101
|
Munro AW, Girvan HM, McLean KJ. Cytochrome P450--redox partner fusion enzymes. Biochim Biophys Acta Gen Subj 2006; 1770:345-59. [PMID: 17023115 DOI: 10.1016/j.bbagen.2006.08.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/23/2006] [Accepted: 08/25/2006] [Indexed: 12/23/2022]
Abstract
The cytochromes P450 (P450s) are a broad class of heme b-containing mono-oxygenase enzymes. The vast majority of P450s catalyse reductive scission of molecular oxygen using electrons usually derived from coenzymes (NADH and NADPH) and delivered from redox partner proteins. Evolutionary advantages may be gained by fusion of one or more redox partners to the P450 enzyme in terms of e.g. catalytic efficiency. This route was taken by the well characterized flavocytochrome P450(BM3) system (CYP102A1) from Bacillus megaterium, in which soluble P450 and cytochrome P450 reductase enzymes are covalently linked to produce a highly efficient electron transport system for oxygenation of fatty acids and related molecules. However, genome analysis and ongoing enzyme characterization has revealed that there are a number of other novel classes of P450-redox partner fusion enzymes distributed widely in prokaryotes and eukaryotes. This review examines our current state of knowledge of the diversity of these fusion proteins and explores their structural composition and evolutionary origins.
Collapse
Affiliation(s)
- Andrew W Munro
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7ND, UK.
| | | | | |
Collapse
|
102
|
Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subj 2006; 1770:467-77. [PMID: 16963187 PMCID: PMC2324071 DOI: 10.1016/j.bbagen.2006.07.018] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
The CYP51 family is an intriguing subject for fundamental P450 structure/function studies and is also an important clinical drug target. This review updates information on the variety of the CYP51 family members, including their physiological roles, natural substrates and substrate preferences, and catalytic properties in vitro. We present experimental support for the notion that specific conserved regions in the P450 sequences represent a CYP51 signature. Two possible roles of CYP51 in P450 evolution are discussed and the major approaches for CYP51 inhibition are summarized.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
103
|
Banfi E, Scialino G, Zampieri D, Mamolo MG, Vio L, Ferrone M, Fermeglia M, Paneni MS, Pricl S. Antifungal and antimycobacterial activity of new imidazole and triazole derivatives. A combined experimental and computational approach. J Antimicrob Chemother 2006; 58:76-84. [PMID: 16709593 DOI: 10.1093/jac/dkl182] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To synthesize new antimycobacterial and antifungal drugs that act by binding to sterol 14alpha-demethylase (14DM) and to characterize the drug-target protein interactions using computer-based molecular simulations. METHODS Different series of imidazole and triazole derivatives having an azomethine linkage to pyridine 2-carboxamidrazone were designed and synthesized. Molecular dynamic simulations of the sterol 14DM (a mixed-function oxidase involved in sterol synthesis in eukaryotic and prokaryotic organisms) complexed with new azole derivatives have been performed to both qualify and quantify the protein-ligand interactions. MICs of the compounds were evaluated by reference assay and by the recently developed Microdilution Resazurin Assay (MRA). RESULTS Halogenated derivatives showed good activity, with an MIC90 of 1 mg/L against 33 Candida spp. clinical strains; most compounds also had inhibitory activity against Mycobacterium tuberculosis reference and clinical strains, with MICs in the range 4-64 mg/L. Molecular modelling investigations showed that the active new compounds may interact at the active site of both the fungal and the mycobacterial cytochrome P450-dependent sterol-14alpha-demethylase and that the calculated binding free energy values are in agreement with the corresponding MIC values. CONCLUSIONS The combined experimental and computational approach can be helpful in targeted drug design, thus yielding valuable information for the synthesis and prediction of activity of a second generation of inhibitors.
Collapse
Affiliation(s)
- Elena Banfi
- Microbiology Laboratory, Department of Biomedical Sciences, University of Trieste I-34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
McLean KJ, Clift D, Lewis DG, Sabri M, Balding PR, Sutcliffe MJ, Leys D, Munro AW. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol 2006; 14:220-8. [PMID: 16581251 DOI: 10.1016/j.tim.2006.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 02/14/2006] [Accepted: 03/21/2006] [Indexed: 11/26/2022]
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes 20 different cytochrome P450 enzymes (P450s). P450s are mono-oxygenases, which are historically considered to facilitate prokaryotic usage of unusual carbon sources. However, their preponderance in Mtb strongly indicates crucial physiological functions, as does the fact that polycyclic azoles (known P450 inhibitors) have potent anti-mycobacterial effects. Recent structural and enzyme characterization data reveal novel features for at least two Mtb P450s (CYP121 and CYP51). Genome analysis, knockout studies and structural comparisons signify important roles in cell biology and pathogenesis for various P450s and redox partner enzymes in Mtb. Elucidation of structure, function and metabolic roles will be essential in targeting the P450s as an 'Achilles heel' in this major human pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science and School of Life Sciences, University of Manchester, Jackson's Mill, Sackville Street, Manchester, UK, M60 1QD
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Pietila MP, Vohra PK, Sanyal B, Wengenack NL, Raghavakaimal S, Thomas CF. Cloning and characterization of CYP51 from Mycobacterium avium. Am J Respir Cell Mol Biol 2006; 35:236-42. [PMID: 16543605 PMCID: PMC2643258 DOI: 10.1165/rcmb.2005-0398oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent.
Collapse
Affiliation(s)
- Michael P Pietila
- Division of Pulmonary and Critical Care Medicine, Thoracic Diseases Research Unit, 826 Stabile Building, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
106
|
Engineering Pathway Enzymes to Understand the Function and Evolution of Sterol Structure and Activity. RECENT ADVANCES IN PHYTOCHEMISTRY 2006. [DOI: 10.1016/s0079-9920(06)80043-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
107
|
McLean KJ, Sabri M, Marshall KR, Lawson RJ, Lewis DG, Clift D, Balding PR, Dunford AJ, Warman AJ, McVey JP, Quinn AM, Sutcliffe MJ, Scrutton NS, Munro AW. Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans 2005; 33:796-801. [PMID: 16042601 DOI: 10.1042/bst0330796] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P450s (cytochrome P450 mono-oxygenases) are a superfamily of haem-containing mono-oxygenase enzymes that participate in a wide range of biochemical pathways in different organisms from all of the domains of life. To facilitate their activity, P450s require sequential delivery of two electrons passed from one or more redox partner enzymes. Although the P450 enzymes themselves show remarkable similarity in overall structure, it is increasingly apparent that there is enormous diversity in the redox partner systems that drive the P450 enzymes. This paper examines some of the recent advances in our understanding of the biodiversity of the P450 redox apparatus, with a particular emphasis on the redox systems in the pathogen Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- K J McLean
- Department of Biochemistry, University of Leicester, The Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Fink M, Acimovic J, Rezen T, Tansek N, Rozman D. Cholesterogenic lanosterol 14alpha-demethylase (CYP51) is an immediate early response gene. Endocrinology 2005; 146:5321-31. [PMID: 16123160 DOI: 10.1210/en.2005-0781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lanosterol 14alpha-demethylase (CYP51) responds to cholesterol feedback regulation through sterol regulatory element binding proteins (SREBPs). The proximal promoter of CYP51 contains a conserved region with clustered regulatory elements: GC box, cAMP-response elements (CRE-like), and sterol regulatory element (SRE). In lipid-rich (SREBP-poor) conditions, the CYP51 mRNA drops gradually, the promoter activity is diminished, and no DNA-protein complex is observed at the CYP51-SRE1 site. The majority of cAMP-dependent transactivation is mediated through a single CRE (CYP51-CRE2). Exposure of JEG-3 cells to forskolin, a mediator of the cAMP-dependent signaling pathway, provokes an immediate early response of CYP51, which has not been described before for any cholesterogenic gene. The CYP51 mRNA increases up to 4-fold in 2 h and drops to basal level after 4 h. The inducible cAMP early repressor (ICER) is involved in attenuation of transcription. Overexpressed CRE-binding protein (CREB)/CRE modulator (CREM) transactivates the mouse/human CYP51 promoters containing CYP51-CRE2 independently of SREBPs, and ICER decreases the CREB-induced transcription. Besides the increased CYP51 mRNA, forskolin affects the de novo sterol biosynthesis in JEG-3 cells. An increased consumption of lanosterol, a substrate of CYP51, is observed together with modulation of the postlanosterol cholesterogenesis, indicating that cAMP-dependent stimuli cross-talk with cholesterol feedback regulation. CRE-2 is essential for cAMP-dependent transactivation, whereas SRE seems to be less important. Interestingly, when CREB is not limiting, the increasing amounts of SREBP-1a fail to transactivate the CYP51 promoter above the CREB-only level, suggesting that hormones might have an important role in regulating cholesterogenesis in vivo.
Collapse
Affiliation(s)
- Martina Fink
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
109
|
Waterman MR, Lepesheva GI. Sterol 14α-demethylase, an abundant and essential mixed-function oxidase. Biochem Biophys Res Commun 2005; 338:418-22. [PMID: 16153595 DOI: 10.1016/j.bbrc.2005.08.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
Sterol 14alpha-demethylase (CYP51) is the most widely distributed of all members of the cytochrome P450 gene superfamily and the only CYP family found in both prokaryotes and eukaryotes. It is well known as a drug target for microbial pathogenic infections. Studies of CYP51 gene regulation have been carried out primarily in animals because its regulation is similar to those of other genes involved in the cholesterol biosynthetic pathway. The function of CYP51 has been studied widely throughout biology including in animals, plants, yeast/fungi, protozoa, and bacteria. The structure has been determined by X-ray crystallography for the soluble prokaryotic form of CYP51 from Mycobacterium tuberculosis. Together these studies provide the most detailed understanding of any single cytochrome P450 and this minireview summarizes this information.
Collapse
Affiliation(s)
- Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | |
Collapse
|
110
|
Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA, Polek B, Jones RC, Cerniglia CE. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 2005; 71:522-32. [PMID: 16317545 DOI: 10.1007/s00253-005-0190-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/01/2005] [Accepted: 09/09/2005] [Indexed: 11/24/2022]
Abstract
Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were > or = 80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherichia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[alpha]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Barbara Brezna
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Burguière A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. MICROBIOLOGY-SGM 2005; 151:2087-2095. [PMID: 15942015 DOI: 10.1099/mic.0.27938-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The azole antifungal drugs econazole and clotrimazole are known cytochrome P450 enzyme inhibitors. This study shows that these drugs are potent inhibitors of mycobacterial growth and are more effective against Mycobacterium smegmatis than isoniazid and ethionamide, two established anti-mycobacterial drugs. Several non-tuberculous mycobacteria, including the pathogenic members of the Mycobacterium avium-intracellulare complex (MAC) and the fast-growing saprophytic organism M. smegmatis, produce an array of serovar-specific (ss) and non-serovar-specific (ns) glycopeptidolipids (GPLs). GPL biosynthesis has been investigated for several years but has still not been fully elucidated. The authors demonstrate here that econazole and clotrimazole inhibit GPL biosynthesis in M. smegmatis. In particular, clotrimazole inhibits all four types of nsGPLs found in M. smegmatis, suggesting an early and common target within their biosynthetic pathway. Altogether, the data suggest that an azole-specific target, most likely a cytochrome P450, may be involved in the hydroxylation of the N-acyl chain in GPL biosynthesis. Azole antifungal drugs and potential derivatives could represent an interesting new range of anti-mycobacterial drugs, especially against opportunistic human pathogens including MAC, M. scrofulaceum, M. peregrinum, M. chelonae and M. abscessus.
Collapse
Affiliation(s)
- Adeline Burguière
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paul G Hitchen
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Lynn G Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anne Dell
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
112
|
Mamolo MG, Zampieri D, Vio L, Fermeglia M, Ferrone M, Pricl S, Scialino G, Banfi E. Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4-oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations. Bioorg Med Chem 2005; 13:3797-809. [PMID: 15863006 DOI: 10.1016/j.bmc.2005.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/28/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
3H-1,3,4-Oxadiazole-2-thione and 3H-1,3,4-oxadiazol-2-one derivatives were synthesized and tested for their in vitro antimycobacterial activity. Oxadiazolone derivatives showed an interesting antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H(37)Rv, whereas the corresponding thione derivatives were devoid of activity. Molecular modeling investigations showed that the active compounds may interact at the active site of the mycobacterial cytochrome P450-dependent sterol 14alpha-demethylase in the sterol biosynthesis pathway and that their binding free energy values are in agreement with their MIC values.
Collapse
Affiliation(s)
- Maria Grazia Mamolo
- Department of Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Modern chemotherapy has played a major role in our control of tuberculosis. Yet tuberculosis still remains a leading infectious disease worldwide, largely owing to persistence of tubercle bacillus and inadequacy of the current chemotherapy. The increasing emergence of drug-resistant tuberculosis along with the HIV pandemic threatens disease control and highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. This review provides a brief historical account of tuberculosis drugs, examines the problem of current chemotherapy, discusses the targets of current tuberculosis drugs, focuses on some promising new drug candidates, and proposes a range of novel drug targets for intervention. Finally, this review addresses the problem of conventional drug screens based on inhibition of replicating bacilli and the challenge to develop drugs that target nonreplicating persistent bacilli. A new generation of drugs that target persistent bacilli is needed for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
114
|
Helmick RA, Fletcher AE, Gardner AM, Gessner CR, Hvitved AN, Gustin MC, Gardner PR. Imidazole antibiotics inhibit the nitric oxide dioxygenase function of microbial flavohemoglobin. Antimicrob Agents Chemother 2005; 49:1837-43. [PMID: 15855504 PMCID: PMC1087630 DOI: 10.1128/aac.49.5.1837-1843.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 10/25/2004] [Accepted: 01/24/2005] [Indexed: 11/20/2022] Open
Abstract
Flavohemoglobins metabolize nitric oxide (NO) to nitrate and protect bacteria and fungi from NO-mediated damage, growth inhibition, and killing by NO-releasing immune cells. Antimicrobial imidazoles were tested for their ability to coordinate flavohemoglobin and inhibit its NO dioxygenase (NOD) function. Miconazole, econazole, clotrimazole, and ketoconazole inhibited the NOD activity of Escherichia coli flavohemoglobin with apparent K(i) values of 80, 550, 1,300, and 5,000 nM, respectively. Saccharomyces cerevisiae, Candida albicans, and Alcaligenes eutrophus enzymes exhibited similar sensitivities to imidazoles. Imidazoles coordinated the heme iron atom, impaired ferric heme reduction, produced uncompetitive inhibition with respect to O(2) and NO, and inhibited NO metabolism by yeasts and bacteria. Nevertheless, these imidazoles were not sufficiently selective to fully mimic the NO-dependent growth stasis seen with NOD-deficient mutants. The results demonstrate a mechanism for NOD inhibition by imidazoles and suggest a target for imidazole engineering.
Collapse
Affiliation(s)
- Ryan A Helmick
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Sielaff B, Andreesen JR. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. FEBS J 2005; 272:1148-59. [PMID: 15720389 DOI: 10.1111/j.1742-4658.2005.04550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | |
Collapse
|
116
|
Nakano C, Okamura T, Sato T, Dairi T, Hoshino T. Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 2005:1016-8. [PMID: 15719101 DOI: 10.1039/b415346d] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cloning and functional expression of Mycobacterium tuberculosis Rv3377c in Escherichia coli revealed that this gene encodes the diterpene cyclase for producing (+)-5(6),13-halimadiene-15-ol, which accepts geranylgeranyldiphosphate as the intrinsic substrate.
Collapse
Affiliation(s)
- Chiaki Nakano
- Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | | | | | | | | |
Collapse
|
117
|
Matsuura K, Yoshioka S, Tosha T, Hori H, Ishimori K, Kitagawa T, Morishima I, Kagawa N, Waterman MR. Structural diversities of active site in clinical azole-bound forms between sterol 14alpha-demethylases (CYP51s) from human and Mycobacterium tuberculosis. J Biol Chem 2004; 280:9088-96. [PMID: 15611056 DOI: 10.1074/jbc.m413042200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insights into the molecular basis of the design for the selective azole anti-fungals, we compared the binding properties of azole-based inhibitors for cytochrome P450 sterol 14alpha-demethylase (CYP51) from human (HuCYP51) and Mycobacterium tuberculosis (MtCYP51). Spectroscopic titration of azoles to the CYP51s revealed that HuCYP51 has higher affinity for ketoconazole (KET), an azole derivative that has long lipophilic groups, than MtCYP51, but the affinity for fluconazole (FLU), which is a member of the anti-fungal armamentarium, was lower in HuCYP51. The affinity for 4-phenylimidazole (4-PhIm) to MtCYP51 was quite low compared with that to HuCYP51. In the resonance Raman spectra for HuCYP51, the FLU binding induced only minor spectral changes, whereas the prominent high frequency shift of the bending mode of the heme vinyl group was detected in the KET- or 4-PhIm-bound forms. On the other hand, the bending mode of the heme propionate group for the FLU-bound form of MtCYP51 was shifted to high frequency as found for the KET-bound form, but that for 4-PhIm was shifted to low frequency. The EPR spectra for 4-PhIm-bound MtCYP51 and FLU-bound HuCYP51 gave multiple g values, showing heterogeneous binding of the azoles, whereas the single gx and gz values were observed for other azole-bound forms. Together with the alignment of the amino acid sequence, these spectroscopic differences suggest that the region between the B' and C helices, particularly the hydrophobicity of the C helix, in CYP51s plays primary roles in determining strength of interactions with azoles; this differentiates the binding specificity of azoles to CYP51s.
Collapse
Affiliation(s)
- Koji Matsuura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Zanno A, Kwiatkowski N, Vaz ADN, Guardiola-Diaz HM. MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1707:157-69. [PMID: 15863094 DOI: 10.1016/j.bbabio.2004.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 10/26/2022]
Abstract
We report the molecular cloning, expression and partial characterization of MT FdR, an FAD-associated flavoprotein, from Mycobacterium tuberculosis similar to the oxygenase-coupled NADH-dependent ferredoxin reductases (ONFR). We establish, through kinetic and spectral analysis, that MT FdR preferentially uses NADH as cofactor. Furthermore, MT FdR forms a complex with mycobacterial ferredoxin (MT Fdx) and MT CYP51, a cytochrome P450 (CYP) from M. tuberculosis that is similar to lanosterol 14alpha-demethylase isozymes. This reconstituted system transfers electrons from the cofactor to the heme iron of MT CYP51 and effects the demethylation of lanosterol.
Collapse
Affiliation(s)
- Allison Zanno
- Department of Biology, Trinity College, 300 Summit Street Hartford, CT 06106, United States
| | | | | | | |
Collapse
|
119
|
Podust LM, Yermalitskaya LV, Lepesheva GI, Podust VN, Dalmasso EA, Waterman MR. Estriol Bound and Ligand-free Structures of Sterol 14α-Demethylase. Structure 2004; 12:1937-45. [PMID: 15530358 DOI: 10.1016/j.str.2004.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/19/2004] [Accepted: 08/23/2004] [Indexed: 11/24/2022]
Abstract
Sterol 14alpha-demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes and drug targets in antifungal therapy. Here, we report CYP51 structures in ligand-free and estriol bound forms. Using estriol as a probe, we determined orientation of the substrate in the active site, elucidated protein contacts with the invariant 3beta-hydroxy group of a sterol, and identified F78 as a key discriminator between 4alpha-methylated and 4alpha,beta-dimethylated substrates. Analysis of CYP51 dynamics revealed that the C helix undergoes helix-coil transition upon binding and dissociation of a ligand. Loss of helical structure of the C helix in the ligand-free form results in an unprecedented opening of the substrate binding site. Upon binding of estriol, the BC loop loses contacts with molecular surface and tends to adopt a closed conformation. A mechanism for azole resistance in the yeast pathogen Candida albicans associated with mutations in the ERG11 gene encoding CYP51 is suggested based on CYP51 protein dynamics.
Collapse
Affiliation(s)
- Larissa M Podust
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Bellamine A, Lepesheva GI, Waterman MR. Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. J Lipid Res 2004; 45:2000-7. [PMID: 15314102 DOI: 10.1194/jlr.m400239-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
14alpha-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC(50) for fluconazole, suggesting that F145 (conserved only in fungal 14alpha-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.
Collapse
Affiliation(s)
- Aouatef Bellamine
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | |
Collapse
|
121
|
Trösken ER, Straube E, Lutz WK, Völkel W, Patten C. Quantitation of lanosterol and its major metabolite FF-MAS in an inhibition assay of CYP51 by azoles with atmospheric pressure photoionization based LC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1216-1221. [PMID: 15276168 DOI: 10.1016/j.jasms.2004.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/29/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
Azoles affect the steroid balance in all biological systems and may therefore be called endocrine disrupters. Lanosterol 14alpha-demethylase (CYP51) is an enzyme inhibited by azoles. Only few data have been reported showing their inhibitory potency since an assay in an in vitro system is not available so far. In the present work an inhibition assay using human recombinant CYP51, coexpressed with human P450 oxido-reductase by the baculovirus/insect cell expression system, and LC-MS/MS as analytical method is described. Atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) sources were used with a triple quadrupole mass spectrometer to compare quantitation of lanosterol (substrate) and 4,4-dimethyl-5alpha-cholesta-8,14,24-triene-3beta-ol (FF-MAS) (product of CYP51) with d(6)-2,2,3,4,4,6-cholesterol (d(6)-cholesterol) as internal standard. Optimization of analytical parameters resulted in a LC-APPI-MS/MS method with a LOQ of 10 pg on column for FF-MAS. The sensitivity of the method (LOD 0.5 ng/ml) makes it possible to analyze supernatants of inhibition experiments after precipitation of proteins by isopropanol without any sample enrichment. The coefficient of variation of the analytical method was <20% (n = 5) for FF-MAS, lanosterol and d(6)-cholesterol. The external calibration curve was linear from 1 to 10,000 ng/ml with R(2) >/= 0.999 and an accuracy of 94-115%. Compared with APCI, APPI provides a ten- to 500-fold increase in sensitivity for the analytes in this study. IC(50) values of epoxiconazole and miconazole-two widely used azole fungicides used in agriculture and in human medicine, respectively-were 1.95 microM and 0.057 microM.
Collapse
Affiliation(s)
- Eva R Trösken
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
122
|
Rezen T, Debeljak N, Kordis D, Rozman D. New Aspects on Lanosterol 14α-Demethylase and Cytochrome P450 Evolution: Lanosterol/Cycloartenol Diversification and Lateral Transfer. J Mol Evol 2004; 59:51-8. [PMID: 15383907 DOI: 10.1007/s00239-004-2603-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 01/12/2004] [Indexed: 11/30/2022]
Abstract
Sterol 14alpha-demethylase (CYP51) is a member of the cytochrome P450 superfamily, widely found in animals, fungi, and plants but present in few prokaryotic groups. CYP51 is currently believed to be the ancestral cytochrome P450 that has been transferred from prokaryotes to eukaryotic kingdoms. We propose an alternate view of CYP51 evolution that has an impact on understanding the evolution of the entire CYP superfamily. Two hundred forty-nine bacterial and four archaeal CYP sequences have been aligned and a bacterial CYP tree designed, showing a separation of two branches. Prokaryotic CYP51s cluster to the minor branch, together with other eukaryote-like CYPs. Mycobacterial and methylococcal CYP51s cluster together (100% bootstrap probability), while Streptomyces CYP51 remains on a distant branch. A CYP51 phylogenetic tree has been constructed from 44 sequences resulting in a ((plant, bacteria),(animal, fungi)) topology (100% bootstrap probability). This is in accordance with the lanosterol/cycloartenol diversification of sterol biosynthesis. The lanosterol branch (nonphotosynthetic lineage) follows the previously proposed topology of animal and fungal orthologues (100% bootstrap probability), while plant and D. discoideum CYP51s belong to the cycloartenol branch (photosynthetic lineage), all in accordance with biochemical data. Bacterial CYP51s cluster within the cycloartenol branch (69% bootstrap probability), which is indicative of a lateral gene transfer of a plant CYP51 to the methylococcal/mycobacterial progenitor, suggesting further that bacterial CYP51s are not the oldest CYP genes. Lateral gene transfer is likely far more important than hitherto thought in the development of the diversified CYP superfamily. Consequently, bacterial CYPs may represent a mixture of genes with prokaryotic and eukaryotic origin.
Collapse
Affiliation(s)
- Tadeja Rezen
- Institute of Biochemistry, Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
123
|
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. PLANT PHYSIOLOGY 2004; 135:756-72. [PMID: 15208422 PMCID: PMC514113 DOI: 10.1104/pp.104.039826] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 05/18/2023]
Abstract
Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
124
|
Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung LW, Kim CY, Smith CV, Sacchettini JC, Bellinzoni M, Bossi R, De Rossi E, Mattevi A, Milano A, Riccardi G, Rizzi M, Roberts MM, Coker AR, Fossati G, Mascagni P, Coates ARM, Wood SP, Goulding CW, Apostol MI, Anderson DH, Gill HS, Eisenberg DS, Taneja B, Mande S, Pohl E, Lamzin V, Tucker P, Wilmanns M, Colovos C, Meyer-Klaucke W, Munro AW, McLean KJ, Marshall KR, Leys D, Yang JK, Yoon HJ, Lee BI, Lee MG, Kwak JE, Han BW, Lee JY, Baek SH, Suh SW, Komen MM, Arcus VL, Baker EN, Lott JS, Jacobs W, Alber T, Rupp B. The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis (Edinb) 2004; 83:223-49. [PMID: 12906835 DOI: 10.1016/s1472-9792(03)00051-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The TB Structural Genomics Consortium is an organization devoted to encouraging, coordinating, and facilitating the determination and analysis of structures of proteins from Mycobacterium tuberculosis. The Consortium members hope to work together with other M. tuberculosis researchers to identify M. tuberculosis proteins for which structural information could provide important biological information, to analyze and interpret structures of M. tuberculosis proteins, and to work collaboratively to test ideas about M. tuberculosis protein function that are suggested by structure or related to structural information. This review describes the TB Structural Genomics Consortium and some of the proteins for which the Consortium is in the progress of determining three-dimensional structures.
Collapse
Affiliation(s)
- T C Terwilliger
- Los Alamos National Laboratory, Bioscience Division, Mail Stop M888, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Lei L, Waterman MR, Fulco AJ, Kelly SL, Lamb DC. Availability of specific reductases controls the temporal activity of the cytochrome P450 complement of Streptomyces coelicolor A3(2). Proc Natl Acad Sci U S A 2004; 101:494-9. [PMID: 14704268 PMCID: PMC327175 DOI: 10.1073/pnas.2435922100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Indexed: 11/18/2022] Open
Abstract
The annotated genome of Streptomyces coelicolor A3(2) revealed 18 cytosolic cytochromes P450 (CYPs) with six ferredoxin (fdx) proteins and two soluble ferredoxin reductases (fpr), their putative electron transport proteins. mRNA expression was observed for all 18 CYPs throughout growth and secondary metabolism, from 3 h after spore germination, and all CYP proteins examined also were present. Expression of members of the fdx complement was detected from the same time point, yet both fpr were detected only at 12 h. Six-hour exposure to dimethylbenzanthracene and benzo[a]pyrene xenobiotics resulted in the absence of some CYP mRNAs and expression of a specific fpr, FR2. This finding and the expression pattern during growth suggested that CYP activity may be regulated by availability of specific reductases. To test this proposal, we expressed in Escherichia coli and purified to homogeneity five CYPs: CYP105D5 (involved in xenobiotic metabolism) and CYP154A1, CYP154C1, CYP158A1, and CYP158A2 (putatively involved in secondary metabolism). Also the two soluble fpr (FR2 and FR3) proposed to shuttle electrons by means of fdx were purified, and specific interactions were observed so that FR2 preferentially reduced CYP105D5 (>90% reduction) compared with the other CYPs (>20% reduction), whereas FR3 preferentially reduced the other CYPs (>85% reduction) compared with CYP105D5 (>10%). Furthermore FR2 was shown to efficiently bind CYP105D5 and drive benzo[a]pyrene hydroxylation in contrast to FR3. These data show that control of CYP activity in S. coelicolor A3(2) involves specific interactions with fpr and their availability during the life cycle and, after xenobiotic exposure, represents a unique mechanism for regulating CYP function.
Collapse
Affiliation(s)
- Li Lei
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales SY23 3DA, United Kingdom
| | | | | | | | | |
Collapse
|
126
|
Lamb DC, Ikeda H, Nelson DR, Ishikawa J, Skaug T, Jackson C, Omura S, Waterman MR, Kelly SL. Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 2003; 307:610-9. [PMID: 12893267 DOI: 10.1016/s0006-291x(03)01231-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genus Streptomyces produces about two-thirds of naturally occurring antibiotics and a wide array of other secondary metabolites, including antihelminthic agents, antitumor agents, antifungal agents, and herbicides. The newly completed genome sequence of the avermectin-producing bacterium Streptomyces avermitilis contains 33 cytochromes p450 (CYPs), many more than the 18 observed in Streptomyces coelicolor A3(2). Some of the likely metabolic functions are reported together with their genomic location and bioinformatic analysis. Seven entirely new CYP families were found together with close homologues of some forms observed in S. coelicolor A3(2). The presence of unusual CYP forms associated with conservons is revealed and of these, CYP157 forms in both S. avermitilis and S. coelicolor A3(2) deviate from the previously accepted rule for an EXXR motif within the K-helix of CYPs. Amongst this range of CYPs are forms associated with avermectin, filipin, geosmin, and pentalenolactone biosynthesis as well as unknown pathways of secondary metabolism.
Collapse
Affiliation(s)
- David C Lamb
- Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
McLean KJ, Scrutton NS, Munro AW. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. Biochem J 2003; 372:317-27. [PMID: 12614197 PMCID: PMC1223410 DOI: 10.1042/bj20021692] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 02/28/2003] [Accepted: 03/03/2003] [Indexed: 11/17/2022]
Abstract
The genome sequence of the pathogenic bacterium Mycobacterium tuberculosis revealed numerous cytochrome P450 enzymes, which require accessory redox enzymes for catalytic function (ferredoxin reductase and ferredoxin). The most likely ferredoxin reductase is encoded by fprA, and its structure resembles eukaryotic adrenodoxin reductases. We have cloned, expressed and purified the flavoenzyme product of the fprA gene in Escherichia coli. FprA reduces various electron acceptors using either NADPH or NADH as the electron donor, but discriminates in favour of NADPH (apparent K (m) for NADH=50.6+/-3.1 microM; NADPH=4.1+/-0.3 microM from ferricyanide reduction experiments). Stopped-flow studies of reduction of the FprA FAD by NADPH demonstrate increased flavin reduction rate at low NADPH concentration (<200 microM), consistent with the presence of a second, kinetically distinct and inhibitory, pyridine nucleotide-binding site, similar to that identified in human cytochrome P450 reductase [Gutierrez, Lian, Wolf, Scrutton and Roberts (2001) Biochemistry 40, 1964-1975]. Flavin reduction by NADH is slower than with NADPH and displays hyperbolic dependence on NADH concentration [maximal reduction rate ( k (red))=25.4+/-0.7 s(-1), apparent K (d)=42.9+/-4.6 microM]. Flavin reoxidation by molecular oxygen is more rapid for NADH-reduced enzyme. Reductive titrations show that the enzyme forms a species with spectral characteristics typical of a neutral (blue) FAD semiquinone only on reduction with NADPH, consistent with EPR studies. The second order dependence of semiquinone formation on the concentration of FprA indicates a disproportionation reaction involving oxidized and two-electron-reduced FprA. Titration of FprA with dithionite converts oxidized FAD into the hydroquinone form; the flavin semiquinone is not populated under these conditions. The midpoint reduction potential for the two electron couple is -235+/-5 mV (versus the normal hydrogen electrode), similar to that for adrenodoxin reductase (-274 mV). Our data provide a thermodynamic and transient kinetic framework for catalysis by FprA, and complement recent spectrophotometric and steady-state studies of the enzyme [Fischer, Raimondi, Aliverti and Zanetti (2002) Eur. J. Biochem. 269, 3005-3013].
Collapse
Affiliation(s)
- Kirsty J McLean
- Department of Biochemistry, University of Leicester, The Adrian Building, University Road, UK
| | | | | |
Collapse
|
128
|
Leys D, Mowat CG, McLean KJ, Richmond A, Chapman SK, Walkinshaw MD, Munro AW. Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 A reveals novel features of cytochrome P450. J Biol Chem 2003; 278:5141-7. [PMID: 12435731 DOI: 10.1074/jbc.m209928200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first structure of a P450 to an atomic resolution of 1.06 A has been solved for CYP121 from Mycobacterium tuberculosis. A comparison with P450 EryF (CYP107A1) reveals a remarkable overall similarity in fold with major differences residing in active site structural elements. The high resolution obtained allows visualization of several unusual aspects. The heme cofactor is bound in two distinct conformations while being notably kinked in one pyrrole group due to close interaction with the proline residue (Pro(346)) immediately following the heme iron-ligating cysteine (Cys(345)). The active site is remarkably rigid in comparison with the remainder of the structure, notwithstanding the large cavity volume of 1350 A(3). The region immediately surrounding the distal water ligand is remarkable in several aspects. Unlike other bacterial P450s, the I helix shows no deformation, similar to mammalian CYP2C5. In addition, the positively charged Arg(386) is located immediately above the heme plane, dominating the local structure. Putative proton relay pathways from protein surface to heme (converging at Ser(279)) are identified. Most interestingly, the electron density indicates weak binding of a dioxygen molecule to the P450. This structure provides a basis for rational design of putative antimycobacterial agents.
Collapse
Affiliation(s)
- David Leys
- Department of Biochemistry, University of Leicester, The Adrian Building, University Road, Leicester LE1 7RH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
129
|
Jackson CJ, Lamb DC, Marczylo TH, Parker JE, Manning NL, Kelly DE, Kelly SL. Conservation and cloning of CYP51: a sterol 14 alpha-demethylase from Mycobacterium smegmatis. Biochem Biophys Res Commun 2003; 301:558-63. [PMID: 12565899 DOI: 10.1016/s0006-291x(02)03078-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genetic locus encoding cytochrome P450 51 (CYP51; P450(14DM)) in Mycobacterium smegmatis is described here together with confirmation of activity in lanosterol 14 alpha-demethylation. The protein bound azole antifungals with high affinity and the rank order based on affinity matched the ranked order for microbiological sensitivity of the organism, thus supporting a possible role for CYP51 as a target in the antimycobacterial activity of these compounds. Non-saponifiable lipids were extracted from the bacteria grown on minimal medium. Unlike a previous report using growth on complex medium, no cholesterol was detected in two strains of M. smegmatis, but a novel lipid was detected. The genetic locus of CYP51 is discussed in relation to function; it is conserved as part of a putative operon in M. smegmatis, Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium bovis and consists of six open-reading frames including two CYPs and a ferredoxin under a putative Tet-R regulated promoter.
Collapse
Affiliation(s)
- Colin J Jackson
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales, Aberystwyth, Wales, SY23 3DA, UK
| | | | | | | | | | | | | |
Collapse
|
130
|
Debeljak N, Fink M, Rozman D. Many facets of mammalian lanosterol 14alpha-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Arch Biochem Biophys 2003; 409:159-71. [PMID: 12464255 DOI: 10.1016/s0003-9861(02)00418-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lanosterol 14alpha-demethylase is a cytochrome P450 enzyme of the cholesterol biosynthetic pathway belonging to the CYP51 gene family which is the most evolutionarily conserved member of the CYP superfamily. Mammalian (human, mouse, rat, pig) CYP51 genes are unique in sharing several common characteristics: highly conserved exon/intron borders and proximal promoter structures, ubiquitous expression at the highest level in the testis, and appearance of testis-specific transcripts that arise from differential polyadenylation site usage. CYP51 protein demethylates lanosterol to form follicular fluid meiosis-activating sterol, FF-MAS, which is, besides being an intermediate of cholesterol biosynthesis, also a signaling sterol that accumulates in ovaries. CYP51 protein resides in the endoplasmatic reticulum of most cells and also in acrosomal membranes of spermatids where transport through the Golgi apparatus is suggested. While sterol regulatory element binding protein (SREBP)-dependent transcriptional regulation of CYP51 contributes to synthesis of cholesterol, the germ-cell-specific cAMP/CREMtau-dependent upregulation might contribute to increased production of MAS.
Collapse
Affiliation(s)
- Natasa Debeljak
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Slovenia
| | | | | |
Collapse
|
131
|
Jackson CJ, Lamb DC, Marczylo TH, Warrilow AGS, Manning NJ, Lowe DJ, Kelly DE, Kelly SL. A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 2002; 277:46959-65. [PMID: 12235134 DOI: 10.1074/jbc.m203523200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol 14alpha-demethylase encoded by CYP51 is a member of the cytochrome P450 (CYP) superfamily of enzymes and has been shown to have an essential role in sterol biosynthesis in eukaryotes, with orthologues recently being described in some bacteria. Examination of the genome sequence data for the proteobacterium Methylococcus capsulatus, a bacterial species known to produce sterol, revealed the presence of a single CYP with strong homology to CYP51, particularly to a form in Mycobacterium tuberculosis. This M. capsulatus CYP51 protein represents a new class of CYP consisting of the CYP domain naturally fused to a ferredoxin domain at the C terminus via an alanine-rich linker. Expression of the M. capsulatus MCCYP51FX fusion in Escherichia coli yielded a P450, which, when purified to homogeneity, had the predicted molecular mass approximately 62 kDa on SDS/PAGE and bound lanosterol as a putative substrate. Sterol 14alpha-demethylase activity was shown (0.24 nmol of lanosterol metabolized per minute per nanomole of MCCYP51FX fusion) by gas chromatography/mass spectrometry with the activity dependent upon the presence of ferredoxin reductase and NADPH. Our unique findings describe a new class of naturally existing cytochrome P450, which will provide pivotal information for CYP structure/function in general.
Collapse
Affiliation(s)
- Colin J Jackson
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Wales SY23 3DA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Ruan B, Lai PS, Yeh CW, Wilson WK, Pang J, Xu R, Matsuda SPT, Schroepfer GJ. Alternative pathways of sterol synthesis in yeast. Use of C(27) sterol tracers to study aberrant double-bond migrations and evaluate their relative importance. Steroids 2002; 67:1109-19. [PMID: 12441197 DOI: 10.1016/s0039-128x(02)00069-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.
Collapse
Affiliation(s)
- Benfang Ruan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
A ubiquitously expressed member of the cytochrome P450 superfamily, CYP51, encodes lanosterol 14alpha-demethylase, the first step in the conversion of lanosterol into cholesterol in mammals. The biosynthetic intermediates of lanosterol 14alpha-demethylation are oxysterols, which inhibit HMG-CoA reductase and sterol synthesis in mammalian cells in vitro. These oxysterols (5alpha-lanost-8-en-3beta,32-diol and 3beta-hydroxy-5alpha-lanost-8-en-32-al) are efficiently converted into cholesterol in vitro and are generally considered to be natural cholesterol precursors. When added to hepatocytes in high concentrations, besides their conversion into cholesterol, they are also rapidly metabolized into more polar sterols and into steryl esters. The 15alpha- and 15beta-hydroxy epimers of 5alpha-lanost-8-en-3beta-ol are also rapidly metabolized into more polar sterols and steryl esters but are not converted efficiently into cholesterol. Polar sterol formation from all these oxysterols is dependent on an active form of cytochrome P450. Oxysterols are potent regulators of the activities of transcription factors of the sterol regulatory element-binding protein family and of liver X-receptor alpha. It is proposed that the rapid, cytochrome P450-dependent metabolism of naturally occurring regulatory oxysterols provides a route for their deactivation so that they become incapable of affecting gene transcription. Inhibition of cytochrome P450 by the drug ketoconazole prevents the inactivation of such oxysterols, leading to a prolonged suppression of hepatic HMG-CoA reductase in vivo and in vitro.
Collapse
Affiliation(s)
- Geoffrey F Gibbons
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX2 6HE, United Kingdom.
| |
Collapse
|
134
|
Warrilow AGS, Lamb DC, Kelly DE, Kelly SL. Phanerochaete chrysosporium NADPH-cytochrome P450 reductase kinetic mechanism. Biochem Biophys Res Commun 2002; 299:189-95. [PMID: 12437968 DOI: 10.1016/s0006-291x(02)02600-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recently completed genome of the basidiomycete, Phanerochaete chrysosporium, revealed the presence of one NADPH-cytochrome P450 oxidoreductase (CPR; EC 1.6.2.4) gene and >123 cytochrome P450 (CYP) genes. How a single CPR can drive many CYPs is an important area of study. We have investigated this CPR to gain insight into the mechanistic and structural biodiversity of the cytochrome P450 catalytic system. Native CPR and a NH(2)-terminally truncated derivative lacking 23 amino acids have been overexpressed in Escherichia coli and purified to electrophoretic homogeneity. Steady-state kinetics of cytochrome c reductase activity revealed a random sequential bireactant kinetic mechanism in which both products form dead-end complexes reflecting differences in CPR kinetic mechanisms even within a single kingdom of life. Removal of the N-terminal anchor of P. chrysosporium CPR did not alter the kinetic properties displayed by the enzyme in vitro, indicating it was a useful modification for structural studies.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, The University of Wales Aberystwyth, SY23 3DA, Aberystwyth, UK
| | | | | | | |
Collapse
|
135
|
McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2937-2949. [PMID: 12368427 DOI: 10.1099/00221287-148-10-2937] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genome sequence of Mycobacterium tuberculosis has revealed the presence of 20 different cytochrome P450 mono-oxygenases (P450s) within this organism, and subsequent genome sequences of other mycobacteria and of Streptomyces coelicolor have indicated that these actinomycetes also have large complements of P450s, pointing to important physiological roles for these enzymes. The actinomycete P450s include homologues of 14alpha-sterol demethylases, the targets for the azole class of drugs in yeast and fungi. Previously, this type of P450 was considered to be absent from bacteria. When present at low concentrations in growth medium, azole antifungal drugs were shown to be potent inhibitors of the growth of Mycobacterium smegmatis and of Streptomyces strains, indicating that one or more of the P450s in these bacteria were viable drug targets. The drugs econazole and clotrimazole were most effective against M. smegmatis (MIC values of <0.2 and 0.3 micro M, respectively) and were superior inhibitors of mycobacterial growth compared to rifampicin and isoniazid (which had MIC values of 1.2 and 36.5 micro M, respectively). In contrast to their effects on the actinomycetes, the azoles showed minimal effects on the growth of Escherichia coli, which is devoid of P450s. Azole drugs coordinated tightly to the haem iron in M. tuberculosis H37Rv P450s encoded by genes Rv0764c (the sterol demethylase CYP51) and Rv2276 (CYP121). However, the azoles had a higher affinity for M. tuberculosis CYP121, with K(d) values broadly in line with the MIC values for M. smegmatis. This suggested that CYP121 may be a more realistic target enzyme for the azole drugs than CYP51, particularly in light of the fact that an S. coelicolor DeltaCYP51 strain was viable and showed little difference in its sensitivity to azole drugs compared to the wild-type. If the azole drugs prove to inhibit a number of important P450s in M. smegmatis and S. coelicolor, then the likelihood of drug resistance developing in these species should be minimal. This suggests that azole drug therapy may provide a novel antibiotic strategy against strains of M. tuberculosis that have already developed resistance to isoniazid and other front-line drugs.
Collapse
Affiliation(s)
- Kirsty J McLean
- Department of Biochemistry, University of Leicester, The Adrian Building, University Road, Leicester LE1 7RH, UK1
| | - Ker R Marshall
- Department of Biochemistry, University of Leicester, The Adrian Building, University Road, Leicester LE1 7RH, UK1
| | - Alison Richmond
- Department of Biosciences, University of Strathclyde, The Royal College, 204 George Street, Glasgow G1 1XL, UK2
| | - Iain S Hunter
- Department of Biosciences, University of Strathclyde, The Royal College, 204 George Street, Glasgow G1 1XL, UK2
| | - Kay Fowler
- Department of Genetics, John Innes Centre, Norwich NR4 7UH, UK3
| | - Tobias Kieser
- Department of Genetics, John Innes Centre, Norwich NR4 7UH, UK3
| | - Sudagar S Gurcha
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK4
| | - Gurydal S Besra
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK4
| | - Andrew W Munro
- Department of Biochemistry, University of Leicester, The Adrian Building, University Road, Leicester LE1 7RH, UK1
| |
Collapse
|
136
|
McLean KJ, Cheesman MR, Rivers SL, Richmond A, Leys D, Chapman SK, Reid GA, Price NC, Kelly SM, Clarkson J, Smith WE, Munro AW. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem 2002; 91:527-41. [PMID: 12237220 DOI: 10.1016/s0162-0134(02)00479-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The CYP121 gene from the pathogenic bacterium Mycobacterium tuberculosis has been cloned and expressed in Escherichia coli, and the protein purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The CYP121 gene encodes a cytochrome P450 enzyme (CYP121) that displays typical electronic absorption features for a member of this superfamily of hemoproteins (major Soret absorption band at 416.5 nm with alpha and beta bands at 565 and 538 nm, respectively, in the oxidized form) and which binds carbon monoxide to give the characteristic Soret band shift to 448 nm. Resonance Raman, EPR and MCD spectra show the protein to be predominantly low-spin and to have a typical cysteinate- and water-ligated b-type heme iron. CD spectra in the far UV region describe a mainly alpha helical conformation, but the visible CD spectrum shows a band of positive sign in the Soret region, distinct from spectra for other P450s recognized thus far. CYP121 binds very tightly to a range of azole antifungal drugs (e.g. clotrimazole, miconazole), suggesting that it may represent a novel target for these antibiotics in the M. tuberculosis pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Department of Biochemistry, The Adrian Building, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Park SY, Yamane K, Adachi SI, Shiro Y, Weiss KE, Maves SA, Sligar SG. Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties. J Inorg Biochem 2002; 91:491-501. [PMID: 12237217 DOI: 10.1016/s0162-0134(02)00446-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Crystal structures of a thermostable cytochrome P450 (CYP119) and a site-directed mutant, (Phe24Leu), from the acidothermophilic archaea Sulfolobus solfataricus were determined at 1.5-2.0 A resolution. We identify important crystallographic waters in the ferric heme pocket, observe protein conformational changes upon inhibitor binding, and detect a unique distribution of surface charge not found in other P450s. An analysis of factors contributing to thermostability of CYP119 of these high resolution structures shows an apparent increase in clustering of aromatic residues and optimum stacking. The contribution of aromatic stacking was investigated further with the mutant crystal structure and differential scanning calorimetry.
Collapse
Affiliation(s)
- Sam-Yong Park
- RIKEN Harima Institute/Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
138
|
Halder SK, Fink M, Waterman MR, Rozman D. A cAMP-responsive element binding site is essential for sterol regulation of the human lanosterol 14alpha-demethylase gene (CYP51). Mol Endocrinol 2002; 16:1853-63. [PMID: 12145339 DOI: 10.1210/me.2001-0262] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lanosterol 14alpha-demethylase (CYP51) is involved in the cholesterol biosynthesis pathway, producing follicular fluid meiosis-activating sterol. The promoter region of the human CYP51 gene contains a cluster of regulatory elements including GC box, cAMP response element (CRE), and sterol regulatory element (SRE). To understand the mechanism of sterol-dependent regulation of this gene, several constructs of the promoter with the reporter gene have been tested in JEG-3 cells containing overexpressed human sterol regulatory element binding protein (SREBP)-1a. The wild-type construct showed maximal SREBP-dependent activation, most of which is retained when the GC box is mutated/deleted. Activation is abolished when either CRE or SRE are removed/mutated. Furthermore, mutation of CRE abolishes SREBP-dependent activation after overexpression of SREBP-1a and CRE binding protein (CREB). This shows that CRE is essential, and that under ex vivo conditions CREB and SREBP cooperate in transactivating CYP51. Interestingly, protein kinase A shows a marked stimulation of the CYP51 promoter activity when overexpressed together with SREBP-1a but not when overexpressed with CREB, suggesting phosphorylation of SREBP-1a. Using a DNA probe containing all three regulatory elements, it is found that SREBP-1a, a CREB-like factor, and specificity protein (Sp1) all probably bind the CYP51 promoter. While SREBP-1a and the CRE-bound proteins are essential for the SREBP-dependent response, Sp1 apparently functions only to maximize sterol regulation of CYP51. To date this is the first gene in which cooperation between SREBP and a CREB/CRE modulator/activating transcription factor family transcription factor is shown to be essential and sufficient for SREBP-dependent activation.
Collapse
Affiliation(s)
- Sunil K Halder
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
139
|
Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 2002; 277:24000-5. [PMID: 11943767 DOI: 10.1074/jbc.m111109200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we describe the complete cytochrome P450 complement, the "CYPome," of Streptomyces coelicolor A3(2). Eighteen cytochromes P450 (CYP) are described, in contrast to the absence of CYPs in Escherichia coli, and the twenty observed in Mycobacterium tuberculosis. Here we confirm protein identity as cytochromes P450 by heterologous expression in E. coli and measurement of reduced carbon monoxide difference spectra. We also report on their arrangement in the linear chromosome and relatedness to other CYPs in the superfamily. The future development of manipulation of antibiotic pathways and the use of streptomycetes in bioremediation and biotransformations will involve many of the new CYP forms identified here.
Collapse
Affiliation(s)
- David C Lamb
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales SY23 3DA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lamb DC, Fowler K, Kieser T, Manning N, Podust LM, Waterman MR, Kelly DE, Kelly SL. Sterol 14alpha-demethylase activity in Streptomyces coelicolor A3(2) is associated with an unusual member of the CYP51 gene family. Biochem J 2002; 364:555-62. [PMID: 12023899 PMCID: PMC1222601 DOI: 10.1042/bj20011380] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The annotation of the genome sequence of Streptomyces coelicolor A3(2) revealed a cytochrome P450 (CYP) resembling various sterol 14alpha-demethylases (CYP51). The putative CYP open reading frame (SC7E4.20) was cloned with a tetrahistidine tag appended to the C-terminus and expressed in Escherichia coli. Protein purified to electrophoretic homogeneity was observed to bind the 14-methylated sterols lanosterol and 24-methylene-24,25-dihydrolanosterol (24-MDL). Reconstitution experiments with E. coli reductase partners confirmed activity in 14alpha-demethylation for 24-MDL, but not lanosterol. An S. coelicolor A3(2) mutant containing a transposon insertion in the CYP51 gene, which will abolish synthesis of the functional haemoprotein, was isolated as a viable strain, the first time a CYP51 has been identified as non-essential. The role of this CYP in bacteria is intriguing. No sterol product was detected in non-saponifiable cell extracts of the parent S. coelicolor A3(2) strain or of the mutant. S. coelicolor A3(2) CYP51 contains very few of the conserved CYP51 residues and, even though it can catalyse 14alpha-demethylation, it probably has another function in Streptomyces. We propose that it is a member of a new CYP51 subfamily.
Collapse
Affiliation(s)
- David C Lamb
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth SY23 3DA, Wales, UK
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Gaylor JL. Membrane-bound enzymes of cholesterol synthesis from lanosterol. Biochem Biophys Res Commun 2002; 292:1139-46. [PMID: 11969204 DOI: 10.1006/bbrc.2001.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
142
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|
143
|
Podust LM, Stojan J, Poulos TL, Waterman MR. Substrate recognition sites in 14alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Biochem 2001; 87:227-35. [PMID: 11744060 DOI: 10.1016/s0162-0134(01)00388-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of 14alpha-sterol demethylase from Mycobacterium tuberculosis (MTCYP51) [Proc. Natl. Acad. Sci. USA 98 (2001) 3068-3073] provides a template for analysis of eukaryotic orthologs which constitute the CYP51 family of cytochrome P450 proteins. Putative substrate recognition sites (SRSs) were identified in MTCYP51 based on the X-ray structures and have been compared with SRSs predicted based on Gotoh's analysis [J. Biol. Chem. 267 (1992) 83-90]. While Gotoh's SRS-4, 5, and 6 contribute in formation of the putative MTCYP51 substrate binding site, SRS-2 and 3 likely do not exist in MTCYP51. SRS-1, as part of the open BC loop, in the conformation found in the crystal can provide only limited contacts with the sterol. However, its role in substrate binding might dramatically increase if the loop closes in response to substrate binding. Thus, while the notion of SRSs has been very useful in leading to our current understanding of P450 structure and function, their identification by sequence alignment between distant P450 families will not necessarily be a good predictor of residues associated with substrate binding. Localization of CYP51 mutation hotspots in Candida albicans azole resistant isolates was analyzed with respect to SRSs. These mutations are found to be outside of the putative substrate interacting sites indicating the preservation of the protein active site under the pressure of azole treatment. Since the mutations residing outside the putative CYP51 active side can profoundly influence ligand binding within the active site, perhaps they provide insight into the basis of evolutionary changes which have occurred leading to different P450s.
Collapse
Affiliation(s)
- L M Podust
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
144
|
Lamb DC, Warrilow AG, Venkateswarlu K, Kelly DE, Kelly SL. Activities and kinetic mechanisms of native and soluble NADPH-cytochrome P450 reductase. Biochem Biophys Res Commun 2001; 286:48-54. [PMID: 11485306 DOI: 10.1006/bbrc.2001.5338] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Native yeast NADPH-cytochrome P450 oxidoreductase (CPR; EC 1.6.2.4) and a soluble derivative lacking 33 amino acids of the NH(2)-terminus have been overexpressed as recombinant proteins in Escherichia coli. The presence of a hexahistidine sequence at the N-terminus allowed protein purification in a single step using nickel-chelating affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the predicted molecular weights of the proteins and indicated a purity of >95%. Protein functionality was demonstrated by cytochrome c reduction and reconstitution of CYP61-mediated sterol Delta(22)-desaturation. Steady-state kinetics of cytochrome c reductase activity revealed a random Bi-Bi mechanism with NADPH donating electrons directly to CPR to produce a reduced intermediary form of the enzyme. The kinetic mechanism studies showed no difference between the two yeast CPRs in mechanism or after reconstitution with CYP61-mediated 22-desaturation, confirming that the retention of the NH(2)-terminable membrane anchor is functionally dispensable.
Collapse
Affiliation(s)
- D C Lamb
- Institute of Biological Sciences, University of Wales-Aberystwyth, Aberystwyth SY23 3DA, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
145
|
Lepesheva GI, Podust LM, Bellamine A, Waterman MR. Folding Requirements Are Different between Sterol 14α-Demethylase (CYP51) from Mycobacterium tuberculosis and Human or Fungal Orthologs. J Biol Chem 2001; 276:28413-20. [PMID: 11373285 DOI: 10.1074/jbc.m102767200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon sequence alignment of CYP51 sterol 14alpha-demethylase from animals, plants, fungi, and bacteria, arginine corresponding to Arg-448 of CYP51 in Mycobacterium tuberculosis (MT) is conserved near the C terminus of all family members. In MTCYP51 Arg-448 forms a salt bridge with Asp-287, connecting beta-strand 3-2 with helix J. Deletion of the three C-terminal residues of MTCYP51 has little effect on expression of P450 in Escherichia coli. However, truncation of the fourth amino acid (Arg-448) completely abolishes P450 expression. We have investigated whether Arg-448 has other structural or functional roles in addition to folding and whether its conservation reflects conservation of a common folding pathway in the CYP51 family. Characterization of wild type protein and three mutants, R448K, R448I, and R448A, including examination of catalytic activity, secondary and tertiary structure analysis by circular dichroism and tryptophan fluorescence, and studies of both equilibrium and temporal MTCYP51 unfolding behavior, shows that Arg-448 does not play any role in P450 function or maintenance of the native structure. C-terminal truncation of Candida albicans and human CYP51 orthologs reveals that, despite conservation in sequence, the requirement for arginine at the homologous C-terminal position in folding in E. coli is not conserved. Thus, despite similar spatial folds, functionally related but evolutionarily distinct P450s can follow different folding pathways.
Collapse
Affiliation(s)
- G I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | |
Collapse
|
146
|
Guardiola-Diaz HM, Foster LA, Mushrush D, Vaz AD. Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis : implications for treatment of tuberculosis 2 2Abbreviations: CYP, cytochrome P450; CYP51, lanosterol-14α-demethylase; MT, Mycobacterium tuberculosis and PCR, polymerase chain reaction. Biochem Pharmacol 2001; 61:1463-70. [PMID: 11377375 DOI: 10.1016/s0006-2952(01)00571-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although antibiotics against Mycobacterium tuberculosis have decreased the incidence of tuberculosis infections significantly, the emergence of drug-resistant strains of this deadly pathogen renders current treatments ineffective. Therefore, it is imperative to identify biochemical pathways in M. tuberculosis that can serve as targets for new anti-mycobacterial drugs. We recently cloned, expressed, and purified MT CYP51, a soluble protein from M. tuberculosis that is similar in sequence to CYP51 (lanosterol-14alpha-demethylase) isozymes, pharmacological targets for several anti-mycotic compounds. Its striking amino acid sequence similarity to that of mammalian and fungal CYP51s led to the hypothesis that MT CYP51 plays an important role in mycobacterial biology that can be targeted for drug action. In this manuscript, we established through spectral analysis that several azole antifungals bind MT CYP51 with high affinity. The effects of several azole compounds on the growth of M. bovis and M. smegmatis, two mycobacterial species that closely resemble M. tuberculosis were examined. We established a correlation between the affinity of azole compounds to MT CYP51 and their ability to impair the growth of M. bovis and M. smegmatis. These results suggest that the metabolic functions of MT CYP51 may be comparable to those of CYP51 in yeast and fungi and may lead to the development of a new generation of anti-mycobacterial agents.
Collapse
Affiliation(s)
- H M Guardiola-Diaz
- Department of Biology, Trinity College, 300 Summit St., Hartford, CT 06106, USA.
| | | | | | | |
Collapse
|
147
|
Mastrolorenzo A, Scozzafava A, Supuran CT. The antifungal activity of sulfonylated/carboxylated derivatives of dibenzo-1,4-dioxine-2-acetyloxime may be due to inhibition of lanosterol-14alpha-demethylase. JOURNAL OF ENZYME INHIBITION 2001; 15:557-69. [PMID: 11140611 DOI: 10.3109/14756360009040710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aryl/alkyl-sulfonyl-, aryl/alkylcarboxyl- and aryl(sulfonyl)carbamyl/thiocarbamyl-derivatives of dibenzo-1,4-dioxine-2-acetyloxime were prepared by reaction of the title compound with sulfonyl halides, sulfonic acid anhydrides, acyl chlorides/carboxylic acids, arylsulfonyl isocyanates, aryl/acyl isocyanates or isothiocyanates. Several of the newly synthesized compounds showed effective in vitro antifungal activity against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole (with minimum inhibitory concentrations in the range of 1.2-4 microg/mL) against the two Aspergillus strains, but possessing a lower activity as compared to ketoconazole against C. albicans. Of the three investigated strains, best activity was detected against A. flavus. The mechanism of action of these compounds probably involves inhibition of ergosterol biosynthesis by interaction with lanosterol-14-alpha-demethylase (CYP51A1), since reduced amounts of ergosterol were found by means of HPLC, in cultures of the sensitive strain A. flavus treated with some of these inhibitors. Thus, the compounds reported here might possess a similar mechanism of action at molecular level with that of the widely used azole antifungals.
Collapse
Affiliation(s)
- A Mastrolorenzo
- Università degli Studi, Dipartimento di Scienze Dermatologiche, Centro MTS, Firenze, Italia
| | | | | |
Collapse
|
148
|
Podust LM, Poulos TL, Waterman MR. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A 2001; 98:3068-73. [PMID: 11248033 PMCID: PMC30608 DOI: 10.1073/pnas.061562898] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 14alpha-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14alpha-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-A crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences-a bent I helix and an open conformation of BC loop-that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.
Collapse
Affiliation(s)
- L M Podust
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | |
Collapse
|
149
|
Bellamine A, Mangla AT, Dennis AL, Nes WD, Waterman MR. Structural requirements for substrate recognition of Mycobacterium tuberculosis 14α-demethylase: implications for sterol biosynthesis. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
150
|
Kitazume T, Takaya N, Nakayama N, Shoun H. Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 2000; 275:39734-40. [PMID: 10995755 DOI: 10.1074/jbc.m005617200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene of a fatty-acid hydroxylase of the fungus Fusarium oxysporum (P450foxy) was cloned and expressed in yeast. The putative primary structure revealed the close relationship of P450foxy to the bacterial cytochrome P450BM3, a fused protein of cytochrome P450 and its reductase from Bacillus megaterium. The amino acid sequence identities of the P450 and P450 reductase domains of P450foxy were highest (40.6 and 35.3%, respectively) to the corresponding domains of P450BM3. Recombinant P450foxy expressed in yeast was catalytically and spectrally indistinguishable from the native protein, except most of the recombinant P450foxy was recovered in the soluble fraction of the yeast cells, in marked contrast to native P450foxy, which was exclusively recovered in the membrane fraction of the fungal cells. This difference implies that a post (or co)-translational mechanism functions in the fungal cells to target and bind the protein to the membrane. These results provide conclusive evidence that P450foxy is the eukaryotic counterpart of bacterial P450BM3, which evokes interest in the evolutionary aspects concerning the P450 superfamily along with its reducing systems. P450foxy was classified in the new family, CYP505.
Collapse
Affiliation(s)
- T Kitazume
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|