101
|
Power C, Hui E, Vivithanaporn P, Acharjee S, Polyak M. Delineating HIV-associated neurocognitive disorders using transgenic models: the neuropathogenic actions of Vpr. J Neuroimmune Pharmacol 2011; 7:319-31. [PMID: 21918813 DOI: 10.1007/s11481-011-9310-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) represent a constellation of neurological disabilities defined by neuropsychological impairments, neurobehavioral abnormalities and motor deficits. To gain insights into the mechanisms underlying the development of these disabilities, several transgenic models have been developed over the past two decades, which have provided important information regarding the cellular and molecular factors contributing to the neuropathogenesis of HAND. Herein, we concentrate on the neuropathogenic effects of HIV-1 Vpr expressed under the control of c-fms, resulting transgene expression in myeloid cells in both the central and peripheral nervous systems. Vpr's actions, possibly through its impact on cell cycle machinery, in brain culminate in neuronal and astrocyte injury and death through apoptosis involving activation of caspases-3, -6 and -9 depending on the individual target cell type. Indeed, these outcomes are also induced by soluble Vpr implying Vpr's effects stem from direct interaction with target cells. Remarkably, in vivo transgenic Vpr expression induces a neurodegenerative phenotype defined by neurobehavioral deficits and neuronal loss in the absence of frank inflammation. Implantation of another viral protein, hepatitis C virus (HCV) core, into Vpr transgenic animals' brains stimulated neuroinflammation and amplified the neurodegenerative disease phenotype, thereby recapitulating HCV's putative neuropathogenic actions. The availability of different transgenic models to study HIV neuropathogenesis represents exciting and innovative approaches to understanding disease mechanisms and perhaps developing new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Christopher Power
- Department of Medicine (Neurology), University of Alberta, Heritage Medical Research Center, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
102
|
Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 2011; 95:559-71. [PMID: 21509745 PMCID: PMC3103662 DOI: 10.1002/bip.21638] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 01/06/2023]
Abstract
Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay by capturing the information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation.
Collapse
Affiliation(s)
- Robert P. Rambo
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - John A. Tainer
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
103
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 PMCID: PMC3234290 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O. Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
104
|
Zhao RY, Li G, Bukrinsky MI. Vpr-host interactions during HIV-1 viral life cycle. J Neuroimmune Pharmacol 2011; 6:216-29. [PMID: 21318276 PMCID: PMC5482210 DOI: 10.1007/s11481-011-9261-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/23/2011] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a multifunctional viral protein that plays important role at multiple stages of the HIV-1 viral life cycle. Although the molecular mechanisms underlying these activities are subject of ongoing investigations, overall, these activities have been linked to promotion of viral replication and impairment of anti-HIV immunity. Importantly, functional defects of Vpr have been correlated with slow disease progression of HIV-infected patients. Vpr is required for efficient viral replication in non-dividing cells such as macrophages, and it promotes, to some extent, viral replication in proliferating CD4+ T cells. The specific activities of Vpr include modulation of fidelity of viral reverse transcription, nuclear import of the HIV-1 pre-integration complex, transactivation of the HIV-1 LTR promoter, induction of cell cycle G2 arrest and cell death via apoptosis. In this review, we focus on description of the cellular proteins that specifically interact with Vpr and discuss their significance with regard to the known Vpr activities at each step of the viral life cycle in proliferating and non-proliferating cells.
Collapse
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
105
|
Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Mol Microbiol 2011; 80:1657-66. [PMID: 21542855 DOI: 10.1111/j.1365-2958.2011.07675.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a conserved DNA repair enzyme involved in uracil excision from DNA. Here, we report the biochemical characterization of UDG encoded by Bacillus subtilis, a model low G+C Gram-positive organism. The purified enzyme removes uracil preferentially from single-stranded DNA over double-stranded DNA, exhibiting higher preference for U:G than U:A mismatches. Furthermore, we have identified key amino acids necessary for B. subtilis UDG activity. Our results showed that Asp-65 and His-187 are catalytic residues involved in glycosidic bond cleavage, whereas Phe-78 would participate in DNA recognition. Recently, it has been reported that B. subtilis phage φ29 encodes an inhibitor of the UDG enzyme, named protein p56, whose role has been proposed to ensure an efficient viral DNA replication, preventing the deleterious effect caused by UDG when it eliminates uracils present in the φ29 genome. In this work, we also show that a φ29-related phage, GA-1, encodes a p56-like protein with UDG inhibition activity. In addition, mutagenesis analysis revealed that residue Phe-191 of B. subtilis UDG is critical for the interaction with φ29 and GA-1 p56 proteins, suggesting that both proteins have similar mechanism of inhibition.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
106
|
Przybylski JL, Wetmore SD. A QM/QM investigation of the hUNG2 reaction surface: the untold tale of a catalytic residue. Biochemistry 2011; 50:4218-27. [PMID: 21473605 DOI: 10.1021/bi2003394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human uracil-DNA glycosylase (hUNG2) is a base excision repair enzyme that removes the damaged base uracil from DNA through hydrolytic deglycosylation of the nucleotide. In the present study, the mechanism of hUNG2 is thoroughly investigated using ONIOM(MPWB1K/6-31G(d):PM3) active-site models to generate reaction potential energy surfaces. Active-site models that differ in the hydrogen-bonding arrangement of the nucleophilic water molecule and/or protonation state of His148 are considered. The large barrier calculated using the model with a cationic His148 verifies that this residue is neutral in the early stages of the reaction. The reaction pathways predicted by two models with a neutral His148 are consistent with a wealth of experimental data on the enzyme, including mutational studies, which supports our approach. On the basis of our calculations, we propose a complete mechanism for the chemical step of hUNG2. In the first part of the reaction, His268, Asn204, and a water molecule work together to stabilize the negative charge forming on the uracil moiety. Subsequently, either Asp145 or His148 can act as the general base that activates the water nucleophile depending on the binding orientation of the water molecule in the active site. However, we propose that His148 preferentially acts as the general base. Therefore, in agreement with previous proposals, we assign the primary function of Asp145 to electrostatic stabilization of the positive charge developing on the sugar moiety during the reaction, which is also consistent with a growing theory that the primary function of active-site carboxylate groups present in many glycosylases is transition state stabilization. Most importantly, our work explains, for the first time, the role of His148 in the chemical step and provides additional support for the inclusion of this amino acid in the list of residues (Asp145 and His268) essential to the chemical step of the hUNG2 mechanism.
Collapse
Affiliation(s)
- Jennifer L Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | |
Collapse
|
107
|
Fedorova OS, Kuznetsov NA, Koval VV, Knorre DG. Conformational dynamics and pre-steady-state kinetics of DNA glycosylases. BIOCHEMISTRY (MOSCOW) 2011; 75:1225-39. [PMID: 21166640 DOI: 10.1134/s0006297910100044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Results of investigations of E. coli DNA glycosylases using pre-steady-state kinetics are considered. Special attention is given to the connection of conformational changes in the interacting biomolecules with kinetic mechanisms of the enzymatic processes.
Collapse
Affiliation(s)
- O S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
108
|
Kielkowski P, Pohl R, Hocek M. Synthesis of acetylene linked double-nucleobase nucleos(t)ide building blocks and polymerase construction of DNA containing cytosines in the major groove. J Org Chem 2011; 76:3457-62. [PMID: 21425799 DOI: 10.1021/jo200436j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(Cytosin-5-yl)ethynyl derivatives of pyrimidine and 7-deazaadenine 2-deoxyribonucleosides and nucleoside triphosphates (dNTPs) were prepared in one step by the aqueous Sonogashira coupling of unprotected halogenated nucleos(t)ides with 5-ethynylcytosine. The modified dNTPs were good substrates for DNA polymerases suitable for primer extension or PCR construction of DNA bearing acetylene-linked cytosine(s) in the major groove mimicking the flipped-out nucleotide.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam.2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
109
|
An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 2010; 468:406-11. [PMID: 20927102 DOI: 10.1038/nature09428] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/17/2010] [Indexed: 01/22/2023]
Abstract
DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.
Collapse
|
110
|
On the mechanism of the N-glycosydic bond hydrolysis of 2′-deoxyguanosine: insights from first principles calculations. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0826-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Fadda E, Pomès R. On the molecular basis of uracil recognition in DNA: comparative study of T-A versus U-A structure, dynamics and open base pair kinetics. Nucleic Acids Res 2010; 39:767-80. [PMID: 20876689 PMCID: PMC3025553 DOI: 10.1093/nar/gkq812] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uracil (U) can be found in DNA as a mismatch paired either to adenine (A) or to guanine (G). Removal of U from DNA is performed by a class of enzymes known as uracil–DNA–glycosylases (UDG). Recent studies suggest that recognition of U–A and U–G mismatches by UDG takes place via an extra-helical mechanism. In this work, we use molecular dynamics simulations to analyze the structure, dynamics and open base pair kinetics of U–A base pairs relative to their natural T–A counterpart in 12 dodecamers. Our results show that the presence of U does not alter the local conformation of B-DNA. Breathing dynamics and base pair closing kinetics are only weakly dependent on the presence of U versus T, with open T–A and U–A pairs lifetimes in the nanosecond timescale. Additionally, we observed spontaneous base flipping in U–A pairs. We analyze the structure and dynamics for this event and compare the results to available crystallographic data of open base pair conformations. Our results are in agreement with both structural and kinetic data derived from NMR imino proton exchange measurements, providing the first detailed description at the molecular level of elusive events such as spontaneous base pair opening and flipping in mismatched U–A sequences in DNA. Based on these results, we propose that base pair flipping can occur spontaneously at room temperature via a 3-step mechanism with an open base pair intermediate. Implications for the molecular basis of U recognition by UDG are discussed.
Collapse
Affiliation(s)
- Elisa Fadda
- School of Chemistry, National University of Ireland, Galway (NUIG), Galway, Ireland.
| | | |
Collapse
|
112
|
Kaushal PS, Talawar RK, Varshney U, Vijayan M. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:887-92. [PMID: 20693660 PMCID: PMC2917283 DOI: 10.1107/s1744309110023043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
Abstract
Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.
Collapse
Affiliation(s)
- Prem Singh Kaushal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ramappa K. Talawar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
113
|
Abstract
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.
Collapse
Affiliation(s)
- Joshua I. Friedman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street Baltimore, MD 21205
| | - James T. Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street Baltimore, MD 21205
| |
Collapse
|
114
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|
115
|
Lakomek K, Dickmanns A, Ciirdaeva E, Schomacher L, Ficner R. Crystal structure analysis of DNA uridine endonuclease Mth212 bound to DNA. J Mol Biol 2010; 399:604-17. [PMID: 20434457 DOI: 10.1016/j.jmb.2010.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
Abstract
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus DeltaH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus DeltaH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3'-->5'exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease. In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 A, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
116
|
Banerjee A, Perez-Castillejos R, Hahn D, Smirnov AI, Grebel H. Microfluidic Channels on Nanopatterned Substrates: Monitoring Protein Binding to Lipid Bilayers with Surface-Enhanced Raman Spectroscopy. Chem Phys Lett 2010; 489:121-126. [PMID: 24932024 PMCID: PMC4053208 DOI: 10.1016/j.cplett.2010.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules.
Collapse
Affiliation(s)
- Amrita Banerjee
- Electronic Imaging Center, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - R. Perez-Castillejos
- Electrical and Computer Engineering Department, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - D. Hahn
- Department of Biology, Texas State University, San Marcos, Texas, 78666
| | - Alex I. Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina, 27695-8204
| | - H. Grebel
- Electronic Imaging Center, New Jersey Institute of Technology, Newark, New Jersey, 07102
| |
Collapse
|
117
|
Burger SK, Ayers PW. Dual Grid Methods for Finding the Reaction Path on Reduced Potential Energy Surfaces. J Chem Theory Comput 2010; 6:1490-7. [PMID: 26615686 DOI: 10.1021/ct100012y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Steven K. Burger
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Paul W. Ayers
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada
| |
Collapse
|
118
|
Zhachkina A, Lee JK. Uracil and thymine reactivity in the gas phase: the S(N)2 reaction and implications for electron delocalization in leaving groups. J Am Chem Soc 2010; 131:18376-85. [PMID: 19928991 DOI: 10.1021/ja906814d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The gas-phase substitution reactions of methyl chloride and 1,3-dimethyluracil (at the N1-CH(3)) are examined computationally and experimentally. It is found that, although hydrochloric acid and 3-methyluracil are similar in acidity, the leaving group abilities of chloride and N1-deprotonated 3-methyluracil are not: chloride is a slightly better leaving group. The reason for this difference is most likely related to the electron delocalization in the N1-deprotonated 3-methyluracil anion, which we explore further herein. The leaving group ability of the N1-deprotonated 3-methyluracil anion relative to the N1-deprotonated 3-methylthymine anion is also examined in the context of an enzymatic reaction that cleaves uracil but not thymine from DNA.
Collapse
Affiliation(s)
- Anna Zhachkina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
119
|
Zharkov DO, Mechetin GV, Nevinsky GA. Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition. Mutat Res 2010; 685:11-20. [PMID: 19909758 PMCID: PMC3000906 DOI: 10.1016/j.mrfmmm.2009.10.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/24/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022]
Abstract
Uracil appears in DNA as a result of cytosine deamination and by incorporation from the dUTP pool. As potentially mutagenic and deleterious for cell regulation, uracil must be removed from DNA. The major pathway of its repair is initiated by uracil-DNA glycosylases (UNG), ubiquitously found enzymes that hydrolyze the N-glycosidic bond of deoxyuridine in DNA. This review describes the current understanding of the mechanism of uracil search and recognition by UNG. The structure of UNG proteins from several species has been solved, revealing a specific uracil-binding pocket located in a DNA-binding groove. DNA in the complex with UNG is highly distorted to allow the extrahelical recognition of uracil. Thermodynamic studies suggest that UNG binds with appreciable affinity to any DNA, mainly due to the interactions with the charged backbone. The increase in the affinity for damaged DNA is insufficient to account for the exquisite specificity of UNG for uracil. This specificity is likely to result from multistep lesion recognition process, in which normal bases are rejected at one or several pre-excision stages of enzyme-substrate complex isomerization, and only uracil can proceed to enter the active site in a catalytically competent conformation. Search for the lesion by UNG involves random sliding along DNA alternating with dissociation-association events and partial eversion of undamaged bases for initial sampling.
Collapse
Affiliation(s)
- Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Molecular Biology, Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Molecular Biology, Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
120
|
Raeder ILU, Moe E, Willassen NP, Smalås AO, Leiros I. Structure of uracil-DNA N-glycosylase (UNG) from Vibrio cholerae: mapping temperature adaptation through structural and mutational analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:130-6. [PMID: 20124707 PMCID: PMC2815677 DOI: 10.1107/s1744309109052063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022]
Abstract
The crystal structure of Vibrio cholerae uracil-DNA N-glycosylase (vcUNG) has been determined to 1.5 A resolution. Based on this structure, a homology model of Aliivibrio salmonicida uracil-DNA N-glycosylase (asUNG) was built. A previous study demonstrated that asUNG possesses typical cold-adapted features compared with vcUNG, such as a higher catalytic efficiency owing to increased substrate affinity. Specific amino-acid substitutions in asUNG were suggested to be responsible for the increased substrate affinity and the elevated catalytic efficiency by increasing the positive surface charge in the DNA-binding region. The temperature adaptation of these enzymes has been investigated using structural and mutational analyses, in which mutations of vcUNG demonstrated an increased substrate affinity that more resembled that of asUNG. Visualization of surface potentials revealed a more positive potential for asUNG compared with vcUNG; a modelled double mutant of vcUNG had a potential around the substrate-binding region that was more like that of asUNG, thus rationalizing the results obtained from the kinetic studies.
Collapse
Affiliation(s)
- Inger Lin Uttakleiv Raeder
- Department of Chemistry, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| | - Elin Moe
- Department of Chemistry, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| | - Nils Peder Willassen
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Arne O. Smalås
- Department of Chemistry, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| | - Ingar Leiros
- Department of Chemistry, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
121
|
Jiang YL, Gao X, Zhou G, Patel A, Javer A. Selective Recognition of Uracil and Its Derivatives Using a DNA Repair Enzyme Structural Mimic. J Org Chem 2009; 75:324-33. [DOI: 10.1021/jo901862x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yu Lin Jiang
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Xiaonan Gao
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Guannan Zhou
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Arpit Patel
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Avani Javer
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
122
|
Cole HA, Tabor-Godwin JM, Hayes JJ. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J Biol Chem 2009; 285:2876-85. [PMID: 19933279 DOI: 10.1074/jbc.m109.073544] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.
Collapse
Affiliation(s)
- Hope A Cole
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
123
|
Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc Natl Acad Sci U S A 2009; 106:20276-81. [PMID: 19920175 DOI: 10.1073/pnas.0911606106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ricin A-chain (RTA) and saporin-L1 (SAP) catalyze adenosine depurination of 28S rRNA to inhibit protein synthesis and cause cell death. We present the crystal structures of RTA and SAP in complex with transition state analogue inhibitors. These tight-binding inhibitors mimic the sarcin-ricin recognition loop of 28S rRNA and the dissociative ribocation transition state established for RTA catalysis. RTA and SAP share unique purine-binding geometry with quadruple pi-stacking interactions between adjacent adenine and guanine bases and 2 conserved tyrosines. An arginine at one end of the pi-stack provides cationic polarization and enhanced leaving group ability to the susceptible adenine. Common features of these ribosome-inactivating proteins include adenine leaving group activation, a remarkable lack of ribocation stabilization, and conserved glutamates as general bases for activation of the H(2)O nucleophile. Catalytic forces originate primarily from leaving group activation evident in both RTA and SAP in complex with transition state analogues.
Collapse
|
124
|
Chen ZQ, Zhang CH, Xue Y. Theoretical Studies on the Thermodynamics and Kinetics of the N-Glycosidic Bond Cleavage in Deoxythymidine Glycol. J Phys Chem B 2009; 113:10409-20. [PMID: 19719287 DOI: 10.1021/jp903334j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ze-qin Chen
- College of Chemistry, Key Laboratory of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, and College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Cheng-hua Zhang
- College of Chemistry, Key Laboratory of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, and College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Ying Xue
- College of Chemistry, Key Laboratory of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, and College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| |
Collapse
|
125
|
Millen AL, Wetmore SD. Glycosidic bond cleavage in deoxynucleotides — A density functional study. CAN J CHEM 2009. [DOI: 10.1139/v09-024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Density functional theory was used to study the glycosidic bond cleavage in deoxynucleotides with the main goal to determine the effects of the nucleobase, hydrogen bonding with the nucleobase, and the (bulk) environment on the reaction energetics. Since direct glycosidic bond cleavage is a high-energy process, two nucleophile models were considered (HCOO–···H2O and HO–), which represent different stages of activation of a water nucleophile. The glycosidic bond cleavage barriers were found to decrease, while the reaction exothermicity increases, with an increase in the nucleobase acidity. The gas-phase barriers and reaction energies for bond cleavage in all deoxynucleotides were found to be significantly affected by hydrogen-bonding interactions with the nucleobase (by up to 30 kJ mol–1 depending on the nucleophile). Although the barriers increase and reaction energies become less exothermic in enzymatic and aqueous environments, the effects of the bulk environment are similar in the presence and absence of small molecules bound to the nucleobase. Therefore, the effects of hydrogen bonding with the bases are approximately the same in all environments. Our results suggest that hydrogen bonding with the nucleobase may play an important role in the glycosidic bond cleavage in both pyrimidine and purine nucleotides in a variety of environments.
Collapse
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
126
|
Tubbs JL, Latypov V, Kanugula S, Butt A, Melikishvili M, Kraehenbuehl R, Fleck O, Marriott A, Watson AJ, Verbeek B, McGown G, Thorncroft M, Santibanez-Koref MF, Millington C, Arvai AS, Kroeger MD, Peterson LA, Williams DM, Fried MG, Margison GP, Pegg AE, Tainer JA. Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009; 459:808-13. [PMID: 19516334 PMCID: PMC2729916 DOI: 10.1038/nature08076] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/17/2009] [Indexed: 01/01/2023]
Abstract
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
Collapse
Affiliation(s)
- Julie L. Tubbs
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vitaly Latypov
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amna Butt
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | - Oliver Fleck
- NWCRF Institute, Bangor University, Gwynedd LL57 2UW, UK
| | - Andrew Marriott
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Amanda J. Watson
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Barbara Verbeek
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Gail McGown
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Mary Thorncroft
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | | | | | - Andrew S. Arvai
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew D. Kroeger
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa A. Peterson
- Division of Environmental Health Sciences and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David M. Williams
- Centre for Chemical Biology, Department of Chemistry, University of Sheffield, UK
| | - Michael G. Fried
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Geoffrey P. Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | - Anthony E. Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John A. Tainer
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
127
|
Friedman JI, Majumdar A, Stivers JT. Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage. Nucleic Acids Res 2009; 37:3493-500. [PMID: 19339520 PMCID: PMC2699497 DOI: 10.1093/nar/gkp161] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA repair enzyme human uracil DNA glycosylase (UNG) scans short stretches of genomic DNA and captures rare uracil bases as they transiently emerge from the DNA duplex via spontaneous base pair breathing motions. The process of DNA scanning requires that the enzyme transiently loosen its grip on DNA to allow stochastic movement along the DNA contour, while engaging extrahelical bases requires motions on a more rapid timescale. Here, we use NMR dynamic measurements to show that free UNG has no intrinsic dynamic properties in the millisecond to microsecond and subnanosecond time regimes, and that the act of binding to nontarget DNA reshapes the dynamic landscape to allow productive millisecond motions for scanning and damage recognition. These results suggest that DNA structure and the spontaneous dynamics of base pairs may drive the evolution of a protein sequence that is tuned to respond to this dynamic regime.
Collapse
Affiliation(s)
- Joshua I Friedman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
128
|
Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. How PspGI, catalytic domain of EcoRII and Ecl18kI acquire specificities for different DNA targets. Nucleic Acids Res 2008; 36:6101-8. [PMID: 18820295 PMCID: PMC2577355 DOI: 10.1093/nar/gkn621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Restriction endonucleases Ecl18kI and PspGI/catalytic domain of EcoRII recognize CCNGG and CCWGG sequences (W stands for A or T), respectively. The enzymes are structurally similar, interact identically with the palindromic CC:GG parts of their recognition sequences and flip the nucleotides at their centers. Specificity for the central nucleotides could be influenced by the strength/stability of the base pair to be disrupted and/or by direct interactions of the enzymes with the flipped bases. Here, we address the importance of these contributions. We demonstrate that wt Ecl18kI cleaves oligoduplexes containing canonical, mismatched and abasic sites in the central position of its target sequence CCNGG with equal efficiencies. In contrast, substitutions in the binding pocket for the extrahelical base alter the Ecl18kI preference for the target site: the W61Y mutant prefers only certain mismatched substrates, and the W61A variant cuts exclusively at abasic sites, suggesting that pocket interactions play a major role in base discrimination. PspGI and catalytic domain of EcoRII probe the stability of the central base pair and the identity of the flipped bases in the pockets. This ‘double check’ mechanism explains their extraordinary specificity for an A/T pair in the flipping position.
Collapse
|
129
|
Parker JB, Stivers JT. Uracil DNA glycosylase: revisiting substrate-assisted catalysis by DNA phosphate anions. Biochemistry 2008; 47:8614-22. [PMID: 18652484 PMCID: PMC2729715 DOI: 10.1021/bi800854g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uracil DNA glycosylase (UNG) is a powerful DNA repair enzyme that has been shown to stabilize a glycosyl cation reaction intermediate and a related tight binding inhibitor using electrostatic interactions with the +1 and -1, but not the +2, phosphodiester group of the single-stranded DNA substrate Ap (2+)Ap (1+)Up (1-)ApA. These experimental results differed considerably from computational findings using duplex DNA, where the +2 phosphate was found to stabilize the transition state by approximately 5 kcal/mol, suggesting that UNG uses different catalytic strategies with single-stranded and double-stranded DNA substrates. In addition, the computational studies indicated that the conserved and positively charged His148 (which hydrogen bonds to the +2 phosphate) destabilized the glycosyl cation intermediate by 6-8 kcal/mol through anticatalytic electrostatic interactions. To evaluate these interesting proposals, we measured the kinetic effects of neutral methylphosphonate (MeP) stereoisomers at the +1 and +2 positions of a 12-mer dsDNA substrate and also the catalytic contribution and ionization state of His148. For MeP substitutions at the +1 position, single-turnover kinetic studies showed that the activation barrier was increased by 9.8 and 3.1 kcal/mol, corresponding to a stereoselectivity of nearly 40000-fold for the respective MeP isomers. Identical to the findings with ssDNA, MeP substitutions at the +2 position resulted in only small changes in the activation barrier (+/-0.3 kcal/mol), with little stereoselectivity ( approximately 4-fold). However, the H148A mutation destabilizes both the ground state and transition states by 2.4 and 4.3 kcal/mol, respectively. Thus, His148 is catalytic because it stabilizes the transition state to a greater extent (1.9 kcal/mol) than the ground state. Heteronuclear NMR studies established that His148 was neutral in the free enzyme at neutral pH, and in conformational exchange in a specific DNA complex containing uracil. We conclude that the +1 and +2 phosphate esters play identical catalytic roles in the reactions of single-stranded and double-stranded DNA substrates, and that His148 serves a catalytic role by positioning the substrate and catalytic water, or by an environmental effect.
Collapse
Affiliation(s)
- Jared B. Parker
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185
| | - James T. Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185
| |
Collapse
|
130
|
Rubinson EH, Metz AH, O'Quin J, Eichman BF. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. J Mol Biol 2008; 381:13-23. [PMID: 18585735 PMCID: PMC3763988 DOI: 10.1016/j.jmb.2008.05.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/02/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.
Collapse
Affiliation(s)
- Emily H. Rubinson
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Audrey H. Metz
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jami O'Quin
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
131
|
Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci U S A 2008; 105:10791-6. [PMID: 18669665 DOI: 10.1073/pnas.0801612105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The astonishingly efficient location and excision of damaged DNA bases by DNA repair glycosylases is an especially intriguing problem in biology. One example is the enzyme uracil DNA glycosylase (UNG), which captures and excises rare extrahelical uracil bases that have emerged from the DNA base stack by spontaneous base pair breathing motions. Here, we explore the efficiency and mechanism by which UNG executes intramolecular transfer and excision of two uracil sites embedded on the same or opposite DNA strands at increasing site spacings. The efficiency of intramolecular site transfer decreased from 41 to 0% as the base pair spacing between uracil sites on the same DNA strand increased from 20 to 800 bp. The mechanism of transfer is dominated by DNA hopping between landing sites of approximately 10 bp size, over which rapid 1D scanning likely occurs. Consistent with DNA hopping, site transfer at 20- and 56-bp spacings was unaffected by whether the uracils were placed on the same or opposite strands. Thus, UNG uses hopping and 3D diffusion through bulk solution as the principal pathways for efficient patrolling of long genomic DNA sequences for damage. Short-range sliding over the range of a helical turn allows for redundant inspection of very local DNA sequences and trapping of spontaneously emerging extrahelical uracils.
Collapse
|
132
|
Garcin ED, Hosfield DJ, Desai SA, Haas BJ, Björas M, Cunningham RP, Tainer JA. DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat Struct Mol Biol 2008; 15:515-22. [PMID: 18408731 DOI: 10.1038/nsmb.1414] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/03/2008] [Indexed: 11/09/2022]
Abstract
Escherichia coli endonuclease IV is an archetype for an abasic or apurinic-apyrimidinic endonuclease superfamily crucial for DNA base excision repair. Here biochemical, mutational and crystallographic characterizations reveal a three-metal ion mechanism for damage binding and incision. The 1.10-A resolution DNA-free and the 2.45-A resolution DNA-substrate complex structures capture substrate stabilization by Arg37 and reveal a distorted Zn3-ligand arrangement that reverts, after catalysis, to an ideal geometry suitable to hold rather than release cleaved DNA product. The 1.45-A resolution DNA-product complex structure shows how Tyr72 caps the active site, tunes its dielectric environment and promotes catalysis by Glu261-activated hydroxide, bound to two Zn2+ ions throughout catalysis. These structural, mutagenesis and biochemical results suggest general requirements for abasic site removal in contrast to features specific to the distinct endonuclease IV alpha-beta triose phosphate isomerase (TIM) barrel and APE1 four-layer alpha-beta folds of the apurinic-apyrimidinic endonuclease families.
Collapse
Affiliation(s)
- Elsa D Garcin
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB4 La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Olufsen M, Smalås AO, Brandsdal BO. Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase. J Mol Model 2008; 14:201-13. [PMID: 18196298 DOI: 10.1007/s00894-007-0261-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/03/2007] [Indexed: 01/01/2023]
Abstract
Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased k(cat) and reduced K(m) relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (K(m)) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation.
Collapse
Affiliation(s)
- Magne Olufsen
- The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
134
|
Sidorenko VS, Mechetin GV, Nevinsky GA, Zharkov DO. Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase. FEBS Lett 2008; 582:410-4. [PMID: 18201572 DOI: 10.1016/j.febslet.2008.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/04/2008] [Accepted: 01/06/2008] [Indexed: 10/22/2022]
Abstract
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the processivity of Ung. Ung conducted correlated cleavage on double- and single-stranded substrates; the correlation declined with increasing salt concentration. Proteins in cell extracts also decreased Ung processivity. The correlated cleavage was reduced by nicks in DNA, suggesting the intact phosphodiester backbone is important for Ung processivity.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
135
|
Abstract
The efficient enzymatic detection of damaged bases concealed in the DNA double helix is an essential step during DNA repair in all cells. Emergent structural and mechanistic approaches have provided glimpses into this enigmatic molecular recognition event in several systems. A ubiquitous feature of these essential reactions is the binding of the damaged base in an extrahelical binding mode. The reaction pathway by which this remarkable extrahelical state is achieved is of great interest and even more debate.
Collapse
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., WBS 314, Baltimore, MD 21205, USA.
| |
Collapse
|
136
|
|
137
|
Parker JB, Bianchet MA, Krosky DJ, Friedman JI, Amzel LM, Stivers JT. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 2007; 449:433-7. [PMID: 17704764 PMCID: PMC2754044 DOI: 10.1038/nature06131] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/27/2007] [Indexed: 01/07/2023]
Abstract
The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic U*A pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare U*A or U*G base pairs in a background of approximately 10(9) T*A or C*G base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of T*A and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.
Collapse
Affiliation(s)
- Jared B Parker
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
138
|
Kosaka H, Hoseki J, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. J Mol Biol 2007; 373:839-50. [PMID: 17870091 DOI: 10.1016/j.jmb.2007.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/01/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of deoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We have determined the crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition.
Collapse
Affiliation(s)
- Hiromichi Kosaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
139
|
Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC STRUCTURAL BIOLOGY 2007; 7:45. [PMID: 17605817 PMCID: PMC1936997 DOI: 10.1186/1472-6807-7-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 07/02/2007] [Indexed: 11/13/2022]
Abstract
Background Uracil-DNA glycosylases (UDGs) catalyze excision of uracil from DNA. Vaccinia virus, which is the prototype of poxviruses, encodes a UDG (vvUDG) that is significantly different from the UDGs of other organisms in primary, secondary and tertiary structure and characteristic motifs. It adopted a novel catalysis-independent role in DNA replication that involves interaction with a viral protein, A20, to form the processivity factor. UDG:A20 association is essential for assembling of the processive DNA polymerase complex. The structure of the protein must have provisions for such interactions with A20. This paper provides the first glimpse into the structure of a poxvirus UDG. Results Results of dynamic light scattering experiments and native size exclusion chromatography showed that vvUDG is a dimer in solution. The dimeric assembly is also maintained in two crystal forms. The core of vvUDG is reasonably well conserved but the structure contains one additional β-sheet at each terminus. A glycerol molecule is found in the active site of the enzyme in both crystal forms. Interaction of this glycerol molecule with the protein possibly mimics the enzyme-substrate (uracil) interactions. Conclusion The crystal structures reveal several distinctive features of vvUDG. The new structural features may have evolved for adopting novel functions in the replication machinery of poxviruses. The mode of interaction between the subunits in the dimers suggests a possible model for binding to its partner and the nature of the processivity factor in the polymerase complex.
Collapse
|
140
|
Pettersen HS, Sundheim O, Gilljam KM, Slupphaug G, Krokan HE, Kavli B. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res 2007; 35:3879-92. [PMID: 17537817 PMCID: PMC1919486 DOI: 10.1093/nar/gkm372] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.
Collapse
Affiliation(s)
| | | | | | | | | | - Bodil Kavli
- *To whom correspondence should be addressed. +47 72 573221+47 72576400
| |
Collapse
|
141
|
Bouvier B, Grubmüller H. A molecular dynamics study of slow base flipping in DNA using conformational flooding. Biophys J 2007; 93:770-86. [PMID: 17496048 PMCID: PMC1913169 DOI: 10.1529/biophysj.106.091751] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Individual DNA bases are known to be able to flip out of the helical stack, providing enzymes with access to the genetic information otherwise hidden inside the helix. Consequently, base flipping is a necessary first step to many more complex biological processes such as DNA transcription or replication. Much remains unknown about this elementary step, despite a wealth of experimental and theoretical studies. From the theoretical point of view, the involved timescale of milliseconds or longer requires the use of enhanced sampling techniques. In contrast to previous theoretical studies employing umbrella sampling along a predefined flipping coordinate, this study attempts to induce flipping without prior knowledge of the pathway, using information from a molecular dynamics simulation of a B-DNA fragment and the conformational flooding method. The relevance to base flipping of the principal components of the simulation is assayed, and a combination of modes optimally related to the flipping of the base through either helical groove is derived for each of the two bases of the central guanine-cytosine basepair. By applying an artificial flooding potential along these collective coordinates, the flipping mechanism is accelerated to within the scope of molecular dynamics simulations. The associated free energy surface is found to feature local minima corresponding to partially flipped states, particularly relevant to flipping in isolated DNA; further transitions from these minima to the fully flipped conformation are accelerated by additional flooding potentials. The associated free energy profiles feature similar barrier heights for both bases and pathways; the flipped state beyond is a broad and rugged attraction basin, only a few kcal/mol higher in energy than the closed conformation. This result diverges from previous works but echoes some aspects of recent experimental findings, justifying the need for novel approaches to this difficult problem: this contribution represents a first step in this direction. Important structural factors involved in flipping, both local (sugar-phosphate backbone dihedral angles) and global (helical axis bend), are also identified.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
142
|
Meroueh SO, Mobashery S. Conformational Transition in the Aminoacyl t-RNA Site of the Bacterial Ribosome both in the Presence and Absence of an Aminoglycoside Antibiotic. Chem Biol Drug Des 2007; 69:291-7. [PMID: 17539821 DOI: 10.1111/j.1747-0285.2007.00505.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide bonds are made at the ribosomal decoding site. Structural information reveals that two bases in the RNA that constitute the decoding site, A1492 and A1493, can have both intrahelical and extrahelical conformations. Aminoglycoside antibiotics bind to the decoding site, and the structural information reveals the two bases in the extrahelical positions. We have shown by explicit-solvent molecular dynamics simulations and free-energy calculations that ribosomal RNA bases A1492 and A1493 are inherently prone to sampling conformational states that include both intrahelical and extrahelical positions. The simulations reveal that base flipping occurs through the minor groove of the double helix. Furthermore, free-energy calculations for the conformational change of the bases to the extrahelical positions in both processes are exergonic and highly favorable. It is likely that the correct codon-anticodon recognition by mRNA and tRNA arrests the bases in extrahelical conformations in the course of normal translation. In contrast, the sequestration of the aminoglycoside antibiotic at the decoding site facilitates the conformational change of the bases to the extrahelical position. Once the antibiotic is bound, the extrahelical positions for the bases are highly favored based on contributions by both electrostatic and entropic components of the free energy for the process.
Collapse
Affiliation(s)
- Samy O Meroueh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
143
|
Millen AL, Archibald LAB, Hunter KC, Wetmore SD. A kinetic and thermodynamic study of the glycosidic bond cleavage in deoxyuridine. J Phys Chem B 2007; 111:3800-12. [PMID: 17388517 DOI: 10.1021/jp063841m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Density functional theory was used to study the thermodynamics and kinetics for the glycosidic bond cleavage in deoxyuridine. Two reaction pathways were characterized for the unimolecular decomposition in vacuo. However, these processes are associated with large reaction barriers and highly endothermic reaction energies, which is in agreement with experiments that suggest a (water) nucleophile is required for the nonenzymatic glycosidic bond cleavage. Two (S(N)1 and S(N)2) reaction pathways were characterized for direct hydrolysis of the glycosidic bond by a single water molecule; however, both pathways also involve very large barriers. Activation of the water nucleophile via partial proton abstraction steadily decreases the barrier and leads to a more exothermic reaction energy as the proton affinity of the molecule interacting with water increases. Indeed, our data suggests that the barrier heights and reaction energies range from that for hydrolysis by water to that for hydrolysis by the hydroxyl anion, which represents the extreme of (full) water activation (deprotonation). Hydrogen bonds between small molecules (hydrogen fluoride, water, or ammonia) and the nucleobase were found to further decrease the barrier and overall reaction energy but not to the extent that the same hydrogen-bonding interactions increase the acidity of the nucleobase. Our results suggest that the nature of the nucleophile plays a more important role in reducing the barrier to glycosidic bond cleavage than the nature of the small molecule bound, and models with more than one hydrogen fluoride molecule interacting with the nucleobase provide further support for this conclusion. Our results lead to a greater fundamental understanding of the effects of the nucleophile, activation of the nucleophile, and interactions with the nucleobase for this important biological reaction.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | | | | | | |
Collapse
|
144
|
Hunter KC, Wetmore SD. Environmental Effects on the Enhancement in Natural and Damaged DNA Nucleobase Acidity Because of Discrete Hydrogen-Bonding Interactions. J Phys Chem A 2007; 111:1933-42. [PMID: 17302396 DOI: 10.1021/jp066641j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study uses density functional theory to carefully consider the effects of the environment on the enhancement in (natural and damaged) DNA nucleobase acidities because of multiple hydrogen-bonding interactions. Although interactions with one small molecule can increase the acidity of the nucleobases by up to 60 kJ mol-1 in the gas phase, the maximum increase in enzymatic-like environments is expected to be approximately 40 kJ mol-1, which reduces to approximately 30 kJ mol-1 in water. Furthermore, the calculated (simultaneous) effects of two, three, or four molecules are increasingly less than the sum of the individual (additive) effects with an increase in the number and acidity of the small molecules bound or the dielectric constant of the solvent. Regardless of these trends, our calculations reveal that additional hydrogen-bonding interactions will have a significant effect on nucleobase acidity in a variety of environments, where the exact magnitude of the effect depends on the properties of the small molecule bound, the nucleobase binding site, and the solvent. The maximum increase in nucleobase acidity because of interactions with up to four small molecules is approximately 80 kJ mol-1 in enzymatic-like environments (or 65 kJ mol-1 in water). These results suggest that hydrogen-bonding interactions likely play an important role in many biological processes by changing the physical and chemical properties of the nucleobases.
Collapse
Affiliation(s)
- Ken C Hunter
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, E4L 1G8, Canada
| | | |
Collapse
|
145
|
Zhao RY, Elder RT, Bukrinsky M. Interactions of HIV-1 viral protein R with host cell proteins. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:233-60. [PMID: 17586317 DOI: 10.1016/s1054-3589(07)55007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
146
|
Walker RK, McCullough AK, Lloyd RS. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase. Biochemistry 2006; 45:14192-200. [PMID: 17115714 PMCID: PMC2673921 DOI: 10.1021/bi060802s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteriophage T4 pyrimidine dimer glycosylase (T4-Pdg) is a base excision repair protein that incises DNA at cyclobutane pyrimidine dimers that are formed as a consequence of exposure to ultraviolet light. Cocrystallization of T4-Pdg with substrate DNA has shown that the adenosine opposite the 5'-thymine of a thymine-thymine (TT) dimer is flipped into an extrahelical conformation and that the DNA backbone is kinked 60 degrees in the enzyme-substrate (ES) complex. To examine the kinetic details of the precatalytic events in the T4-Pdg reaction mechanism, investigations were designed to separately assess nucleotide flipping and DNA bending. The fluorescent adenine base analogue, 2-aminopurine (2-AP), placed opposite an abasic site analogue, tetrahydrofuran, exhibited a 2.8-fold increase in emission intensity when flipped in the ES complex. Using the 2-AP fluorescence signal for nucleotide flipping, kon and koff pre-steady-state kinetic measurements were determined. DNA bending was assessed by fluorescence resonance energy transfer using fluorescent donor-acceptor pairs located at the 5'-ends of oligonucleotides in duplex DNA. The fluorescence intensity of the donor fluorophore was quenched by 15% in the ES complex as a result of an increased efficiency of energy transfer between the labeled ends of the DNA in the bent conformation. Kinetic analyses of the bending signal revealed an off rate that was 2.5-fold faster than the off rate for nucleotide flipping. These results demonstrate that the nucleotide flipping step can be uncoupled from the bending of DNA in the formation of an ES complex.
Collapse
Affiliation(s)
- Randall K Walker
- PerkinElmer Life and Analytical Sciences, Boston, Massachusetts 02118-2512, USA
| | | | | |
Collapse
|
147
|
Krosky DJ, Bianchet MA, Seiple L, Chung S, Amzel LM, Stivers JT. Mimicking damaged DNA with a small molecule inhibitor of human UNG2. Nucleic Acids Res 2006; 34:5872-9. [PMID: 17062624 PMCID: PMC1635321 DOI: 10.1093/nar/gkl747] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements. This high-throughput synthesis and screening approach produced two novel uracil-tethered inhibitors of UNG2, the best of which was crystallized with the enzyme. Remarkably, this inhibitor mimics the crucial hydrogen bonding and electrostatic interactions previously observed in UNG2 complexes with damaged uracilated DNA. Thus, the environment of the binding site selects for library ligands that share these DNA features. This is a general approach to rapid discovery of inhibitors of enzymes that recognize extrahelical damaged bases.
Collapse
Affiliation(s)
| | - Mario A. Bianchet
- Department of Biophysics and Biophysical Chemistry of the Johns Hopkins Medical School725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry of the Johns Hopkins Medical School725 North Wolfe Street, Baltimore, MD 21205, USA
| | - James T. Stivers
- To whom correspondence should be addressed. Tel: +1 410 502 2758; Fax: +1 410 955 3023;
| |
Collapse
|
148
|
Cao C, Jiang YL, Krosky DJ, Stivers JT. The catalytic power of uracil DNA glycosylase in the opening of thymine base pairs. J Am Chem Soc 2006; 128:13034-5. [PMID: 17017766 PMCID: PMC2529456 DOI: 10.1021/ja062978n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uracil DNA glycosylase (UNG) locates uracil and its structural congener thymine in the context of duplex DNA using a base flipping mechanism. NMR imino proton exchange measurements were performed on free and UNG-bound DNA duplexes in which a single thymine (T) was paired with a series of adenine analogues (X) capable of forming one, two, or three hydrogen bonds. The base pair opening equilibrium for the free DNA increased 55-fold as the number of hydrogen bonds decreased, but the opening rate constants were nearly the same in the absence and presence of UNG. In contrast, UNG was found to slow the base pair closing rate constants (kcl) compared to each free duplex by a factor of 3- to 23-fold. These findings indicate that regardless of the inherent thermodynamic stability of the TX pair, UNG does not alter the spontaneous opening rate. Instead, the enzyme holds the spontaneously expelled thymine (or uracil) in a transient extrahelical sieving site where it may partition forward into the enzyme active site (uracil) or back into the DNA base stack (thymine).
Collapse
Affiliation(s)
- Chunyang Cao
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore Maryland, 21205
| | - Yu Lin Jiang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore Maryland, 21205
| | - Daniel J. Krosky
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore Maryland, 21205
| | - James T. Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore Maryland, 21205
| |
Collapse
|
149
|
Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J Am Chem Soc 2006; 128:12510-9. [PMID: 16984202 PMCID: PMC2809119 DOI: 10.1021/ja0634829] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Initiating the DNA base excision repair pathway, DNA glycosylases find and hydrolytically excise damaged bases from DNA. While some DNA glycosylases exhibit narrow specificity, others remove multiple forms of damage. Human thymine DNA glycosylase (hTDG) cleaves thymine from mutagenic G.T mispairs, recognizes many additional lesions, and has a strong preference for nucleobases paired with guanine rather than adenine. Yet, hTDG avoids cytosine, despite the million-fold excess of normal G.C pairs over G.T mispairs. The mechanism of this remarkable and essential specificity has remained obscure. Here, we examine the possibility that hTDG specificity depends on the stability of the scissile base-sugar bond by determining the maximal activity (k(max)) against a series of nucleobases with varying leaving-group ability. We find that hTDG removes 5-fluorouracil 78-fold faster than uracil, and 5-chlorouracil, 572-fold faster than thymine, differences that can be attributed predominantly to leaving-group ability. Moreover, hTDG readily excises cytosine analogues with improved leaving ability, including 5-fluorocytosine, 5-bromocytosine, and 5-hydroxycytosine, indicating that cytosine has access to the active site. A plot of log(k(max)) versus leaving-group pK(a) reveals a Brønsted-type linear free energy relationship with a large negative slope of beta(lg) = -1.6 +/- 0.2, consistent with a highly dissociative reaction mechanism. Further, we find that the hydrophobic active site of hTDG contributes to its specificity by enhancing the inherent differences in substrate reactivity. Thus, hTDG specificity depends on N-glycosidic bond stability, and the discrimination against cytosine is due largely to its very poor leaving ability rather than its exclusion from the active site.
Collapse
Affiliation(s)
- Matthew T. Bennett
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore MD 21201
| | - M. T. Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | | | | | - Leslie Eisele
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore MD 21201
| |
Collapse
|
150
|
Stivers JT, Nagarajan R. Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens. Chem Rev 2006; 106:3443-67. [PMID: 16895336 PMCID: PMC2729714 DOI: 10.1021/cr050317n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|