101
|
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. THE ARABIDOPSIS BOOK 2011. [PMID: 22303272 DOI: 10.1199/2ftab.0148e0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
Collapse
|
102
|
Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 2010; 64:585-610. [PMID: 20533875 DOI: 10.1146/annurev.micro.112408.134000] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways. Although a yes/no decision appears to be sufficient for the light-sensing function in fungi, most species apply a number of different, wavelength-specific receptors. The core of all receptor types is a chromophore, a low-molecular-weight organic molecule, such as flavin, retinal, or linear tetrapyrrols for blue-, green-, or red-light sensing, respectively. Whereas the blue-light response in fungi is one of the best-studied light responses, all other light-sensing mechanisms are less well studied or largely unknown. The discovery of phytochrome in bacteria and fungi in recent years not only advanced the scientific field significantly, but also had great impact on our view of the evolution of phytochrome-like photoreceptors.
Collapse
Affiliation(s)
- Julio Rodriguez-Romero
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Microbiology, D-76187 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
103
|
Sineshchekov VA. Fluorescence and Photochemical Investigations of Phytochrome in Higher Plants. JOURNAL OF BOTANY 2010; 2010:1-15. [DOI: 10.1155/2010/358372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In higher plants, photoreceptor phytochrome (phy)—photoisomerizing biliprotein working as a light-driven molecular switch—is represented by a small family of phytochrome gene products with phyA and phyB as major species. phyA is unique among other phytochromes mediating photoresponse modes specific only for this pigment (far-red light induced) and also photoresponses characteristic of phyB and other minor phys (red light induced). In our group,in vivofluorescence investigations of phytochrome were initiated and two native phyA pools—posttranslationally modifiedPHYAgene products designated phyA′and phyA″—were detected in dicots and monocots. They differ by spectroscopic and photochemical parameters, by abundance and distribution in etiolated plant tissues, by light stability, and other phenomenological characteristics, and, most importantly, by their functional properties. This may explain, at least partially, the nature of the uniqueness of the phyA action. In this paper, the data on the phyA polymorphism are summarized with attention to the applied experimental approach.
Collapse
Affiliation(s)
- Vitaly A. Sineshchekov
- Physico-Chemical Biology, Biology Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
104
|
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 2010; 17:303-24. [PMID: 20817745 PMCID: PMC2955714 DOI: 10.1093/dnares/dsq021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/01/2010] [Indexed: 01/22/2023] Open
Abstract
In plants, the two-component systems (TCSs) play important roles in regulating diverse biological processes, including responses to environmental stress stimuli. Within the soybean genome, the TCSs consist of at least 21 histidine kinases, 13 authentic and pseudo-phosphotransfers and 18 type-A, 15 type-B, 3 type-C and 11 pseudo-response regulator proteins. Structural and phylogenetic analyses of soybean TCS members with their Arabidopsis and rice counterparts revealed similar architecture of their TCSs. We identified a large number of closely homologous soybean TCS genes, which likely resulted from genome duplication. Additionally, we analysed tissue-specific expression profiles of those TCS genes, whose data are available from public resources. To predict the putative regulatory functions of soybean TCS members, with special emphasis on stress-responsive functions, we performed comparative analyses from all the TCS members of soybean, Arabidopsis and rice and coupled these data with annotations of known abiotic stress-responsive cis-elements in the promoter region of each soybean TCS gene. Our study provides insights into the architecture and a solid foundation for further functional characterization of soybean TCS elements. In addition, we provide a new resource for studying the conservation and divergence among the TCSs within plant species and/or between plants and other organisms.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | | | - Kazuo Shinozaki
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Lam-Son Phan Tran
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| |
Collapse
|
105
|
Rösler J, Jaedicke K, Zeidler M. Cytoplasmic phytochrome action. PLANT & CELL PHYSIOLOGY 2010; 51:1248-1254. [PMID: 20576692 DOI: 10.1093/pcp/pcq091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome photoperception is a common mechanism for the detection of red and far-red light in bacteria, cyanobacteria, fungi and plants. However, the responses following phytochrome activation appear to be quite diverse between species. Lower plants, such as mosses, show phytochrome-mediated directional responses, namely phototropism and polarotropism. These cannot be explained by nuclear gene regulation and are thought to be triggered by phytochromes in the cytoplasm or at the plasma membrane. In higher plants, similar directional responses are mediated via phototropin, a blue light receptor, with phytochromes mainly controlling morphogenetic responses through gene regulation. However, cytoplasmic phytochrome responses exist in higher plants too, which appear to be intertwined with directional blue light perception. By summarizing the respective findings, a possible conservation of cytoplasmic phytochrome function in higher and lower plants is addressed here.
Collapse
Affiliation(s)
- Jutta Rösler
- Department of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
106
|
Han YJ, Kim HS, Song PS, Kim JI. Autophosphorylation desensitizes phytochrome signal transduction. PLANT SIGNALING & BEHAVIOR 2010; 5:868-71. [PMID: 20495342 PMCID: PMC3014540 DOI: 10.4161/psb.5.7.11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 05/24/2023]
Abstract
Plant red/far-red photoreceptor phytochromes are known as autophosphorylating serine/threonine kinases. However, the functional roles of autophosphorylation and kinase activity of phytochromes are largely unknown. We recently reported that the autophosphorylation of phytochrome A (phyA) plays an important role in regulating plant phytochrome signaling by controlling phyA protein stability. Two serine residues in the N-terminal extension (NTE) region were identified as autophosphorylation sites, and phyA mutant proteins with serine-to-alanine mutations were degraded in plants at a significantly slower rate than the wild-type under light conditions, resulting in transgenic plants with hypersensitive light responses. In addition, the autophosphorylation site phyA mutants had normal protein kinase activities. Collectively, our results suggest that phytochrome autophosphorylation provides a mechanism for signal desensitization in phytochrome-mediated light signaling by accelerating the degradation of phytochrome A.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
| | - Hwan-Sik Kim
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
| | - Pill-Soon Song
- Faculty of Biotechnology and Subtropical Horticulture Research Institute; Cheju National University; Jeju, Korea
- Environmental Biotechnology National Core Research Center; Gyeongsang National University; Jinju, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
- Environmental Biotechnology National Core Research Center; Gyeongsang National University; Jinju, Korea
| |
Collapse
|
107
|
Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2010; 107:10872-7. [PMID: 20534495 DOI: 10.1073/pnas.1001908107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are a collection of dimeric photoreceptors that direct a diverse array of responses in plants and microorganisms through photoconversion between a red light-absorbing ground state Pr, and a far-red light-absorbing photoactivated state Pfr. Photoconversion from Pr to Pfr is initiated by a light-driven rotation within the covalently attached bilin, which then triggers a series of protein conformational changes in the binding pocket. These movements ultimately affect an appended output module, which often has reversible protein kinase activity. Propagation of the light signal from the bilin to the output module likely depends on the dimerization interface but its architecture and response to phototransformation remain unclear. Here, we used single particle cryoelectron microscopy to determine the quaternary arrangement of the phytochrome dimer as Pr, using the bacteriophytochrome (BphP) from Deinococcus radiodurans. Contrary to the long-standing view that the two monomers are held together solely via their C-terminal region, we provide unambiguous evidence that the N-terminal bilin-binding region of BphP also provides a dimerization interface with the C-terminal kinase domain appearing as a more flexible appendage. The BphP monomers dimerize in parallel with the polypeptides intimately twisting around each other in a right-handed fashion. Based on this electron microscopic picture, we propose that the light-driven conformational changes transmitted from the chromophore to the output module along the spine of this extensive dimer interface is the central feature underpinning phytochrome signaling.
Collapse
|
108
|
Röben M, Hahn J, Klein E, Lamparter T, Psakis G, Hughes J, Schmieder P. NMR Spectroscopic Investigation of Mobility and Hydrogen Bonding of the Chromophore in the Binding Pocket of Phytochrome Proteins. Chemphyschem 2010; 11:1248-57. [DOI: 10.1002/cphc.200900897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Han YJ, Kim HS, Kim YM, Shin AY, Lee SS, Bhoo SH, Song PS, Kim JI. Functional Characterization of Phytochrome Autophosphorylation in Plant Light Signaling. ACTA ACUST UNITED AC 2010; 51:596-609. [DOI: 10.1093/pcp/pcq025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
110
|
Chory J. Light signal transduction: an infinite spectrum of possibilities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:982-91. [PMID: 20409272 PMCID: PMC3124631 DOI: 10.1111/j.1365-313x.2009.04105.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The past 30 years has seen a tremendous increase in our understanding of the light-signaling networks of higher plants. This short review emphasizes the role that Arabidopsis genetics has played in deciphering this complex network. Importantly, it outlines how genetic studies led to the identification of photoreceptors and signaling components that are not only relevant in plants, but play key roles in mammals.
Collapse
Affiliation(s)
- Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
111
|
Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 2010; 13:219-25. [PMID: 20133179 DOI: 10.1016/j.mib.2009.12.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 12/22/2009] [Accepted: 12/30/2009] [Indexed: 12/26/2022]
Abstract
Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We review reports establishing the origins of two-component systems and documenting their occurrence in major lineages of Life.
Collapse
|
112
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 433] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
113
|
Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez Escobar F, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. J Biol Chem 2009; 284:29757-72. [PMID: 19671704 DOI: 10.1074/jbc.m109.038513] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C3(1) carbon of the ethylidene side chain and the C4 or C5 carbons in the A-B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb --> Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.
Collapse
Affiliation(s)
- Andrew T Ulijasz
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Müller R, Fernández AP, Hiltbrunner A, Schäfer E, Kretsch T. The histidine kinase-related domain of Arabidopsis phytochrome a controls the spectral sensitivity and the subcellular distribution of the photoreceptor. PLANT PHYSIOLOGY 2009; 150:1297-309. [PMID: 19403732 PMCID: PMC2705050 DOI: 10.1104/pp.109.135988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/26/2009] [Indexed: 05/19/2023]
Abstract
Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.
Collapse
Affiliation(s)
- Rebecca Müller
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie 2/Botanik, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
115
|
Transduction mechanisms of photoreceptor signals in plant cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2009. [DOI: 10.1016/j.jphotochemrev.2009.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
116
|
Li X, Yang Y, Li Y, Wang J, Xiao X, Guo X, Tang D, Liu X. Protein identification and mRNA analysis of phytochrome-regulated genes in Arabidopsis under red light. ACTA ACUST UNITED AC 2009; 52:371-80. [PMID: 19381463 DOI: 10.1007/s11427-009-0045-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 10/06/2008] [Indexed: 10/20/2022]
Abstract
Phytochromes are a family of plant photoreceptors that mediate physiological and developmental responses to red and far-red light. According to the affymetrix ATH1 microarray, phytochrome A (phyA) and phytochrome B (phyB) together play a key role in transducing the Rc signals to light-responsive genes. In order to select those red light-responsive genes associated with phyA or phyB, a proteomic approach based on two-dimensional gel electrophoresis (2-DE) was used to compare the protein expression patterns of the phyAphyB double mutant and the wild type of Arabidopsis thaliana (col-4) which grew under constant red light conditions for 7 d. Thirty-two protein spots which exhibited differences in protein abundance were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry. The expression of ten genes corresponding to ten protein spots was analyzed by a semiquantitative reverse transcription-polymerase chain reaction. Two of the ten genes were confirmed by quantitative PCR (Q-PCR). The results showed that phytochromes may exert their function by regulating mRNA or protein expressions. Proteomic analysis may provide a novel pathway for identifying phytochrome-dependent genes.
Collapse
Affiliation(s)
- Xu Li
- Bioenergy and Biomaterial Research Center, College of Life Science and Biotechnology, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Puthiyaveetil S, Allen JF. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 2009; 276:2133-45. [PMID: 19324807 PMCID: PMC2677595 DOI: 10.1098/rspb.2008.1426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | |
Collapse
|
118
|
Pfeiffer A, Kunkel T, Hiltbrunner A, Neuhaus G, Wolf I, Speth V, Adam E, Nagy F, Schäfer E. A cell-free system for light-dependent nuclear import of phytochrome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:680-689. [PMID: 18980642 DOI: 10.1111/j.1365-313x.2008.03721.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Translocation from the cytosol to the nucleus is an essential step in phytochrome (phy) signal transduction. In the case of phytochrome A (phyA), this step occurs with the help of FHY1 (far-red-elongated hypocotyl 1), a specific transport protein. To investigate the components involved in phyA transport, we used a cell-free system that facilitates the controlled addition of transport factors. For this purpose, we isolated nuclei from the unicellular green algae Acetabularia acetabulum. These nuclei are up to 100 mum in diameter and allow easy detection of imported proteins. Experiments with isolated nuclei of Acetabularia showed that FHY1 is sufficient for phyA transport. The reconstituted system demonstrates all the characteristics of phytochrome transport in Arabidopsis thaliana. In addition, FHY1 was also actively exported from the nucleus, consistent with its role as a shuttle protein in plants. Therefore, we believe that isolated Acetabularia nuclei may be used as a general tool to study nuclear transport of plant proteins.
Collapse
Affiliation(s)
- Anne Pfeiffer
- Plant Physiology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Shen Y, Zhou Z, Feng S, Li J, Tan-Wilson A, Qu LJ, Wang H, Deng XW. Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. THE PLANT CELL 2009; 21:494-506. [PMID: 19208901 PMCID: PMC2660616 DOI: 10.1105/tpc.108.061259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 05/18/2023]
Abstract
Phytochrome A (phyA) is the primary photoreceptor for mediating the far-red high irradiance response in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) define two positive regulators in the phyA signaling pathway. These two proteins have been reported to be essential for light-regulated phyA nuclear accumulation through direct physical interaction with phyA. Here, we report that FHY1 protein is phosphorylated rapidly after exposure to red light. Subsequent exposure to far-red light after the red light pulse reverses FHY1 phosphorylation. Such a phenomenon represents a classical red/far-red reversible low fluence response. The phosphorylation of FHY1 depends on functioning phyA but not on other phytochromes and cryptochromes. Furthermore, we demonstrate that FHY1 and FHL directly interact with phyA by bimolecular fluorescence complementation and that both FHY1 and FHL interact more stably with the Pr form of phyA in Arabidopsis seedlings by coimmunoprecipitation. Finally, in vitro kinase assays confirmed that a recombinant phyA is able to robustly phosphorylate FHY1. Together, our results suggest that phyA may differentially regulate FHY1 and FHL activity through direct physical interaction and red/far-red light reversible phosphorylation to fine-tune their degradation rates and resulting light responses.
Collapse
Affiliation(s)
- Yunping Shen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochem J 2009; 415:247-55. [PMID: 18564962 DOI: 10.1042/bj20071555] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light signal transduction in plants involves an intricate series of pathways which is finely regulated by interactions between specific signalling proteins, as well as by protein modifications such as phosphorylation and ubiquitination. The identification of novel phytochrome-interacting proteins and the precise signalling mechanisms that they mediate is still ongoing. In our present study, we show that the newly identified putative phytochrome-associated protein, PAPP2C (phytochrome-associated protein phosphatase type 2C), interacts in the nucleus with phyA (phytochrome A) and phyB, both in vitro and in vivo. Moreover, the phosphatase activity of PAPP2C and its association with phytochromes were found to be enhanced by red light, indicating that it plays a role in mediating phytochrome signalling. In particular, PAPP2C specifically binds to the N-terminal PHY domain of the phytochromes. We thus speculate that this interaction reflects a unique regulatory function of this phosphatase toward established phytochrome-associated proteins. We also show that PAPP2C effectively dephosphorylates phytochromes in vitro. Interestingly, PAPP2C indirectly mediates the dephosphorylation of PIF3 (phytochrome-interacting factor 3) in vitro. Taken together, we suggest that PAPP2C functions as a regulator of PIF3 by dephosphorylating phytochromes in the nucleus.
Collapse
|
121
|
Bacteriophytochromes Control Photosynthesis in Rhodopseudomonas palustris. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
122
|
Montgomery BL. Right place, right time: Spatiotemporal light regulation of plant growth and development. PLANT SIGNALING & BEHAVIOR 2008; 3:1053-60. [PMID: 19513238 PMCID: PMC2634459 DOI: 10.4161/psb.3.12.6857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 05/21/2023]
Abstract
Recent advances in our understanding of the roles of photoreceptors in light-dependent regulation of plant growth and development have been rapid and significant. Developments have been reported for numerous plant photoreceptor signaling pathways, yet researchers have made the most progress in increasing our comprehension of the roles of phytochrome family members, as well as the intracellular roles of phytochromes and phytochrome-interacting proteins in light-dependent signaling. An understudied, but vitally important, area of phytochrome biology centers on the roles phytochromes play in intercellular and interorgan signaling at the molecular level that results in the coordination of growth responses between distinct tissues and organs. This frontier of research into the spatiotemporal roles of phytochromes, and more generally plant photoreceptors, which is only beginning to be investigated and understood at the molecular genetic level, has a rich history of physiological data.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, Michigan USA
| |
Collapse
|
123
|
Saijo Y, Zhu D, Li J, Rubio V, Zhou Z, Shen Y, Hoecker U, Wang H, Deng XW. Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell 2008; 31:607-613. [PMID: 18722184 DOI: 10.1016/j.molcel.2008.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/26/2008] [Accepted: 08/04/2008] [Indexed: 11/19/2022]
Abstract
Fine tuning of light signaling is crucial to plant development. Following light-triggered nuclear translocation, the photoreceptor phytochrome A (phyA) regulates gene expression under continuous far-red light and is rapidly destabilized upon red light irradiation by E3 ubiquitin ligases, including COP1. Here we provide evidence that the light signaling repressors SPA proteins contribute to COP1-mediated phyA degradation and that a COP1/SPA1 protein complex is tightly associated with phyA ubiquitination activity. Furthermore, a phosphorylated phyA form accumulates in the nucleus and preferentially associates with the COP1/SPA1 complex. In contrast, underphosphorylated phyA predominantly associates with the phyA-signaling intermediates FHY3 and FHY1. However, COP1 associates with underphosphorylated phyA in the absence of FHY3 or FHY1, suggesting that phyA associations with FHY3 and FHY1 protect underphosphorylated phyA from being recognized by the COP1/SPA complex. We propose that light-induced phyA phosphorylation acts as a switch controlling differential interactions of the photoreceptor with signal propagation or attenuation machineries.
Collapse
Affiliation(s)
- Yusuke Saijo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Danmeng Zhu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jigang Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Vicente Rubio
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zhenzhen Zhou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Yunping Shen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ute Hoecker
- Institute of Botany, University of Cologne, D-50931 Cologne, Germany
| | - Haiyang Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
124
|
Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, van der Giezen M, Rogers MB, Allen JF. The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci U S A 2008; 105:10061-6. [PMID: 18632566 PMCID: PMC2474565 DOI: 10.1073/pnas.0803928105] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 11/18/2022] Open
Abstract
We describe a novel, typically prokaryotic, sensor kinase in chloroplasts of green plants. The gene for this chloroplast sensor kinase (CSK) is found in cyanobacteria, prokaryotes from which chloroplasts evolved. The CSK gene has moved, during evolution, from the ancestral chloroplast to the nuclear genomes of eukaryotic algae and green plants. The CSK protein is now synthesised in the cytosol of photosynthetic eukaryotes and imported into their chloroplasts as a protein precursor. In the model higher plant Arabidopsis thaliana, CSK is autophosphorylated and required for control of transcription of chloroplast genes by the redox state of an electron carrier connecting photosystems I and II. CSK therefore provides a redox regulatory mechanism that couples photosynthesis to gene expression. This mechanism is inherited directly from the cyanobacterial ancestor of chloroplasts, is intrinsic to chloroplasts, and is targeted to chloroplast genes.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- *School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | - Peter Cain
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - James A. Sullivan
- *School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christine A. Newell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; and
| | - John C. Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; and
| | - Colin Robinson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark van der Giezen
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Matthew B. Rogers
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - John F. Allen
- *School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
125
|
Hahn J, Strauss HM, Schmieder P. Heteronuclear NMR Investigation on the Structure and Dynamics of the Chromophore Binding Pocket of the Cyanobacterial Phytochrome Cph1. J Am Chem Soc 2008; 130:11170-8. [DOI: 10.1021/ja8031086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janina Hahn
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Holger M. Strauss
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| |
Collapse
|
126
|
Schaller GE, Kieber JJ, Shiu SH. Two-component signaling elements and histidyl-aspartyl phosphorelays. THE ARABIDOPSIS BOOK 2008; 6:e0112. [PMID: 22303237 PMCID: PMC3243373 DOI: 10.1199/tab.0112] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-component systems are an evolutionarily ancient means for signal transduction. These systems are comprised of a number of distinct elements, namely histidine kinases, response regulators, and in the case of multi-step phosphorelays, histidine-containing phosphotransfer proteins (HPts). Arabidopsis makes use of a two-component signaling system to mediate the response to the plant hormone cytokinin. Two-component signaling elements have also been implicated in plant responses to ethylene, abiotic stresses, and red light, and in regulating various aspects of plant growth and development. Here we present an overview of the two-component signaling elements found in Arabidopsis, including functional and phylogenetic information on both bona-fide and divergent elements.
Collapse
Affiliation(s)
- G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
127
|
Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. THE PLANT CELL 2008; 20:1586-602. [PMID: 18539749 PMCID: PMC2483374 DOI: 10.1105/tpc.108.060020] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The phytochrome (phy) family of photoreceptors regulates changes in gene expression in response to red/far-red light signals in part by physically interacting with constitutively nucleus-localized phy-interacting basic helix-loop-helix transcription factors (PIFs). Here, we show that PIF1, the member with the highest affinity for phys, is strongly sensitive to the quality and quantity of light. phyA plays a dominant role in regulating the degradation of PIF1 following initial light exposure, while phyB and phyD and possibly other phys also influence PIF1 degradation after prolonged illumination. PIF1 is rapidly phosphorylated and ubiquitinated under red and far-red light before being degraded with a half-life of approximately 1 to 2 min under red light. Although PIF1 interacts with phyB through a conserved active phyB binding motif, it interacts with phyA through a novel active phyA binding motif. phy interaction is necessary but not sufficient for the light-induced phosphorylation and degradation of PIF1. Domain-mapping studies reveal that the phy interaction, light-induced degradation, and transcriptional activation domains are located at the N-terminal 150-amino acid region of PIF1. Unlike PIF3, PIF1 does not interact with the two halves of either phyA or phyB separately. Moreover, overexpression of a light-stable truncated form of PIF1 causes constitutively photomorphogenic phenotypes in the dark. Taken together, these data suggest that removal of the negative regulators (e.g., PIFs) by light-induced proteolytic degradation might be sufficient to promote photomorphogenesis.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
128
|
FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008; 95:1256-67. [PMID: 18390618 DOI: 10.1529/biophysj.108.131441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global (13)C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE-->ZZZ), which involves only small protein structural changes.
Collapse
|
129
|
Paul LK, Khurana JP. Phytochrome-mediated light signaling in plants: emerging trends. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:9-22. [PMID: 23572870 PMCID: PMC3550659 DOI: 10.1007/s12298-008-0002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytochromes maximally absorb in the red and far-red region of the solar spectrum and play a key role in regulating plant growth and development. Our understanding of the phytochrome-mediated light perception and signal transduction has improved dramatically during the past decade. However, some recent findings challenge a few of the well-accepted earlier models regarding phytochrome structure and function. Identification of a serine/threonine specific protein phosphatase 2A (FyPP) and a type 5 protein phosphatases (PAPP5), and the phytochrome-mediated phosphorylation of phytochrome interacting factor 3 (PIF3), auxin inducible genes (Aux/IAA) and cryptochromes have opened new vistas in phytochrome biology. Importantly, the significance of proteolysis and chromatin-remodeling pathways in phytochrome signaling is becoming more apparent. The emerging concept of phytochrome as a master regulator in orchestrating downstream signaling components has become more convincing with the advent of global expression profiling of genes. Upcoming data also provide fresh insights into the nuclear localization, speckle formation, nucleo-cytoplasmic partitioning and organ-specificity aspects of phytochromes. This article highlights recent advances in phytochrome biology with emphasis on the elucidation of novel components of light signal transduction.
Collapse
Affiliation(s)
- Laju K. Paul
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
130
|
Wagner JR, Zhang J, von Stetten D, Günther M, Murgida DH, Mroginski MA, Walker JM, Forest KT, Hildebrandt P, Vierstra RD. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. J Biol Chem 2008; 283:12212-26. [PMID: 18192276 DOI: 10.1074/jbc.m709355200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IXalpha (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-R(c)-like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Noack S, Lamparter T. Light modulation of histidine-kinase activity in bacterial phytochromes monitored by size exclusion chromatography, crosslinking, and limited proteolysis. Methods Enzymol 2008; 423:203-21. [PMID: 17609133 DOI: 10.1016/s0076-6879(07)23009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phytochromes are photoreceptors that have been found in plants, bacteria, and fungi. Most bacterial and fungal phytochromes are histidine kinases and, for several bacterial phytochromes, light regulation of kinase activity has been demonstrated. Typical histidine kinases are homodimeric proteins in which one subunit phosphorylates the substrate histidine residue of the other subunit; dimerization is an intrinsic property of the histidine kinase itself. Truncated phytochromes which lack the histidine kinase can also form dimers, but the interaction between subunits is modulated by light. This light-dependent dimerization can give a clue to the intramolecular signal transduction of phytochromes which modulates the histidine kinase activity. Size exclusion chromatography, limited proteolysis, and protein crosslinking can be used to study light-induced conformational changes and the interaction of subunits within the homodimer.
Collapse
Affiliation(s)
- Steffi Noack
- Freie Universität Berlin, Pflanzenphysiologie, Berlin, Germany
| | | |
Collapse
|
132
|
Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:312-23. [PMID: 18047474 DOI: 10.1111/j.1365-313x.2007.03341.x] [Citation(s) in RCA: 486] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5.
Collapse
Affiliation(s)
- Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
133
|
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:281-311. [PMID: 18257712 DOI: 10.1146/annurev.arplant.59.032607.092859] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytochromes are red/far-red light photoreceptors that convert the information contained in external light into biological signals. The decoding process starts with the perception of red light, which occurs through photoisomerization of a chromophore located within the phytochrome, leading to structural changes that include the disruption of intramolecular interactions between the N- and C-terminal domains of the phytochrome. This disruption exposes surfaces required for interactions with other proteins. In contrast, the perception of far-red light reverses the photoisomerization, restores the intramolecular interaction, and closes the interacting surfaces. Light information represented by the concentration of opened interacting surfaces is converted into biological signals through the modulating activity of interacting proteins. This review summarizes plant phytochromes, phytochrome-interacting proteins, and signal transmission from phytochromes to their interacting proteins.
Collapse
Affiliation(s)
- Gabyong Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | |
Collapse
|
134
|
Castillon A, Shen H, Huq E. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. TRENDS IN PLANT SCIENCE 2007; 12:514-521. [PMID: 17933576 DOI: 10.1016/j.tplants.2007.10.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/23/2007] [Accepted: 10/01/2007] [Indexed: 05/21/2023]
Abstract
To adapt to the surrounding environment, plants constantly monitor and respond to changes in the red and far-red regions of the light spectrum through the phytochrome family of photoreceptors. Extensive efforts using genetic, molecular and photobiological techniques have led to the identification of a group of basic helix-loop-helix transcription factors called the Phytochrome Interacting Factors, PIFs, which directly bind to the photoactivated phytochromes. Members of the PIF family have been shown to control light-regulated gene expression directly and indirectly. PIF1, PIF3, PIF4 and PIF5 are degraded in response to light signals, and physical interaction of PIF3 with phytochromes is necessary for the light-induced phosphorylation and degradation of PIF3. PIFs constitute an excellent model for the investigation of the biochemical mechanisms of signal transfer from photoactivated phytochromes and the light-regulation of gene expression that controls photomorphogenesis in plants.
Collapse
Affiliation(s)
- Alicia Castillon
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hui Shen
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
135
|
Tokutomi S, Matsuoka D, Zikihara K. Molecular structure and regulation of phototropin kinase by blue light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:133-42. [PMID: 17988963 DOI: 10.1016/j.bbapap.2007.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 08/27/2007] [Accepted: 09/18/2007] [Indexed: 01/15/2023]
Abstract
Phototropin (phot) is a blue light photoreceptor in plants that mediates phototropism, chloroplast movement, stomata opening and leaf expansion. The phot molecule has two photoreceptive domains, LOV 1 and 2, in the N-terminal half and the C-terminal half forms Ser/Thr kinase. Phot acts as a blue light-regulated protein kinase. Each LOV domain binds a FMN and undergoes a unique cyclic reaction upon blue light absorption that induces conformational changes in the protein moiety and leads to regulation of the kinase activity, in which LOV2 plays a predominant role in the switching and LOV1 acts to attenuate the light sensitivity. Phot kinase is classified into the AGC kinase group since the consensus amino acid residues and the motifs are well conserved except for the lack of the hydrophobic motif and the presence of additional amino acid sequence in the activation loop. Secondary structure prediction and 3D structure simulation show a alpha/beta fold of the phot kinase similar to that of the catalytic subunit of PKA. The additional sequence forms an extra helix and loops. Docking simulation of the LOV2 domain with phot kinase provided useful information regarding the molecular mechanism underlying the photoregulation of phot kinase.
Collapse
Affiliation(s)
- Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | |
Collapse
|
136
|
Rohmer T, Strauss H, Hughes J, de Groot H, Gärtner W, Schmieder P, Matysik J. 15N MAS NMR studies of cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. J Phys Chem B 2007; 110:20580-5. [PMID: 17034247 DOI: 10.1021/jp062454+] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) is applied for the first time to the photoreceptor phytochrome. The two stable states, Pr and Pfr, of the 59-kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 containing a uniformly 15N-labeled phycocyanobilin cofactor are explored by 15N cross-polarization (CP) magic-angle spinning (MAS) NMR. As recently shown by 15N solution-state NMR using chemical shifts [Strauss, H. M.; Hughes, J.; Schmieder, P. Biochemistry 2005, 44, 8244], all four nitrogens are protonated in both states. CP/MAS NMR provides two additional independent lines of evidence for the protonation of the nitrogens. Apparent loss of mobility during photoactivation, indicated by the decrease of line width, demonstrates strong tension of the entire chromophore in the Pfr state, which is in clear contrast to a more relaxed Pr state. The outer rings (A and D) of the chromophore are significantly affected by the phototransformation, as indicated by both change of chemical shift and line width. On the other hand, on the inner rings (B and C) only minor changes of chemical shifts are detected, providing evidence for a conserved environment during phototransformation. In a mechanical model, the phototransformation is understood in terms of rotations between the A-B and C-D methine bridges, allowing for intramolecular signal transduction to the protein surface by a unit composed of the central rings B and C and its tightly linked protein surroundings during the highly energetic Pfr state.
Collapse
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
137
|
Pedmale UV, Liscum E. Regulation of Phototropic Signaling in Arabidopsis via Phosphorylation State Changes in the Phototropin 1-interacting Protein NPH3. J Biol Chem 2007; 282:19992-20001. [PMID: 17493935 DOI: 10.1074/jbc.m702551200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototropism, or the directional growth (curvature) of various organs toward or away from incident light, represents a ubiquitous adaptive response within the plant kingdom. This response is initiated through the sensing of directional blue light (BL) by a small family of photoreceptors known as the phototropins. Of the two phototropins present in the model plant Arabidopsis thaliana, phot1 (phototropin 1) is the dominant receptor controlling phototropism. Absorption of BL by the sensory portion of phot1 leads, as in other plant phototropins, to activation of a C-terminal serine/threonine protein kinase domain, which is tightly coupled with phototropic responsiveness. Of the five phot1-interacting proteins identified to date, only one, NPH3 (non-phototropic hypocotyl 3), is essential for all phot1-dependent phototropic responses, yet little is known about how phot1 signals through NPH3. Here, we show that, in dark-grown seedlings, NPH3 exists as a phosphorylated protein and that BL stimulates its dephosphorylation. phot1 is necessary for this response and appears to regulate the activity of a type 1 protein phosphatase that catalyzes the reaction. The abrogation of both BL-dependent dephosphorylation of NPH3 and development of phototropic curvatures by protein phosphatase inhibitors further suggests that this post-translational modification represents a crucial event in phot1-dependent phototropism. Given that NPH3 may represent a core component of a CUL3-based ubiquitin-protein ligase (E3), we hypothesize that the phosphorylation state of NPH3 determines the functional status of such an E3 and that differential regulation of this E3 is required for normal phototropic responsiveness.
Collapse
Affiliation(s)
- Ullas V Pedmale
- Division of Biological Sciences and the Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
138
|
Sharda S, Shah R, Gärtner W. Domain interaction in cyanobacterial phytochromes as a prerequisite for spectral integrity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:815-21. [PMID: 17522854 DOI: 10.1007/s00249-007-0171-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 11/24/2022]
Abstract
Two phytochromes, CphA and CphB, from the cyanobacterium Calothrix PCC7601, with similar size (768 and 766 amino acids) and domain structure, were investigated for the essential length of their protein moiety required to maintain the spectral integrity. Both proteins fold into PAS-, GAF-, PHY-, and Histidine-kinase (HK) domains. CphA binds a phycocyanobilin (PCB) chromophore at a "canonical" cysteine within the GAF domain, identically as in plant phytochromes. CphB binds biliverdin IXalpha at cysteine24, positioned in the N-terminal PAS domain. The C-terminally located HK and PHY domains, present in both proteins, were removed subsequently by introducing stop-codons at the corresponding DNA positions. The spectral properties of the resulting proteins were investigated. The full-length proteins absorb at (CphA) 663 and 707 nm (red-, far red-absorbing P (r) and P (fr) forms of phytochromes) and at (CphB) 704 and 750 nm. Removal of the HK domains had no effect on the absorbance maxima of the resulting PAS-GAF-PHY constructs (CphA: 663/707 nm, CphB: 704/750 nm, P (r)/P (fr), respectively). Further deletion of the "PHY" domains caused a blue-shift of the P (r) and P (fr) absorption of CphA (lambda (max): 658/698 nm) and increased the amount of unproperly folded apoprotein, seen by a reduced capability to bind the chromophore in photoconvertible manner. In CphB, however, it practically impaired the formation of P (fr), i.e., showing a very low oscillator strength absorption band, whereas the P (r) form remains unchanged (702 nm). This finding clearly indicates a different interaction between domains in the "typical", PCB binding and in the biliverdin-binding phytochromes, and demonstrates a loss of oscillator strength for the latter, most probably due to a strong conformational distortion of the chromophore in the CphB P (fr) form.
Collapse
Affiliation(s)
- S Sharda
- Max-Planck-Institute for Bioinorganic Chemistry, Mulheim, Germany
| | | | | |
Collapse
|
139
|
Lamparter T, Marwan W. Spectroscopic Detection of a Phytochrome-like Photoreceptor in the Myxomycete Physarum polycephalum and the Kinetic Mechanism for the Photocontrol of Sporulation by Pfr¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730697sdoapl2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
140
|
Malec P, Yahalom A, Chamovitz DA. Identification of a Light-regulated Protein Kinase Activity from Seedlings of Arabidopsis thaliana¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750178ioalrp2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
141
|
|
142
|
Sineshchekov V, Hennig L, Lamparter T, Hughes J, Gärtner W, Schäfer E. Recombinant Phytochrome A in Yeast Differs by its Spectroscopic and Photochemical Properties from the Major phyA′ and is Close to the Minor phyA″: Evidence for Posttranslational Modification of the Pigment in Plants¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730692rpaiyd2.0.co2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
143
|
Foerstendorf H, Lamparter T, Hughes J, Gärtner W, Siebert F. The Photoreactions of Recombinant Phytochrome from the Cyanobacterium Synechocystis: A Low-Temperature UV-Vis and FT-IR Spectroscopic Study. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710655tporpf2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
144
|
Abstract
Plants have evolved complex and sophisticated transcriptional networks that mediate developmental changes in response to light. These light-regulated processes include seedling photomorphogenesis, seed germination and the shade-avoidance and photoperiod responses. Understanding the components and hierarchical structure of the transcriptional networks that are activated during these processes has long been of great interest to plant scientists. Traditional genetic and molecular approaches have proved powerful in identifying key regulatory factors and their positions within these networks. Recent genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors. These combined approaches provide new insights into light-regulated transcriptional networks.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, 165 Prospect Street, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
145
|
Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 2007; 282:12298-309. [PMID: 17322301 DOI: 10.1074/jbc.m611824200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
146
|
Mateos JL, Luppi JP, Ogorodnikova OB, Sineshchekov VA, Yanovsky MJ, Braslavsky SE, Gärtner W, Casal JJ. Functional and Biochemical Analysis of the N-terminal Domain of Phytochrome A. J Biol Chem 2006; 281:34421-9. [PMID: 16966335 DOI: 10.1074/jbc.m603538200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.
Collapse
Affiliation(s)
- Julieta L Mateos
- Max-Planck-Institut für Bioanorganische Chemie, Postfach 101356, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Tarutina M, Ryjenkov DA, Gomelsky M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 2006; 281:34751-8. [PMID: 16968704 DOI: 10.1074/jbc.m604819200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
Collapse
Affiliation(s)
- Marina Tarutina
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | |
Collapse
|
148
|
Phee BK, Shin DH, Cho JH, Kim SH, Kim JI, Lee YH, Jeon JS, Bhoo SH, Hahn TR. Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics 2006; 6:3671-80. [PMID: 16705748 DOI: 10.1002/pmic.200500222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phytochrome-interacting proteins have been extensively studied to elucidate light-signaling pathway in plants. However, most of these proteins have been identified by yeast two-hybrid screening using the C-terminal domain of phytochromes. We used co-immunoprecipitation followed by proteomic analysis in plant cell extracts in an attempt to screen for proteins interacting either directly or indirectly with native holophytochromes including the N-terminal domain as well as C-terminal domain. A total of 16 protein candidates were identified, and were selected from 2-DE experiments. Using MALDI-TOF MS analysis, 7 of these candidates were predicted to be putative phytochrome A-interacting proteins and the remaining ones to be phytochrome B-interacting proteins. Among these putative interacting proteins, protein phosphatase type 2C (PP2C) and a 66-kDa protein were strong candidates as novel phytochrome-interacting proteins, as knockout mutants for the genes encoding these two proteins had impaired light-signaling functions. A transgenic knockout Arabidopsis study showed that a 66-kDa protein candidate regulates hypocotyl elongation in a light-specific manner, and altered cotyledon development under white light during early developmental stages. The PP2C knockout plants also displayed light-specific changes in hypocotyl elongation. These results suggest that co-immunoprecipitation, followed by proteomic analysis, is a useful method for identifying novel interacting proteins and determining real protein-protein interactions in the cell.
Collapse
Affiliation(s)
- Bong-Kwan Phee
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ashby M, Houmard J. Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 2006; 70:472-509. [PMID: 16760311 PMCID: PMC1489541 DOI: 10.1128/mmbr.00046-05] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.
Collapse
Affiliation(s)
- Mark
K. Ashby
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
| | - Jean Houmard
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
- Corresponding
author. Mailing address: Ecole Normale Supérieure, CNRS UMR 8541,
Génétique Moléculaire, 46 rue d'Ulm, 75230 Paris
Cedex 05, France. Phone: 33 1 44 32 35 19. Fax: 33 1 44 96 53 60.
E-mail:
| |
Collapse
|
150
|
Kang X, Ni M. Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. THE PLANT CELL 2006; 18:921-34. [PMID: 16500988 PMCID: PMC1425848 DOI: 10.1105/tpc.105.037879] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 12/05/2005] [Accepted: 02/02/2006] [Indexed: 05/06/2023]
Abstract
Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccumulation of SHB1 transcript and recapitulated by overexpression of SHB1 in Arabidopsis. Therefore, SHB1 acts in cryptochrome signaling but overexpression may expand its signaling activity to red and far-red light. Consistent with this, overexpression of SHB1 enhanced the expression of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) under red light. PIF4 appears to specifically mediate SHB1 regulation of hypocotyl elongation and CHLOROPHYLL a/b BINDING PROTEIN3 or CHALCONE SYNTHASE expression under red light. Overexpression of SHB1 also promoted proteasome-mediated degradation of phytochrome A and hypocotyl elongation under far-red light. Under blue light, shb1 suppressed LONG HYPOCOTYL IN FAR-RED LIGHT1 (HFR1) expression and showed several deetiolation phenotypes similar to hfr1-201. However, the hypocotyl and cotyledon-opening phenotypes of shb1 were opposite to those of hfr1-201, and HFR1 acts downstream of SHB1. SHB1 encodes a nuclear and cytosolic protein that has motifs homologous with SYG1 protein family members. Therefore, our studies reveal a signaling step in regulating cryptochrome- and possibly phytochrome-mediated light responses.
Collapse
Affiliation(s)
- Xiaojun Kang
- Department of Plant Biology, University of Minesota, St. Paul, Minesota 55108, USA
| | | |
Collapse
|