenteral alimentation. Here, however, we report on 10 patients who experienced cholestasis associated with biallelic, or suspected biallelic, mutations in MYO5B and who had neither recurrent diarrhea nor received parenteral alimentation. Seven of them are from two study cohorts, together comprising 31 undiagnosed low-GGT cholestasis patients; 3 are sporadic. Cholestasis in 2 patients was progressive, in 3 recurrent, in 2 transient, and in 3 uncategorized because of insufficient follow-up. Liver biopsy specimens revealed giant-cell change of hepatocytes and intralobular cholestasis with abnormal distribution of bile salt export pump (BSEP) at canaliculi, as well as coarse granular dislocation of MYO5B. Mass spectrometry of plasma demonstrated increased total bile acids, primary bile acids, and conjugated bile acids, with decreased free bile acids, similar to changes in BSEP-deficient patients. Literature review revealed that patients with biallelic mutations predicted to eliminate MYO5B expression were more frequent in typical MVID than in isolated-cholestasis patients (11 of 38 vs. 0 of 13). CONCLUSION MYO5B deficiency may underlie 20% of previously undiagnosed low-GGT cholestasis. MYO5B deficiency appears to impair targeting of BSEP to the canalicular membrane with hampered bile acid excretion, resulting in a spectrum of cholestasis without diarrhea. (Hepatology 2017;65:1655-1669).
Collapse
Affiliation(s)
- Yi‐Ling Qiu
- The Center for Pediatric Liver DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jing‐Yu Gong
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Jia‐Yan Feng
- Department of PathologyChildren's Hospital of Fudan UniversityShanghaiChina
| | | | - Jun Han
- University of Victoria−Genome BC Proteomics CentreUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Teng Liu
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Yi Lu
- The Center for Pediatric Liver DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| | - Li‐Ting Li
- The Center for Pediatric Liver DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| | - Mei‐Hong Zhang
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | | | - Neng‐Li Wang
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Yan‐Yan Yan
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Jia‐Qi Li
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Lian Chen
- Department of PathologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Christoph H. Borchers
- University of Victoria−Genome BC Proteomics CentreUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Bence Sipos
- Institute of General Pathology and NeuropathologyTübingen University HospitalTübingenGermany
| | - A.S. Knisely
- Institute of PathologyGraz Medical UniversityGrazAustria
| | - Victor Ling
- BC Cancer AgencyVancouverBritish ColumbiaCanada
| | - Qing‐He Xing
- Institutes of Biomedical Sciences of Fudan UniversityShanghaiChina
| | - Jian‐She Wang
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
- Department of Infectious DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
112
|
Vij M, Shanmugam NP, Reddy MS, Govil S, Rela M. Hepatocarcinogenesis in multidrug-resistant P-glycoprotein 3 deficiency. Pediatr Transplant 2017; 21. [PMID: 28127842 DOI: 10.1111/petr.12889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 12/23/2022]
Abstract
MDR3 is a hepatocyte canalicular membrane protein encoded by the ABCB4 gene located on chromosome 7. MDR3 mediates the translocation of phosphatidylcholine into bile. Severe MDR 3 deficiency typically presents during early childhood with chronic cholestasis evolving to cirrhosis and portal hypertension, requiring liver transplantation. Herein, we report a case of severe MDR3 deficiency in a male child diagnosed with negative MDR3 immunostaining in hepatic canaliculi who underwent LDLT at our centre. We also describe single incidentally detected early well-differentiated HCC in the explant liver. The patient is on regular follow-up and is doing well. Our report shows that MDR3 deficiency may be a risk factor for the development of HCC.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Global health city, Chennai, Tamilnadu, India
| | - Naresh P Shanmugam
- Institute of liver disease and transplantation, Global health city, Chennai, Tamilnadu, India
| | - Mettu Srinivas Reddy
- Institute of liver disease and transplantation, Global health city, Chennai, Tamilnadu, India
| | - Sanjay Govil
- Institute of liver disease and transplantation, Global health city, Chennai, Tamilnadu, India
| | - Mohamed Rela
- Institute of liver disease and transplantation, Global health city, Chennai, Tamilnadu, India.,National Foundation for Liver Research, Chennai, Tamilnadu, India
| |
Collapse
|
113
|
van der Woerd WL, Houwen RHJ, van de Graaf SFJ. Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 2017; 23:763-775. [PMID: 28223721 PMCID: PMC5296193 DOI: 10.3748/wjg.v23.i5.763] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver diseases.
Collapse
|
114
|
Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, Deheragoda M, Starling C, Mieli-Vergani G, Smith J, Bull L, Thompson RJ. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol 2016; 65:1179-1187. [PMID: 27469900 PMCID: PMC5116266 DOI: 10.1016/j.jhep.2016.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Neonatal sclerosing cholangitis (NSC) is a severe neonatal-onset cholangiopathy commonly leading to liver transplantation (LT) for end-stage liver disease in childhood. Liver biopsy findings histopathologically resemble those in biliary atresia (BA); however, in NSC extrahepatic bile ducts are patent, whilst in BA their lumina are obliterated. NSC is commonly seen in consanguineous kindreds, suggesting autosomal recessive inheritance. METHODS From 29 NSC patients (24 families) identified, DNA was available in 24 (21 families). Thirteen (7 male) patients (12 families) of consanguineous parentage were selected for whole exome sequencing. Sequence variants were filtered for homozygosity, pathogenicity, minor allele frequency, quality score, and encoded protein expression pattern. RESULTS Four of 13 patients were homozygous and two were compound heterozygous for mutations in the doublecortin domain containing 2 gene (DCDC2), which encodes DCDC2 protein and is expressed in cholangiocyte cilia. Another 11 patients were sequenced: one (with one sibling pair) was compound heterozygous for DCDC2 mutations. All mutations were protein-truncating. In available liver tissue from patients with DCDC2 mutations, immunostaining for human DCDC2 and the ciliary protein acetylated alpha-tubulin (ACALT) showed no expression (n=6) and transmission electron microscopy found that cholangiocytes lacked primary cilia (n=5). DCDC2 and ACALT were expressed in NSC patients without DCDC2 mutations (n=22). Of the patients carrying DCDC2 mutations, one died awaiting LT; five came to LT, of whom one died 2years later. The other 4 are well. CONCLUSION Among 24 NSC patients with available DNA, 7 had mutations in DCDC2 (6 of 19 families). NSC patients in substantial proportion harbour mutations in DCDC2. Their disease represents a novel liver-based ciliopathy. LAY SUMMARY Neonatal sclerosing cholangitis (NSC) is a rare genetic form of liver disease presenting in infancy. Through next generation sequencing we identified mutations in the gene encoding for doublecortin domain containing 2 (DCDC2) protein in a group of NSC children. DCDC2 is a signalling and structural protein found in primary cilia of cholangiocytes. Cholangiocytes are the cells forming the biliary system which is the draining system of the liver.
Collapse
Affiliation(s)
- Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK.
| | - Melissa Sambrotta
- Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | | | - Pierre Foskett
- Institute of Liver Studies, King's College Hospital, London, UK
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Bart Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Chris Starling
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | - Joshua Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Laura Bull
- Liver Center Laboratory, Department of Medicine and Institute for Human Genetics, University of California San Francisco, CA, USA
| | - Richard J Thompson
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| |
Collapse
|
115
|
Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. J Transl Med 2016; 96:1256-1267. [PMID: 27775690 PMCID: PMC5121007 DOI: 10.1038/labinvest.2016.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. Wild-type (WT) and miR-21-/- mice underwent Sham or bile duct ligation (BDL) for 1 week, before evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic response, and small mothers against decapentaplegic 7 (Smad-7) expression. In vitro, immortalized murine biliary cell lines (IMCLs) and human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of BDL-induced biliary proliferation and intrahepatic biliary mass. In addition, loss of miR-21 decreased BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers transforming growth factor-β1 and α-smooth muscle actin. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased proliferation and expression of fibrotic markers and enhanced apoptosis when compared with control treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury, miR-21 is increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of miR-21 may be a therapeutic option for patients with cholestasis.
Collapse
|
116
|
Khabou B, Siala-Sahnoun O, Gargouri L, Mkaouar-Rebai E, Keskes L, Hachicha M, Fakhfakh F. In silico investigation of the impact of synonymous variants in ABCB4 gene on mRNA stability/structure, splicing accuracy and codon usage: Potential contribution to PFIC3 disease. Comput Biol Chem 2016; 65:103-109. [PMID: 27788395 DOI: 10.1016/j.compbiolchem.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022]
Abstract
Progressive Familial Intrahepatic Cholestasis type 3 (PFIC3) is an autosomal-recessive liver disease due to mutations in the ABCB4 gene encoding for the MDR3 protein. In the present study, we performed molecular and bioinformatic analyses in PFIC3 patients in order to understand the molecular basis of the disease. The three studied patients with PFIC3 were screened by PCR amplification followed by direct sequencing of the 27 coding exons of ABCB4. In silico analysis was performed by bioinformatic programs. We revealed three synonymous polymorphisms c.175C>T, c.504C>T, c.711A>T respectively in exon 4, 6, 8 and an intronic c.3487-16T>C variation in intron 26. The computational study of these polymorphic variants using Human Splicing Finder, ex-skip, Mfold and kineFold tools showed the putative impact on the composition of the cis-acting regulatory elements of splicing as well as on the mRNA structure and stability. Moreover, the protein level was affected by codon usage changes estimated by the calculation of ΔRSCU and ΔLog Ratio of codon frequencies interfering as consequence with the accurate folding of the MDR3 protein. As the first initiative of the mutational study of ABCB4 genes in Tunisia, our results are suggestive of a potential downstream molecular effect for the described polymorphisms on the expression pattern of the ABCB4 underlining the importance of synonymous variants.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Tunisia.
| | - Olfa Siala-Sahnoun
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia
| | | | - Emna Mkaouar-Rebai
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia.
| | - Leila Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Tunisia
| | | | - Faiza Fakhfakh
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia
| |
Collapse
|
117
|
Germain AM, Carvajal JA, Glasinovic JC, C. SK, Williamson C. Intrahepatic Cholestasis of Pregnancy: An Intriguing Pregnancy-Specific Disorder. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alfredo M. Germain
- Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, School of Medicine, and Department of Gastroenterology, Pontificia Universidad Católica de Chile, School of Medicine, Santiago, Chile; ICSM Maternal and Fetal Disease Group, MRC Clinical Sciences Center, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | - Catherine Williamson
- Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, School of Medicine, and Department of Gastroenterology, Pontificia Universidad Católica de Chile, School of Medicine, Santiago, Chile; ICSM Maternal and Fetal Disease Group, MRC Clinical Sciences Center, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
118
|
Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB, Sokol RJ, Kelly DA, Ure B, Whitington PF, Samyn M, Petersen C. Biliary atresia and other cholestatic childhood diseases: Advances and future challenges. J Hepatol 2016; 65:631-42. [PMID: 27164551 DOI: 10.1016/j.jhep.2016.04.032] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
Biliary Atresia and other cholestatic childhood diseases are rare conditions affecting the function and/or anatomy along the canalicular-bile duct continuum, characterised by onset of persistent cholestatic jaundice during the neonatal period. Biliary atresia (BA) is the most common among these, but still has an incidence of only 1 in 10-19,000 in Europe and North America. Other diseases such as the genetic conditions, Alagille syndrome (ALGS) and Progressive Familial Intrahepatic Cholestasis (PFIC), are less common. Choledochal malformations are amenable to surgical correction and require a high index of suspicion. The low incidence of such diseases hinder patient-based studies that include large cohorts, while the limited numbers of animal models of disease that recapitulate the spectrum of disease phenotypes hinders both basic research and the development of new treatments. Despite their individual rarity, collectively BA and other cholestatic childhood diseases are the commonest indications for liver transplantation during childhood. Here, we review the recent advances in basic research and clinical progress in these diseases, as well as the research needs. For the various diseases, we formulate current key questions and controversies and identify top priorities to guide future research.
Collapse
Affiliation(s)
- Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital/University Medical Center, Groningen, The Netherlands.
| | - Jorge A Bezerra
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, Denmark Hill, London, UK
| | - Richard A Schreiber
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - Georgina Mieli-Vergani
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK
| | - Jan B Hulscher
- Department of Paediatric Surgery, University of Groningen, Beatrix Children's Hospital-University Medical Center, Groningen, The Netherlands
| | - Ronald J Sokol
- Section of Paediatric Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Deirdre A Kelly
- Liver Unit, Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Benno Ure
- Department of Paediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Peter F Whitington
- Department of Paediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK
| | - Claus Petersen
- Department of Paediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
119
|
Wu N, Meng F, Invernizzi P, Bernuzzi F, Venter J, Standeford H, Onori P, Marzioni M, Alvaro D, Franchitto A, Gaudio E, Glaser S, Alpini G. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice. Hepatology 2016; 64:865-79. [PMID: 27115285 PMCID: PMC4992423 DOI: 10.1002/hep.28622] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The secretin/secretin receptor (SR) axis is up-regulated by proliferating cholangiocytes during cholestasis. Secretin stimulates biliary proliferation by down-regulation of let-7a and subsequent up-regulation of the growth-promoting factor, nerve growth factor (NGF). It is not known whether the secretin/SR axis plays a role in subepithelial fibrosis observed during cholestasis. Our aim was to determine the role of the secretin/SR axis in activation of biliary fibrosis in animal models and human primary sclerosing cholangitis (PSC). Studies were performed in wild-type (WT) mice with bile duct ligation (BDL), BDL SR(-/-) mice, or Mdr2(-/-) mouse models of cholestatic liver injury. In selected studies, the SR antagonist (Sec 5-27) was used to block the secretin/SR axis. Biliary proliferation and fibrosis were evaluated as well as secretion of secretin (by cholangiocytes and S cells), expression of markers of fibrosis, transforming growth factor-β1 (TGF-β1), transforming growth factor-β1 receptor (TGF-β1R), let-7a, and downstream expression of NGF. Correlative studies were performed in human control and PSC liver tissue biopsies, serum, and bile. SR antagonist reduced biliary proliferation and hepatic fibrosis in BDL WT and Mdr2(-/-) mice. There was decreased expression of let-7a in BDL and Mdr2(-/-) cholangiocytes that was associated with increased NGF expression. Inhibition of let-7a accelerated liver fibrosis was attributed to cholestasis. There was increased expression of TGF-β1 and TGF-β1R. Significantly higher expression of secretin, SR, and TGF-β1 was observed in PSC patient liver samples compared to healthy controls. In addition, there was higher expression of fibrosis genes and remarkably decreased expression of let-7a and increased expression of NGF compared to the control. CONCLUSION The secretin/SR axis plays a key role in regulating the biliary contribution to cholestasis-induced hepatic fibrosis. (Hepatology 2016;64:865-879).
Collapse
Affiliation(s)
- Nan Wu
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Operational Funds, Baylor Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Julie Venter
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Marco Marzioni
- Department of Medicine, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy,Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| |
Collapse
|
120
|
|
121
|
Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016; 92:84-92. [PMID: 27591095 PMCID: PMC5079826 DOI: 10.1016/j.diff.2016.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis results from chronic injury of hepatocytes and activation of Collagen Type I producing myofibroblasts that produce fibrous scar in liver fibrosis. Myofibroblasts are not present in the normal liver but rapidly appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of liver resident cells including portal fibroblasts, hepatic stellate cells, mesenchymal progenitor cells, and fibrocytes recruited from the bone marrow. It is considered that hepatic stellate cells and portal fibroblasts are the major source of hepatic myofibroblasts. In fact, the origin of myofibroblasts differs significantly for chronic liver diseases of different etiologies, such as cholestatic liver disease or hepatotoxic liver disease. Depending on etiology of hepatic injury, the fibrogenic foci might initiate within the hepatic lobule as seen in chronic hepatitis, or primarily affect the portal areas as in most biliary diseases. It has been suggested that activated portal fibroblasts/myofibroblasts work as "myofibroblasts for cholangiocytes" while hepatic stellate cells work as "myofibroblast for hepatocytes". This review will focus on our current understanding of the activated portal fibroblasts/myofibroblasts in cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Daniel Karin
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Yukinori Koyama
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA.
| |
Collapse
|
122
|
Abstract
Bile is synthesized in the liver and is essential for the emulsification of dietary lipids and lipid-soluble vitamins. It is a complex mixture of amphiphilic bile acids (BAs; which act as detergent molecules), the membrane phospholipid phosphatidylcholine (PC), cholesterol and a variety of endogenous metabolites and waste products. Over the last 20 years, the combined effort of clinicians, geneticists, physiologists and biochemists has shown that each of these bile components is transported across the canalicular membrane of the hepatocyte by its own specific ATP-binding cassette (ABC) transporter. The bile salt export pump (BSEP) ABCB11 transports the BAs and drives bile flow from the liver, but it is now clear that two lipid transporters, ABCB4 (which flops PC into the bile) and the P-type ATPase ATP8B1/CDC50 (which flips a different phospholipid in the opposite direction) play equally critical roles that protect the biliary tree from the detergent activity of the bile acids. Understanding the interdependency of these lipid floppases and flippases has allowed the development of an assay to measure ABCB4 function. ABCB4 harbours numerous mis-sense mutations which probably reflects the spectrum of liver disease rooted in ABCB4 aetiology. Characterization of the effect of these mutations at the protein level opens the possibility for the development of personalized prognosis and treatment.
Collapse
|
123
|
Przybylla S, Stindt J, Kleinschrodt D, Schulte am Esch J, Häussinger D, Keitel V, Smits SH, Schmitt L. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches. PLoS One 2016; 11:e0159778. [PMID: 27472061 PMCID: PMC4966956 DOI: 10.1371/journal.pone.0159778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis.
Collapse
Affiliation(s)
- Susanne Przybylla
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Diana Kleinschrodt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulte am Esch
- Department of General, Visceral and Pediatric Surgery, University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander H. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
124
|
Liu L, Zhou L, Hu S, Zhou S, Deng Y, Dong M, Huang J, Zeng Y, Chen X, Zhao N, Li H, Ding Z. Down-regulation of ABCG2 and ABCB4 transporters in the placenta of rats exposed to cadmium. Oncotarget 2016; 7:38154-38163. [PMID: 27203216 PMCID: PMC5122379 DOI: 10.18632/oncotarget.9415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
As a maternal and developmental toxicant, cadmium (Cd) possesses weak penetrability through the placental barrier. However, the underlying mechanism remains unclear. To gain insight into the protein molecules associated with Cd toxicity in placenta and explore their roles in Cd transportation, a reproductive animal experiment was carried out using Sprague-Dawley rats. We performed proteomic analysis of the placenta by Difference Gel Electrophoresis (DIGE) combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Tandem Mass Spectroscopy (MALDI-TOF/TOF MS). The DIGE assay identified 15 protein spots that were differentially expressed with a greater than 1.5-fold change in placenta of Cd-treated rats compared to the control rats. Based on the expression patterns and biological functions of the proteins, we selected the ABCG2 and ABCB4 transporter proteins for further analysis. Western blot analysis showed that Cd exposure could down-regulate the expression of ABCG2 and ABCB4 in the placenta. There was a negative dose-response relationship between Cd exposure and the expression of ABCG2 or ABCB4 protein. These results indicated that down-regulation of ABCG2 and ABCB4 transporters may regulate Cd across through placenta and thus affect the in vivo toxic effect of Cd to fetus.
Collapse
Affiliation(s)
- Lili Liu
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, China
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Liang Zhou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, China
| | - Shuiwang Hu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Shanyu Zhou
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yingyu Deng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ming Dong
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Jianxun Huang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yuli Zeng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xiaoyan Chen
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Na Zhao
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Hongling Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
125
|
Dixon PH, Williamson C. The pathophysiology of intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol 2016; 40:141-53. [PMID: 26823041 DOI: 10.1016/j.clinre.2015.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
A number of liver disorders are specific to pregnancy. Amongst these, intrahepatic cholestasis of pregnancy (ICP), also known as obstetric cholestasis (OC), is the commonest, affecting approximately 1 in 140 UK pregnancies. Patients commonly present in the third trimester with severe pruritus and deranged serum liver tests; bile acids are elevated, in severe cases >40 μmol/L. Although the disease is considered relatively benign for the mother, increased rates of adverse fetal outcomes, including stillbirth, are associated with ICP. As our knowledge of the mechanisms underlying bile acid homeostasis has advanced in the last 15 years our understanding of ICP has grown, in particular with respect to genetic influences on susceptibility to the disease, the role of reproductive hormones and their metabolites and the possible identity of the pruritic agents. In this review, we will describe recent advances in the understanding of this condition with a particular emphasis on how aspects of genetic and reproductive hormone involvement in pathophysiology have been elucidated. We also review recent developments regarding our knowledge of placental and fetal pathophysiology and the long-term health consequences for the mother and child.
Collapse
Affiliation(s)
- Peter H Dixon
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom.
| |
Collapse
|
126
|
Degiorgio D, Crosignani A, Colombo C, Bordo D, Zuin M, Vassallo E, Syrén ML, Coviello DA, Battezzati PM. ABCB4 mutations in adult patients with cholestatic liver disease: impact and phenotypic expression. J Gastroenterol 2016; 51:271-80. [PMID: 26324191 DOI: 10.1007/s00535-015-1110-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/26/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND The ABCB4 gene encodes the MDR3 protein. Mutations of this gene cause progressive familial intrahepatic cholestasis type 3 (PFIC3) in children, but their clinical relevance in adults remains ill defined. The study of a well-characterized adult patient series may contribute to refining the genetic data regarding cholangiopathies of unknown origin. Our aim was to evaluate the impact of ABCB4 mutations on clinical expression of cholestasis in adult patients. METHODS We consecutively evaluated 2602 subjects with hepatobiliary disease. Biochemical evidence of a chronic cholestatic profile (CCP) with elevated serum gamma-glutamyltransferase activity or diagnosis of intrahepatic cholestasis of pregnancy (ICP) and juvenile cholelithiasis (JC) were inclusion criteria. The personal/family history of additional cholestatic liver disease (PFH-CLD), which includes ICP, JC, or hormone-induced cholestasis, was investigated. Mutation screening of ABCB4 was carried out in 90 patients with idiopathic chronic cholestasis (ICC), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), ICP, and JC. RESULTS Eighty patients had CCP. PSC and ICC patients with PFH-CLD had earlier onset of disease than those without it (p = 0.003 and p = 0.023, respectively). The mutation frequency ranged from 50% (ICP, JC) to 17.6% (PBC). Among CCP patients, presence or absence of PFH-CLD was associated with ABCB4 mutations in 26.8 vs 5.1% (p = 0.013), respectively; in the subset of ICC and PSC patients, the corresponding figures were 44.4 vs 0% (p = 0.012) and 28.6 vs 8.7% (p = 0.173). CONCLUSIONS Cholangiopathies attributable to highly penetrant ABCB4 mutant alleles are identifiable in a substantial proportion of adults that generally have PFH-CLD. In PSC and ICC phenotypes, patients with MDR3 deficiency have early onset of disease.
Collapse
Affiliation(s)
- Dario Degiorgio
- E.O. Ospedali Galliera, Laboratory of Human Genetics and Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Crosignani
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Domenico Bordo
- IRCCS Azienda Ospedaliera-Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Massimo Zuin
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy
| | - Emanuela Vassallo
- Division of Internal Medicine, Ospedale Civile di Castel San Giovanni, Piacenza, Italy
| | - Marie-Louise Syrén
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical and Community Sciences, Division of Pediatrics, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Domenico A Coviello
- E.O. Ospedali Galliera, Laboratory of Human Genetics and Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Pier Maria Battezzati
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy.
| |
Collapse
|
127
|
Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 2016; 63:914-29. [PMID: 26418580 PMCID: PMC5063176 DOI: 10.1002/hep.28257] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Defects in multidrug resistance 3 gene (MDR3), which encodes the canalicular phospholipid flippase, cause a wide spectrum of cholangiopathy phenotypes in humans. Mice deficient in Mdr2 (murine ortholog of MDR3) develop liver diseases that closely reproduce the biochemical, histological, and clinical features of human cholangiopathies such as progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. We hypothesized that modulating bile acid metabolism by the gut hormone fibroblast growth factor 19 (FGF19) may represent a novel approach for treating cholangiopathy and comorbidities. We introduced adeno-associated virus carrying the gene for either the endocrine hormone FGF19 or engineered FGF19 variant M70 to 12-week old Mdr2-deficient mice with fully established disease. Effects on serum levels of liver enzymes, liver histology, and bile acid homeostasis were evaluated. FGF19 and M70 rapidly and effectively reversed liver injury, decreased hepatic inflammation, attenuated biliary fibrosis, and reduced cholecystolithiasis in Mdr2-deficient mice. Mechanistically, FGF19 and M70 significantly inhibited hepatic expression of Cyp7a1 and Cyp27a1, which encode enzymes responsible for the rate-limiting steps in the classic and alternate bile acid synthetic pathways, thereby reducing the hepatic bile acid pool and blood levels of bile acids. Importantly, prolonged exposure to FGF19, but not M70, led to the formation of hepatocellular carcinomas in the Mdr2-deficient mice. Furthermore, M70 ameliorated the hepatosplenomegaly and ductular proliferation that are associated with cholangiopathy. CONCLUSION These results demonstrate the potential for treating cholangiopathy by safely harnessing FGF19 biology to suppress bile acid synthesis.
Collapse
Affiliation(s)
- Mei Zhou
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| | | | | | | | - Hui Tian
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| |
Collapse
|
128
|
Gordo-Gilart R, Hierro L, Andueza S, Muñoz-Bartolo G, López C, Díaz C, Jara P, Álvarez L. Heterozygous ABCB4 mutations in children with cholestatic liver disease. Liver Int 2016; 36:258-67. [PMID: 26153658 DOI: 10.1111/liv.12910] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Monoallelic defects in ABCB4, which encodes the canalicular floppase for phosphatidylcholine MDR3, have been encountered in association with a variety of hepatobiliary disorders, particularly in adult subjects. In this study, we examined the presence of heterozygous ABCB4 variants in a cohort of children with chronic cholestasis and assessed the pathogenicity of the missense changes identified. METHODS Sixty-seven children with chronic liver dysfunction were studied by the sequencing of ABCB4 and multiplex ligation-dependent probe amplification analysis. The molecular defects arising from missense variants were analysed in MDCK-II and AD-293 cells. RESULTS Defects in a single allele of ABCB4 were identified in nine subjects. They included one small insertion (p.I1242Nfs), one nonsense mutation (p.R144X) and six missense changes (p.T175A, p.G228R, p.A250T, p.S320F, p.P352L and p.A934T). In four children, these defects in ABCB4 co-existed with various medical conditions. In vitro phenotyping of the six missense variants revealed that four (T175A, G228R, S320F and A934T) led to reduced MDR3 protein levels. Two mutations (G228R and A934T) resulted in trapping of the protein in the endoplasmic reticulum. Phosphatidylcholine efflux activity was decreased to 56-18% of reference levels for MDR3 mutants T175A, A250T and S320F. The G228R, P352L and A934T mutants were found to be non-functional. CONCLUSIONS These results illustrate the varying effects of ABCB4 missense mutations and suggest that even a modest reduction in MDR3 activity may contribute or predispose to the onset of cholestatic liver disease in the paediatric age.
Collapse
Affiliation(s)
| | - Loreto Hierro
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Sara Andueza
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| | - Gema Muñoz-Bartolo
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Carola López
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Carmen Díaz
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Paloma Jara
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Luis Álvarez
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| |
Collapse
|
129
|
Kim HJ, Kim JS, Joo MK, Lee BJ, Kim JH, Yeon JE, Park JJ, Byun KS, Bak YT. Hepatolithiasis and intrahepatic cholangiocarcinoma: A review. World J Gastroenterol 2015; 21:13418-13431. [PMID: 26730152 PMCID: PMC4690170 DOI: 10.3748/wjg.v21.i48.13418] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023] Open
Abstract
Although the incidence of hepatolithiasis is decreasing as the pattern of gallstone disease changes in Asia, the prevalence of hepatolithiasis is persistently high, especially in Far Eastern countries. Hepatolithiasis is an established risk factor for cholangiocarcinoma (CCA), and chronic proliferative inflammation may be involved in biliary carcinogenesis and in inducing the upregulation of cell-proliferating factors. With the use of advanced imaging modalities, there has been much improvement in the management of hepatolithiasis and the diagnosis of hepatolithiasis-associated CCA (HL-CCA). However, there are many problems in managing the strictures in hepatolithiasis and differentiating them from infiltrating types of CCA. Surgical resection is recommended in cases of single lobe hepatolithiasis with atrophy, uncontrolled stricture, symptom duration of more than 10 years, and long history of biliary-enteric anastomosis. Even after resection, patients should be followed with caution for development of HL-CCA, because HL-CCA is an independent prognostic factor for survival. It is not yet clear whether hepatic resection can reduce the occurrence of subsequent HL-CCA. Furthermore, there are no consistent findings regarding prediction of subsequent HL-CCA in patients with hepatolithiasis. In the management of hepatolithiasis, important factors are the reduction of recurrence of cholangitis and suspicion of unrecognized HL-CCA.
Collapse
|
130
|
Luo J, Ko B, Elliott M, Zhou M, Lindhout DA, Phung V, To C, Learned RM, Tian H, DePaoli AM, Ling L. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 2015; 6:247ra100. [PMID: 25080475 DOI: 10.1126/scitranslmed.3009098] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatic accumulation of bile acids is central to the pathogenesis of cholestatic liver diseases. Endocrine hormone fibroblast growth factor 19 (FGF19) may reduce hepatic bile acid levels through modulation of bile acid synthesis and prevent subsequent liver damage. However, FGF19 has also been implicated in hepatocellular carcinogenesis, and consequently, the potential risk from prolonged exposure to supraphysiological levels of the hormone represents a major hurdle for developing an FGF19-based therapy. We describe a nontumorigenic FGF19 variant, M70, which regulates bile acid metabolism and, through inhibition of bile acid synthesis and reduction of excess hepatic bile acid accumulation, protects mice from liver injury induced by either extrahepatic or intrahepatic cholestasis. Administration of M70 in healthy human volunteers potently reduces serum levels of 7α-hydroxy-4-cholesten-3-one, a surrogate marker for the hepatic activity of cholesterol 7α-hydroxylase (CYP7A1), the enzyme responsible for catalyzing the first and rate-limiting step in the classical bile acid synthetic pathway. This study provides direct evidence for the regulation of bile acid metabolism by FGF19 pathway in humans. On the basis of these results, the development of nontumorigenic FGF19 variants capable of modulating CYP7A1 expression represents an effective approach for the prevention and treatment of cholestatic liver diseases as well as potentially for other disorders associated with bile acid dysregulation.
Collapse
Affiliation(s)
- Jian Luo
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA.
| | - Brian Ko
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Michael Elliott
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Mei Zhou
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Darrin A Lindhout
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Van Phung
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Carmen To
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - R Marc Learned
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Hui Tian
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Alex M DePaoli
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Lei Ling
- NGM Biopharmaceuticals Inc., 630 Gateway Boulevard, South San Francisco, CA 94080, USA.
| |
Collapse
|
131
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
132
|
Cho JM, Oh SH, Kim HJ, Kim JS, Kim KM, Kim GH, Yu E, Lee BH, Yoo HW. Clinical features, outcomes, and genetic analysis in Korean children with Alagille syndrome. Pediatr Int 2015; 57:552-7. [PMID: 25676721 DOI: 10.1111/ped.12602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/26/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alagille syndrome (AGS) is a multisystem autosomal dominant disorder that affects the liver, heart, eyes, face, bone, and other organs. AGS is caused by mutations in one of two genes, JAG1 or NOTCH2. We evaluated clinical features, outcomes, and the presence of JAG1 and NOTCH2 mutations in Korean children with AGS. METHODS Between January 1997 and December 2013, 19 children were diagnosed with AGS at Asan Medical Center, Seoul, Korea. Their clinical features, outcomes, and JAG1 and NOTCH2 mutation status were retrospectively analyzed. RESULTS The prevalence of clinical features in the 19 patients was as follows: dysmorphic facial features, 100% (n = 19); liver symptoms, 89% (n = 17); cardiac symptoms, 95% (n = 18); ophthalmologic symptoms, 67% (n = 10); skeletal deformities, 47% (n = 9); and renal symptoms, 21% (n = 4). JAG1 mutations were identified in 14 patients. The 13 different JAG1 mutations, seven of which were novel, included four deletions, three insertions, two missense mutations, three nonsense mutations, and one indel mutation. No NOTCH2 mutations were found. Two patients who received liver transplantation due to liver failure were still alive. Two patients died of comorbidities related to AGS: one of cardiac failure and one of hepatic failure. CONCLUSION This study describes the clinical characteristics of 19 Korean AGS patients with seven novel JAG1 mutations. Neonatal cholestatic jaundice was the most common initial presenting symptom; thus the presence of neonatal cholestasis warrants screening for syndromic features of AGS. Complex heart anomalies and progressive liver dysfunction resulted in significant morbidity and mortality in AGS.
Collapse
Affiliation(s)
- Jin Min Cho
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Jin Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Sung Kim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Genome Research Center for Genetic Disorders, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Pathology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.,Genome Research Center for Genetic Disorders, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.,Genome Research Center for Genetic Disorders, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
133
|
Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: Interactions between drug properties and host factors. J Hepatol 2015; 63:503-14. [PMID: 25912521 DOI: 10.1016/j.jhep.2015.04.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a common cause for drug withdrawal from the market and although infrequent, DILI can result in serious clinical outcomes including acute liver failure and the need for liver transplantation. Eliminating the iatrogenic "harm" caused by a therapeutic intent is a priority in patient care. However, identifying culprit drugs and individuals at risk for DILI remains challenging. Apart from genetic factors predisposing individuals at risk, the role of the drugs' physicochemical and toxicological properties and their interactions with host and environmental factors need to be considered. The influence of these factors on mechanisms involved in DILI is multi-layered. In this review, we summarize current knowledge on 1) drug properties associated with hepatotoxicity, 2) host factors considered to modify an individuals' risk for DILI and clinical phenotypes, and 3) drug-host interactions. We aim at clarifying knowledge gaps needed to be filled in as to improve risk stratification in patient care. We therefore broadly discuss relevant areas of future research. Emerging insight will stimulate new investigational approaches to facilitate the discovery of clinical DILI risk modifiers in the context of disease complexity and associated interactions with drug properties, and hence will be able to move towards safety personalized medicine.
Collapse
Affiliation(s)
- Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ayako Suzuki
- Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States; Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jürgen Borlak
- Center of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
134
|
Vij M, Safwan M, Shanmugam NP, Rela M. Liver pathology in severe multidrug resistant 3 protein deficiency: a series of 10 pediatric cases. Ann Diagn Pathol 2015; 19:277-82. [PMID: 26117383 DOI: 10.1016/j.anndiagpath.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
Multidrug resistance protein 3 (MDR3) is a hepatocyte canalicular membrane protein encoded by the ABCB4/MDR3 gene located on chromosome 7. Several liver diseases are known to be associated with MDR3 deficiency. The basic defect is reduced secretion of biliary phospholipid causing disturbance in the primary bile composition, leading to injury to biliary epithelium inducing cell death and inflammation. Severe MDR3 deficiency typically presents during the first year of life or early childhood, often progressing to chronic liver disease with cirrhosis and portal hypertension, requiring liver transplantation. Negative MDR3 immunostaining is suggestive of MDR3 deficiency. Herein, we report the clinical and histopathologic features of 10 cases (6 male/4 female) in infants and children with severe MDR3 deficiency (age range of 8 months to 7 years) diagnosed with negative MDR3 immunostaining in hepatic canaliculi. Three cases underwent liver transplantation. The cases showed periportal bridging fibrosis to micronodular cirrhosis, ductular proliferation with bile plugs, and lobular canalicular bile stasis with rosetting. All 3 explant livers demonstrated cystically dilated large ducts with crystallization of cholesterol. One case showed well-differentiated hepatocellular carcinoma. We conclude that MDR3 immunostaining on formalin-fixed and paraffin-embedded sections is a useful tool to diagnose severe MDR3 deficiency in pediatric liver cholestatic disease cases where genetic testing is not available.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Global Health City, Chennai, Tamil Nadu, India, 600100.
| | - Mohamed Safwan
- Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India, 600100
| | - Naresh P Shanmugam
- Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India, 600100
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India, 600100; National Foundation for Liver Research, Chennai, Tamil Nadu, India
| |
Collapse
|
135
|
Genetics of liver disease: From pathophysiology to clinical practice. J Hepatol 2015; 62:S6-S14. [PMID: 25920091 DOI: 10.1016/j.jhep.2015.02.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/24/2022]
Abstract
Paralleling the first 30 years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990 s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients.
Collapse
|
136
|
Sambrotta M, Thompson RJ. Mutations in TJP2, encoding zona occludens 2, and liver disease. Tissue Barriers 2015; 3:e1026537. [PMID: 26451340 DOI: 10.1080/21688370.2015.1026537] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Progressive familial intrahepatic cholestasis is a clinical description of a phenotype, which we now realize has several different genetic aetiologies. The identification of the underlying genetic defects has helped to elucidate important aspects of liver physiology. The latest addition to this family of diseases is tight junction protein 2 (TJP2) deficiency. This protein is also known as zona occludens 2 (ZO-2). The patients, so far presented, all have homozygous, protein-truncating mutations. A complete absence of this protein was demonstrated. These children presented with severe liver disease, some manifesting extrahepatic features. By contrast, embryonic-lethality was seen in ZO-2 knockout mice. This discovery highlights important differences, not just between species, but also between different epithelia in humans. This commentary discusses the recently presented findings, and some of the issues that arise.
Collapse
Affiliation(s)
- Melissa Sambrotta
- Institute of Liver Studies; Division of Transplantation Immunology and Mucosal Biology ; King's College London ; London, UK
| | - Richard J Thompson
- Institute of Liver Studies; Division of Transplantation Immunology and Mucosal Biology ; King's College London ; London, UK ; Paediatric Liver and GI Centre; King's College Hospital ; London, UK
| |
Collapse
|
137
|
Maciąg A, Villa F, Ferrario A, Spinelli CC, Carrizzo A, Malovini A, Torella A, Montenero C, Parisi A, Condorelli G, Vecchione C, Nigro V, Montenero AS, Puca AA. Exome sequencing of a family with lone, autosomal dominant atrial flutter identifies a rare variation in ABCB4 significantly enriched in cases. BMC Genet 2015; 16:15. [PMID: 25888430 PMCID: PMC4342200 DOI: 10.1186/s12863-015-0177-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/30/2015] [Indexed: 12/23/2022] Open
Abstract
Background Lone atrial flutter (AFL) and atrial fibrillation (AF) are common and sometimes consequential cardiac conduction disorders with a strong heritability, as underlined by recent genome-wide association studies that identified genetic modifiers. Follow-up family-based genetic analysis also identified Mendelian transmission of disease alleles. Three affected members were exome-sequenced for the identification of potential causative mutations, which were subsequently validated by direct sequencing in the other 3 affected members. Taqman assay was then used to confirm the role of any mutation in an independent population of sporadic lone AFL/AF cases. Results The family cluster analysis provided evidence of genetic inheritance of AFL in the family via autosomal dominant transmission. The exome-sequencing of 3 family members identified 7 potential mutations: of these, rs58238559, a rare missense genetic variant in the ATP-binding cassette sub-family B, member 4 (ABCB4) gene was carried by all affected members. Further analysis of 82 subjects with sporadic lone AF, 63 subjects with sporadic lone AFL, and 673 controls revealed that the allele frequency for this variation was significantly higher in cases than in the controls (0.05 vs. 0.01; OR = 3.73; 95% CI = 1.16–11.49; P = 0.013). Conclusions rs58238559 in ABCB4 is a rare missense variant with a significant effect on the development of AFL/AF. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0177-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Attilio Parisi
- Università degli Studi di Roma "Foro Italico", Rome, Italy.
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, MI, Italy. .,Università degli Studi di Milano, Milan, Italy.
| | - Carmine Vecchione
- IRCCS Neuromed, Parco Tecnologico, Pozzilli, IS, Italy. .,Università degli Studi di Salerno, Salerno, Italy.
| | - Vincenzo Nigro
- Seconda Università degli Studi di Napoli, Napoli, Italy.
| | | | | |
Collapse
|
138
|
Zhao Y, Ishigami M, Nagao K, Hanada K, Kono N, Arai H, Matsuo M, Kioka N, Ueda K. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J Lipid Res 2015; 56:644-652. [PMID: 25601960 DOI: 10.1194/jlr.m056622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Masato Ishigami
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Matsuo
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan; Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan.
| |
Collapse
|
139
|
Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, Ho-Mok K, Bootsma AH, Groen AK, Schaap FG, Oude Elferink RPJ, Waterham HR, Wanders RJA. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015; 61:260-7. [PMID: 24867799 DOI: 10.1002/hep.27240] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED The enterohepatic circulation of bile salts is an important physiological route to recycle bile salts and ensure intestinal absorption of dietary lipids. The Na(+)-taurocholate cotransporting polypeptide SLC10A1 (NTCP) plays a key role in this process as the major transporter of conjugated bile salts from the plasma compartment into the hepatocyte. Here we present the first patient with NTCP deficiency, who was clinically characterized by mild hypotonia, growth retardation, and delayed motor milestones. Total bile salts in plasma were extremely elevated (up to 1,500 μM, ref. <16.3) but there were no clinical signs of cholestatic jaundice, pruritis, or liver dysfunction. Bile salt synthesis and intestinal bile salt signaling were not affected, as evidenced by normal plasma 7α-hydroxy-4-cholesten-3-one (C4) and FGF19 levels. Importantly, the presence of secondary bile salts in the circulation suggested residual enterohepatic cycling of bile salts. Sequencing of the SLC10A1 gene revealed a single homozygous nonsynonymous point mutation in the coding sequence of the gene, resulting in an arginine to histidine substitution at position 252. Functional studies showed that this mutation resulted in a markedly reduced uptake activity of taurocholic acid. Immunofluorescence studies and surface biotinylation experiments demonstrated that the mutant protein is virtually absent from the plasma membrane. CONCLUSION We describe the identification of NTCP deficiency as a new inborn error of metabolism with a relatively mild clinical phenotype. The identification of NTCP deficiency confirms that this transporter is the main import system for conjugated bile salts into the liver but also indicates that auxiliary transporters are able to sustain the enterohepatic cycle in its absence.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Laboratory Genetic Metabolic Disease, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Gordo-Gilart R, Andueza S, Hierro L, Martínez-Fernández P, D'Agostino D, Jara P, Alvarez L. Functional analysis of ABCB4 mutations relates clinical outcomes of progressive familial intrahepatic cholestasis type 3 to the degree of MDR3 floppase activity. Gut 2015; 64:147-55. [PMID: 24594635 DOI: 10.1136/gutjnl-2014-306896] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a potentially lethal autosomal recessive liver disease associated with mutations in ABCB4, the gene encoding the canalicular translocator of phosphatidylcholine MDR3. While some affected children benefit from ursodeoxycholic acid (UDCA) therapy, others evolve to end-stage liver disease. We aimed to evaluate whether these different outcomes are related to the impact of ABCB4 mutations. DESIGN Six children with PFIC3 were investigated by sequencing of ABCB4 exons and flanking intron-exon boundaries and by immunohistochemistry. ABCB4 missense mutations were phenotyped in vitro by assessing their effects on MDR3 expression, subcellular localisation, and phosphatidylcholine-translocating activity. The resulting data were contrasted with the clinical outcomes. RESULTS Eight distinct ABCB4 mutations were identified: one nonsense, one splicing and six missense mutations, four of which (G68R, T201M, P479L, D459H) affected MDR3 expression level. G68R and D459H also led to retention of the protein in endoplasmic reticulum. Phosphatidylcholine efflux assays indicated that T201M, P479L, S978P and E1118K mutations impaired MDR3 activity to variable degrees. Three children with mutations that caused a total loss of MDR3 expression/function manifested progressive liver disease refractory to UDCA treatment. This was also the case in a patient carrying two different mutations that, in combination, resulted in a 90% reduction in total MDR3 activity. A favourable response to UDCA was achieved in two patients with estimated MDR3 activities of 50% and 33%, respectively. CONCLUSIONS These data provide experimental evidence of the correlation between the degree of MDR3 floppase activity and the clinical outcomes of PFIC3.
Collapse
Affiliation(s)
| | - Sara Andueza
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| | - Loreto Hierro
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Pilar Martínez-Fernández
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Daniel D'Agostino
- Paediatric Gastroenterology-Hepatology Division, Liver-Intestinal Transplantation Center, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Paloma Jara
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Luis Alvarez
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| |
Collapse
|
141
|
Boudechiche L, Tranchart H, Branchereau S, Davit-Spraul A, Laïnas P, Groyer-Picard MT, Weber A, Hadchouel M, Dagher I. Improvement of hepatocyte transplantation efficiency in the mdr2-/- mouse model by glyceryl trinitrate. Transplantation 2015; 99:36-40. [PMID: 25340599 DOI: 10.1097/tp.0000000000000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hepatocyte transplantation could be an alternative to liver transplantation for the treatment of metabolic diseases. However, rodent models have shown that engraftment of transplanted cells in the liver is low and requires deposition of cells in hepatic sinusoids. Splanchnic vasodilatators improved hepatocyte engraftment in a rat model. Therefore, we investigated the effect of glyceryl trinitrate (GTN) on the efficacy of cell engraftment and on liver repopulation in the mdr2-knockout mouse, a model for progressive familial intrahepatic cholestasis type 3. METHODS Congenic normal mdr2 (+/+) hepatocytes were isolated by two-step collagenase perfusion and transplanted into mdr2(-/-) mice livers through the portal vein in the presence or absence of GTN. Liver repopulation was assessed by immunohistochemistry, and transplanted hepatocyte function was assessed at different times after transplantation by measurement of biliary lipid secretion and quantification of fibrosis. RESULTS The number of engrafted cells in GTN-treated mice was significantly higher than that in control mice, and transplanted hepatocytes were found in a greater number of distal sinusoids. Levels of phospholipid secretion were significantly higher than those in the control group 3 months after hepatocyte transplantation (18.3 ± 2.3 vs. 5.2 ± 3.9 nmol/min/100 g, P < 0.0001), and the ratio of phospholipids to bile salt was greater (6.8 ± 1.3 vs. 3.2 ± 1.6, P = 0.03). The percentage area of liver fibrosis was also significantly reduced in GTN-treated mice (5.7% ± 2.3% vs. 12.4% ± 2.9%, P = 0.016). CONCLUSION The use of GTN improves hepatocyte engraftment and correction of metabolic disease in mdr2 (-/-) mice. This approach might be beneficial in hepatocyte transplantation for the treatment of patients with liver diseases.
Collapse
Affiliation(s)
- Lyes Boudechiche
- 1 INSERM U 972, Paul-Brousse Hospital, Villejuif, France. 2 Paris-Sud University, Orsay, France. 3 Department of Minimally Invasive Surgery, Antoine-Béclère Hospital, AP-HP, Clamart, France. 4 Department of Pediatric Surgery, Bicêtre Hospital, AP-HP, Kremlin-Bicêtre, France. 5 Department of Biochemistry, Bicêtre Hospital, AP-HP, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
MBUNA J, KANETA T. Capillary Electrophoresis with Laser-induced Fluorescence Detection for Application in Intracellular Investigation of Anthracyclines and Multidrug Resistance Proteins. ANAL SCI 2015; 31:1121-8. [DOI: 10.2116/analsci.31.1121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Julius MBUNA
- Dar es Salaam University College of Education, Department of Chemistry
| | - Takashi KANETA
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
143
|
ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth. Sci Rep 2014; 4:6899. [PMID: 25367630 PMCID: PMC4219162 DOI: 10.1038/srep06899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
Epigenetic silencing through promoter hypermethylation is an important hallmark for the inactivation of tumor-related genes in carcinogenesis. Here we identified the ATP-binding cassette sub-family B member 4 (ABCB4) as a novel epigenetically silenced target gene. We investigated the epigenetic regulation of ABCB4 in 26 human lung, breast, skin, liver, head and neck cancer cells lines and in primary cancers by methylation and expression analysis. Hypermethylation of the ABCB4 CpG island promoter occurred in 16 out of 26 (62%) human cancer cell lines. Aberrant methylation of ABCB4 was also revealed in 39% of primary lung cancer and in 20% of head and neck cancer tissues. In 37% of primary lung cancer samples, ABCB4 expression was absent. For breast cancer a significant hypermethylation occurred in tumor tissues (41%) compared to matching normal samples (0%, p = 0.002). Silencing of ABCB4 was reversed by 5-aza-2'-deoxycytidine and zebularine treatments leading to its reexpression in cancer cells. Overexpression of ABCB4 significantly suppressed colony formation and proliferation of lung cancer cells. Hypermethylation of Abcb4 occurred also in murine cancer, but was not found in normal tissues. Our findings suggest that ABCB4 is a frequently silenced gene in different cancers and it may act tumor suppressivly in lung cancer.
Collapse
|
144
|
Kunne C, de Graaff M, Duijst S, de Waart DR, Oude Elferink RPJ, Paulusma CC. Hepatic cytochrome P450 deficiency in mouse models for intrahepatic cholestasis predispose to bile salt-induced cholestasis. J Transl Med 2014; 94:1103-13. [PMID: 25068656 DOI: 10.1038/labinvest.2014.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/19/2014] [Accepted: 06/29/2014] [Indexed: 11/09/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver diseases caused by deficiency of ATB8B1 and ABCB4, respectively. Mouse models for PFIC display mild phenotypes compared with human patients, and this can be explained by the difference in bile salt pool composition. Mice, unlike humans, have the ability to detoxify hydrophobic bile salts by cytochrome P450-mediated (re)hydroxylation and thus have a less toxic bile salt pool. We have crossed mouse models for PFIC1 and PFIC3 with Hrn mice that have a reduced capacity to (re)hydroxylate bile salts. Double transgenes were obtained by backcrossing Atp8b1(G308V/G308V) and Abcb4(-/-) mice with Hrn mice that have a liver-specific disruption of the cytochrome P450 reductase gene and therefore have markedly reduced P450 activity. In these mice, a more hydrophobic bile salt pool was instilled by cholic acid supplementation of the diet, and bile formation and liver pathology was studied. As opposed to single transgenes, Atp8b1(G308V/G308V)/Hrn and Abcb4(-/-)/Hrn mice rapidly developed strong cholestasis that was evidenced by increased plasma bilirubin and bile salt levels. The bile salt pool was more toxic in both models; Atp8b1(G308V/G308V)/Hrn mice had a more hydrophobic plasma pool compared with the single transgene, whereas Abcb4(-/-)/Hrn mice had a more hydrophobic biliary pool compared with the single transgene. In line with these findings, liver damage was not aggravated in Atp8b1(G308V/G308V)/Hrn but was more severe in Abcb4(-/-)/Hrn mice. These data indicate that bile salt pool composition is a critical determinant in the initiation and progression of cholestasis and liver pathology in PFIC1 and PFIC3. Most importantly, our data suggest that the hydrophobicity of the plasma bile salt pool is an important determinant of the severity of cholestasis, whereas the hydrophobicity of the biliary bile salt pool is an important determinant of the severity of liver pathology.
Collapse
Affiliation(s)
- Cindy Kunne
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Marijke de Graaff
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
145
|
Dietrich CG, Geier A. Effect of drug transporter pharmacogenetics on cholestasis. Expert Opin Drug Metab Toxicol 2014; 10:1533-51. [PMID: 25260651 DOI: 10.1517/17425255.2014.963553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The liver is the central place for the metabolism of drugs and other xenobiotics. In the liver cell, oxidation and conjugation of compounds take place, and at the same time, bile formation helps in extrusion of these compounds via the biliary route. A large number of transporters are responsible for drug uptake into the liver cell and excretion into bile or efflux to the sinusoidal blood. AREAS COVERED Genetic variants of these transporters and their transactivators contribute to changes in drug handling and are also responsible for cholestatic syndromes of different severity. This review summarizes the current knowledge regarding the influence of these genetic changes. The review covers progressive hereditary cholestatic syndromes as well as recurrent or transient cholestatic syndromes such as drug-induced liver injury, intrahepatic cholestasis of pregnancy, and benign recurrent intrahepatic cholestasis. EXPERT OPINION Polymorphisms in transporter genes are frequent. For clinically relevant cholestatic syndromes, it often requires a combination of genetic variants or acquired triggers such as pregnancy or drug treatment. In combination with other pathogenetic aspects, genetic variants in drug transporters may contribute to our understanding of not only cholestatic diseases such as primary sclerosing cholangitis or primary biliary cirrhosis, but also the natural course of chronic liver disease in general.
Collapse
|
146
|
Gadaleta RM, Cariello M, Sabbà C, Moschetta A. Tissue-specific actions of FXR in metabolism and cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:30-9. [PMID: 25139561 DOI: 10.1016/j.bbalip.2014.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022]
Abstract
The nuclear Farnesoid X Receptor (FXR) is a transcription factor critically involved in metabolic homeostasis in the gut-liver axis. FXR activity is mediated by hormonal and dietary signals and driven by bile acids (BAs), which are the natural FXR ligands. Given the great physiological importance in BA homeostasis, as well as in the regulation of glucose and lipid metabolism, FXR plays a pivotal role in the pathogenesis of a wide range of disease of the liver, biliary tract and intestine, including hepatic and colorectal cancer. In the last years several studies have shown the relative FXR tissue-specific importance, highlighting synergism and additive effects in the liver and intestine. Gain- and loss-of-FXR-function mouse models have been generated in order to identify the biological processes and the molecular FXR targets. Taking advantage of the knowledge on the structure-activity relationship of BAs for FXR, semi-synthetic and synthetic molecules have been generated to obtain more selective and powerful FXR activators than BAs. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Raffaella Maria Gadaleta
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK
| | - Marica Cariello
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy
| | - Carlo Sabbà
- Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy
| | - Antonio Moschetta
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy; Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy.
| |
Collapse
|
147
|
Morita SY, Terada T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:954781. [PMID: 25133187 PMCID: PMC4123595 DOI: 10.1155/2014/954781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/14/2014] [Indexed: 01/14/2023]
Abstract
On the canalicular membranes of hepatocytes, several ABC transporters are responsible for the secretion of bile lipids. Among them, ABCB4, also called MDR3, is essential for the secretion of phospholipids from hepatocytes into bile. The biliary phospholipids are associated with bile salts and cholesterol in mixed micelles, thereby reducing the detergent activity and cytotoxicity of bile salts and preventing cholesterol crystallization. Mutations in the ABCB4 gene result in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy, low-phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma. In vivo and cell culture studies have demonstrated that the secretion of biliary phospholipids depends on both ABCB4 expression and bile salts. In the presence of bile salts, ABCB4 located in nonraft membranes mediates the efflux of phospholipids, preferentially phosphatidylcholine. Despite high homology with ABCB1, ABCB4 expression cannot confer multidrug resistance. This review summarizes our current understanding of ABCB4 functions and physiological relevance, and discusses the molecular mechanism for the ABCB4-mediated efflux of phospholipids.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
148
|
Cai SY, Mennone A, Soroka CJ, Boyer JL. Altered expression and function of canalicular transporters during early development of cholestatic liver injury in Abcb4-deficient mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G670-6. [PMID: 24481602 PMCID: PMC3989703 DOI: 10.1152/ajpgi.00334.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/23/2014] [Indexed: 01/31/2023]
Abstract
Deficiency of ABCB4 is associated with several forms of cholestasis in humans. Abcb4(-/-) mice also develop cholestasis, but it remains uncertain what role other canalicular transporters play in the development of this disease. We examined the expression of these transporters in Abcb4(-/-) mice compared with their wild-type littermate controls at ages of 10 days and 3, 6, and 12 wk. Elevated plasma bile acid levels were already detected at 10 days and at all ages thereafter in Abcb4(-/-) mice. The expression of Bsep, Mrp2, Atp8b1, Abcg5, and Abcg8 liver proteins did not change at 10 days, but Bsep, Mrp2, and Atp8b1 were reduced, whereas Abcg5 and Abcg8 expression were increased in Abcb4(-/-) mice at all later ages. Lower bile acid concentrations were also detected in the bile of 6-wk-old Abcb4(-/-) mice. Immunofluorescence labeling revealed distorted canalicular architecture in the liver tissue by 12 wk in Abcb4(-/-) mice. Whereas Bsep and Mrp2 remained associated with the apical membrane, Atp8b1 was now localized in discrete punctuate structures adjacent to the canalicular membrane in these mice. Expression of Bsep mRNA was increased in the livers of 10-day-old Abcb4(-/-) mice, whereas Ost-α was decreased. By 12 wk, Bsep, Mrp2, and Abcg5 mRNA were all increased, whereas Ost-α and Ntcp were reduced. These findings indicate that canalicular transporters that determine the formation of bile are altered early in the development of cholestasis in Abcb4(-/-) mice and may contribute to the pathogenesis of cholestasis in this disorder.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
149
|
Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet 2014; 46:326-8. [PMID: 24614073 DOI: 10.1038/ng.2918] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
Abstract
Elucidating genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Here we show that protein-truncating mutations in the tight junction protein 2 gene (TJP2) cause failure of protein localization and disruption of tight-junction structure, leading to severe cholestatic liver disease. These findings contrast with those in the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.
Collapse
|
150
|
Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 2014; 4:25-36. [PMID: 25755532 PMCID: PMC4017198 DOI: 10.1016/j.jceh.2013.10.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a group of rare disorders which are caused by defect in bile secretion and present with intrahepatic cholestasis, usually in infancy and childhood. These are autosomal recessive in inheritance. The estimated incidence is about 1 per 50,000 to 1 per 100,000 births, although exact prevalence is not known. These diseases affect both the genders equally and have been reported from all geographical areas. Based on clinical presentation, laboratory findings, liver histology and genetic defect, these are broadly divided into three types-PFIC type 1, PFIC type 2 and PFIC type 3. The defect is in ATP8B1 gene encoding the FIC1 protein, ABCB 11 gene encoding BSEP protein and ABCB4 gene encoding MDR3 protein in PFIC1, 2 and 3 respectively. The basic defect is impaired bile salt secretion in PFIC1/2 whereas in PFIC3, it is reduced biliary phospholipid secretion. The main clinical presentation is in the form of cholestatic jaundice and pruritus. Serum gamma glutamyl transpeptidase (GGT) is normal in patients with PFIC1/2 while it is raised in patients with PFIC3. Treatment includes nutritional support (adequate calories, supplementation of fat soluble vitamins and medium chain triglycerides) and use of medications to relieve pruritus as initial therapy followed by biliary diversion procedures in selected patients. Ultimately liver transplantation is needed in most patients as they develop progressive liver fibrosis, cirrhosis and end stage liver disease. Due to the high risk of developing liver tumors in PFIC2 patients, monitoring is recommended from infancy. Mutation targeted pharmacotherapy, gene therapy and hepatocyte transplantation are being explored as future therapeutic options.
Collapse
Key Words
- ABC, ATP binding cassette
- ASBT, apical sodium bile salt transporter
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- BRIC, benign recurrent intrahepatic cholestasis
- BSEP, bile salt exporter protein
- CFTR, cystic fibrosis transmembrane conductance regulator
- CYP, cytochrome P
- DNA, deoxyribonucleic acid
- ERAD, endoplasmic reticulum associated degradation
- ESLD, end stage liver disease
- FIC1, familial intrahepatic cholestasis protein 1
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- IB, ileal bypass
- ICP, intrahepatic cholestasis of pregnancy
- LT, liver transplant
- MARS, Molecular Adsorbent Recirculating System
- MDR, multidrug resistance protein
- MRCP, magnetic resonance cholangiopancreaticography
- PBD, partial biliary drainage
- PEBD, partial external biliary drainage
- PFIC, progressive familial intrahepatic cholestasis
- PIBD, partial internal biliary drainage
- PPAR, peroxisome proliferator activator receptor
- UDCA, ursodeoxycholic acid
- bile secretion
- children
- cholestasis
- familial
- mRNA, messenger ribonucleic acid
- pGp, p-glycoprotein
- pruritus
Collapse
Affiliation(s)
- Anshu Srivastava
- Address for correspondence: Anshu Srivastava, Associate Professor, Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India. Tel.: +91 522 2495212, +91 9935219497 (mobile); fax: +91 522 2668017.
| |
Collapse
|