101
|
Mould AP, Askari JA, Barton S, Kline AD, McEwan PA, Craig SE, Humphries MJ. Integrin activation involves a conformational change in the alpha 1 helix of the beta subunit A-domain. J Biol Chem 2002; 277:19800-5. [PMID: 11893752 DOI: 10.1074/jbc.m201571200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding region of integrin beta subunits contains a von Willebrand factor type A-domain: an alpha/beta "Rossmann" fold containing a metal ion-dependent adhesion site (MIDAS) on its top face. Although there is evidence to suggest that the betaA-domain undergoes changes in tertiary structure during receptor activation, the identity of the secondary structure elements that change position is unknown. The mAb 12G10 recognizes a unique cation-regulated epitope on the beta(1) A-domain, induction of which parallels the activation state of the integrin (i.e. competency for ligand recognition). The ability of Mn(2+) and Mg(2+) to stimulate 12G10 binding is abrogated by mutation of the MIDAS motif, demonstrating that the MIDAS is a Mn(2+)/Mg(2+) binding site and that occupancy of this site induces conformational changes in the A-domain. The cation-regulated region of the 12G10 epitope maps to Arg(154)/Arg(155) in the alpha1 helix. Our results demonstrate that the alpha1 helix undergoes conformational alterations during integrin activation and suggest that Mn(2+) acts as a potent activator of beta(1) integrins because it can promote a shift in the position of this helix. The mechanism of beta subunit A-domain activation appears to be distinct from that of the A-domains found in some integrin alpha subunits.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
102
|
Alonso JL, Essafi M, Xiong JP, Stehle T, Arnaout MA. Does the integrin alphaA domain act as a ligand for its betaA domain? Curr Biol 2002; 12:R340-2. [PMID: 12015130 DOI: 10.1016/s0960-9822(02)00852-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
103
|
Alon R, Feigelson S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 2002; 14:93-104. [PMID: 11978081 DOI: 10.1006/smim.2001.0346] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to extravasate the bloodstream at specific sites of inflammation or antigen presentation, circulating leukocytes must rapidly translate specific adhesive and stimulatory signals into firm adhesion. Leukocyte arrest is nearly exclusively mediated by integrin receptors. Recent in vitro and in vivo evidence suggests that specialized integrins support reversible tethers that slow down selectin-initiated rolling of leukocytes prior to their arrest. In situ activation of integrin avidity by ligand and chemokine signaling can take place within fractions of seconds, resulting either in augmented reversible adhesions or immediate arrest on the vascular endothelium. The ability of leukocyte integrins to rapidly respond to these in situ avidity modulators appears to depend on preformed affinity and clustering states, which are internally regulated by cytoskeletal constraints on integrin conformation and mobility. We discuss potential regulatory mechanisms by which a given set of chemokine receptors and integrins may interact to rapidly generate high avidity, shear-resistant integrin-mediated leukocyte arrest on vascular endothelium.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| | | |
Collapse
|
104
|
Ma Q, Shimaoka M, Lu C, Jing H, Carman CV, Springer TA. Activation-induced conformational changes in the I domain region of lymphocyte function-associated antigen 1. J Biol Chem 2002; 277:10638-41. [PMID: 11792712 DOI: 10.1074/jbc.m112417200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes in integrins are important for efficient ligand binding during activation. We proposed that the I domain of the integrin lymphocyte function-associated antigen 1 (LFA-1) could exist in both open and closed conformations and generated constitutively activated LFA-1 by locking the I domain in the open conformation. Here we provide structural and biochemical evidence to validate conformational change in the I domain of LFA-1 upon activation. Two monoclonal antibodies to alpha(L), HI111 and CBR LFA-1/1, bind wild-type LFA-1 well, but their binding is significantly reduced when LFA-1 is locked in the open conformation. Furthermore, this reduction in monoclonal antibody binding also occurs when LFA-1 is activated by divalent cations. HI111 maps to the top region of the I domain that is close to the putative ligand-binding site surrounding the MIDAS (metal ion-dependent adhesion site). The epitope of CBR LFA-1/1 is at the C-terminal segment of the I domain that links to the beta-propeller, and undergoes a large movement between the open and closed conformations. Our data demonstrate that these two regions undergo significant conformational changes during LFA-1 activation and that the I domain of activated LFA-1 adopts a similar tertiary structure as the predicted locked open form.
Collapse
Affiliation(s)
- Qing Ma
- Department of Pathology, Center for Blood Research and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
105
|
Welzenbach K, Hommel U, Weitz-Schmidt G. Small molecule inhibitors induce conformational changes in the I domain and the I-like domain of lymphocyte function-associated antigen-1. Molecular insights into integrin inhibition. J Biol Chem 2002; 277:10590-8. [PMID: 11781316 DOI: 10.1074/jbc.m110521200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) is a conformationally flexible alpha/beta heterodimeric receptor, which is expressed on the surface of all leukocytes. LFA-1 mediates cell adhesion crucial for normal immune and inflammatory responses. Intracellular signals or cations are required to convert LFA-1 from a nonligand binding to a ligand binding state. Here we investigated the effect of small molecule inhibitors on LFA-1 by monitoring the binding of monoclonal antibodies mapped to different receptor domains. The inhibitors were found to not only induce epitope changes in the I domain of the alpha(L) chain but also in the I-like domain of the beta(2) chain depending on the individual chemical structure of the inhibitor and its binding site. For the first time, we provide strong evidence that the I-like domain represents a target for allosteric LFA-1 inhibition similar to the well established regulatory L-site on the I domain of LFA-1. Moreover, the antibody binding patterns observed in the presence of the various inhibitors establish a conformational interaction between the LFA-1 I domain and the I-like domain in the native receptor that is formed upon activation. Differentially targeting the binding sites of the inhibitors, the L-site and the I-like domain, may open new avenues for highly specific therapeutic intervention in diseases where integrins play a pathophysiological role.
Collapse
Affiliation(s)
- Karl Welzenbach
- Novartis Pharma AG, Preclinical Research, Basel CH-4002, Switzerland
| | | | | |
Collapse
|
106
|
Aquilina A, Korda M, Bergelson JM, Humphries MJ, Farndale RW, Tuckwell D. A novel gain-of-function mutation of the integrin alpha2 VWFA domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1136-44. [PMID: 11856343 DOI: 10.1046/j.0014-2956.2001.02740.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrin alpha2beta1 is the major receptor for collagens in human tissues, being involved in cell adhesion and the control of collagen and collagenase gene expression. The collagen binding site of alpha2beta1 has been localized to the alpha2 von Willebrand Factor type A (VWFA) domain (A-domain or I-domain) and the residues responsible for the interaction with collagen have been mapped. We report a study of alpha2 VWFA domain in which residue E318, which lies outside the collagen binding site, is mutated to tryptophan, showing that this is a gain-of-function mutation. Recombinant alpha2-E318W VWFA domain showed elevated and specific binding to collagen I compared with the wild-type. Side chain hydrophobicity was important for the gain-of-function as elevated binding was seen with E318I and E318Y, but not with E318R. The E318W mutation had additional effects on VWFA domain properties as alpha2-E318W VWFA domain differed from the wild-type in its cation preferences for ligand binding and in binding to monoclonal antibody JA203, which bound at a site distal to E318. The gain-of-function effect was not restricted to binding to collagen I as alpha2-E318W also showed elevated binding to collagen IV, collagen I C-propeptide, laminin and E-cadherin. Binding to these ligands was inhibited by collagen peptide containing the GFOGER motif, indicating that these bound to the VWFA domain by a similar mechanism to collagen I. These data indicate that residue E318 plays a novel and important role in modulating alpha2 VWFA domain--ligand binding and may be involved in the conformational changes associated with its regulation.
Collapse
Affiliation(s)
- Alexis Aquilina
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
107
|
Bunting M, Harris ES, McIntyre TM, Prescott SM, Zimmerman GA. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr Opin Hematol 2002; 9:30-5. [PMID: 11753075 DOI: 10.1097/00062752-200201000-00006] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukocyte adhesion deficiency (LAD) syndromes are failures of innate host defenses against bacteria, fungi, and other microorganisms resulting from defective tethering, adhesion, and targeting of myeloid leukocytes to sites of microbial invasion. LAD I and variant LAD I syndromes are caused by mutations that impair expression or function of integrins of the beta 2 class (CD11/CD18 integrins, or "leukocyte" integrins). In contrast, subjects with LAD II have similar clinical features but intact leukocyte integrin expression and function. The molecular basis for LAD II is defective glycosylation of ligands on leukocytes recognized by the selectin family of adhesion molecules as well as defective glycosylation of other glycoconjugates. The defect has recently been attributed to mutations in a novel fucose transporter localized to the Golgi apparatus. Establishing the molecular basis for LAD syndromes has generated insights into mechanisms of leukocyte accumulation relevant to a broad variety of immunodeficiency syndromes as well as to diseases and disorders of unregulated inflammation that result in tissue damage.
Collapse
Affiliation(s)
- Michaeline Bunting
- Program in Human Molecular Biology and Genetics, Huntsman Cancer Institute, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
108
|
Beals CR, Edwards AC, Gottschalk RJ, Kuijpers TW, Staunton DE. CD18 activation epitopes induced by leukocyte activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6113-22. [PMID: 11714770 DOI: 10.4049/jimmunol.167.11.6113] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.
Collapse
|
109
|
Lupher ML, Harris EA, Beals CR, Sui LM, Liddington RC, Staunton DE. Cellular activation of leukocyte function-associated antigen-1 and its affinity are regulated at the I domain allosteric site. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1431-9. [PMID: 11466362 DOI: 10.4049/jimmunol.167.3.1431] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The I domain of the integrin LFA-1 possesses a ligand binding interface that includes the metal ion-dependent adhesion site. Binding of the LFA-1 ligand, ICAM-1 to the metal ion-dependent adhesion site is regulated by the I domain allosteric site (IDAS). We demonstrate here that intracellular signaling leading to activation of LFA-1 binding to ICAM-1 is regulated at the IDAS. Inhibitory mutations in or proximal to the IDAS are dominant to cytoplasmic signals that activate binding to ICAM-1. In addition, mutational activation at the IDAS greatly increases the binding of lymphocyte-expressed LFA-1 to ICAM-1 in response to PMA, but does not result in constitutive binding. Binding of a novel CD18 activation epitope mAb to LFA-1 in response to soluble ICAM-1 binding was also blocked by inhibitory and was enhanced by activating IDAS mutations. Surface plasmon resonance using soluble wild-type LFA-1 and an IDAS mutant of LFA-1 indicate that the IDAS can regulate a 6-fold change in the K(d) of ICAM-1 binding. The K(d) of wild-type LFA-1 (1.2 x 10(-1) s(-1)) differed with that of the activating IDAS mutant (1.9 x 10(-2) s(-1)), but their K(a) values were identical (2.2 x 10(5) M(-1)s(-1)). We propose that IDAS regulates the binding of LFA-1 to ICAM-1 activated by intracellular signals. IDAS can control the affinity state of LFA-1 with concomitant I domain and CD18 conformational changes.
Collapse
Affiliation(s)
- M L Lupher
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021, USA
| | | | | | | | | | | |
Collapse
|
110
|
Yoshida A, Takahashi HK, Nishibori M, Iwagaki H, Yoshino T, Morichika T, Yokoyama M, Kondo E, Akagi T, Tanaka N. IL-18-induced expression of intercellular adhesion molecule-1 in human monocytes: involvement in IL-12 and IFN-gamma production in PBMC. Cell Immunol 2001; 210:106-15. [PMID: 11520077 DOI: 10.1006/cimm.2001.1811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
IL-18 time- and concentration-dependently upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in a monocyte population in human PBMC as determined by FACS analysis while the expression of CD11a, CD18, CD29, CD44, and CD62L in monocytes and that of ICAM-1, CD11a, CD18, CD29, CD44, and CD62L in T cells was not influenced by IL-18. IL-18 in the same concentration range stimulated the production of IL-12, TNF-alpha, and IFN-gamma in culture of PBMC; however, IL-18-induced expression of ICAM-1 in monocytes was not inhibited by anti-IL-12, anti-TNF-alpha, or anti-IFN-gamma Ab, suggesting the independence of the upregulating effect of IL-18 on endogenous IL-12, TNF-alpha, and IFN-gamma production. IL-18 also induced the aggregation of PBMC, which was prevented by anti-ICAM-1 and anti-LFA-1 Abs. On the other hand, anti-ICAM-1 and anti-LFA-1 Abs inhibited IL-18-induced production of three cytokines, IL-12, IFN-gamma, and TNF-alpha, by 60 and 40%, respectively. These results strongly suggested that the IL-18-induced upregulation of ICAM-1 and the subsequent adhesive interaction through ICAM-1 on monocytes and LFA-1 on T/NK cells generate an additional stimulatory signaling as well as an efficient paracrine environment for the IL-18-initiated cytokine cascade.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Aggregation/drug effects
- Cell Separation
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Dose-Response Relationship, Drug
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Humans
- Intercellular Adhesion Molecule-1/biosynthesis
- Intercellular Adhesion Molecule-1/genetics
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-12/immunology
- Interleukin-18/pharmacology
- Interleukin-18 Receptor alpha Subunit
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Killer Cells, Natural/drug effects
- Leukocytes, Mononuclear/classification
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Function-Associated Antigen-1/chemistry
- Lymphocyte Function-Associated Antigen-1/metabolism
- Monocytes/drug effects
- Monocytes/metabolism
- Protein Conformation
- Receptors, Interleukin/drug effects
- Receptors, Interleukin/physiology
- Receptors, Interleukin-18
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- A Yoshida
- Department of Tumour Biology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7:687-92. [PMID: 11385505 DOI: 10.1038/89058] [Citation(s) in RCA: 736] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The beta2 integrin leukocyte function antigen-1 (LFA-1) has an important role in the pathophysiology of inflammatory and autoimmune diseases. Here we report that statin compounds commonly used for the treatment of hypercholesterolemia selectively blocked LFA-1-mediated adhesion and costimulation of lymphocytes. This effect was unrelated to the statins' inhibition of 3-hydroxy-3-methylglutaryl coenzyme-A reductase; instead it occurred via binding to a novel allosteric site within LFA-1. Subsequent optimization of the statins for LFA-1 binding resulted in potent, selective and orally active LFA-1 inhibitors that suppress the inflammatory response in a murine model of peritonitis. Targeting of the statin-binding site of LFA-1 could be used to treat diseases such as psoriasis, rheumatoid arthritis, ischemia/reperfusion injury and transplant rejection.
Collapse
Affiliation(s)
- G Weitz-Schmidt
- Novartis Pharma AG, Preclinical Research, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Hogg N, Leitinger B. Shape and shift changes related to the function of leukocyte integrins LFA‐1 and Mac‐1. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nancy Hogg
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London, England
| | - Birgit Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London, England
| |
Collapse
|
113
|
Shimaoka M, Lu C, Palframan RT, von Andrian UH, McCormack A, Takagi J, Springer TA. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci U S A 2001; 98:6009-14. [PMID: 11353828 PMCID: PMC33413 DOI: 10.1073/pnas.101130498] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The integrin alphaLbeta2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the alphaM and alpha2 subunits has been crystallized in both open and closed conformations; however, the alphaL I domain has been crystallized in only the closed conformation. We hypothesized that the alphaL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the alphaL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg(2+). Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The k(on), k(off), and K(D) values for the locked open I domain were within 1.5-fold of values previously determined for the alphaLbeta2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized alphaLbeta2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.
Collapse
Affiliation(s)
- M Shimaoka
- The Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Lu C, Takagi J, Springer TA. Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state. J Biol Chem 2001; 276:14642-8. [PMID: 11279101 DOI: 10.1074/jbc.m100600200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesiveness of integrins is regulated through a process termed "inside-out" signaling. To understand the molecular mechanism of integrin inside-out signaling, we generated K562 stable cell lines that expressed LFA-1 (alpha(L)beta(2)) or Mac-1 (alpha(M)beta(2)) with mutations in the cytoplasmic domain. Complete truncation of the beta(2) cytoplasmic domain, but not a truncation that retained the membrane proximal eight residues, resulted in constitutive activation of alpha(L)beta(2) and alpha(M)beta(2), demonstrating the importance of this membrane proximal region in the regulation of integrin adhesive function. Furthermore, replacement of the alpha(L) and beta(2) cytoplasmic domains with acidic and basic peptides that form an alpha-helical coiled coil caused inactivation of alpha(L)beta(2). Association of these artificial cytoplasmic domains was directly demonstrated. By contrast, replacement of the alpha(L) and beta(2) cytoplasmic domains with two basic peptides that do not form an alpha-helical coiled coil activated alpha(L)beta(2). Induction of ligand binding by the activating cytoplasmic domain mutations correlated with the induction of activation epitopes in the extracellular domain. Our data demonstrate that cytoplasmic, membrane proximal association between integrin alpha and beta subunits, constrains an integrin in the inactive conformation.
Collapse
Affiliation(s)
- C Lu
- Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
115
|
Drbal K, Angelisová P, Cerný J, Hilgert I, Horejsí V. A novel anti-CD18 mAb recognizes an activation-related epitope and induces a high-affinity conformation in leukocyte integrins. Immunobiology 2001; 203:687-98. [PMID: 11402502 DOI: 10.1016/s0171-2985(01)80017-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody MEM-148 was previously shown to recognize CD18 chains in a free form unassociated within leukocyte integrin heterodimers, but yet it is paradoxically able to induce a high-affinity conformation in the native, cell surface expressed LFA-1 molecules. Our results based on kinetics of binding, immunoprecipitation and cell-aggregation experiments demonstrate that the mAb does bind to and stabilizes a specific conformation of LFA-1 heterodimers apparently distinguished by an increased affinity to its cellular ligand(s). A similar high-affinity conformation of LFA-1, in which the MEM-148 epitope becomes exposed, is induced also by a Mg2+/EDTA or low pH (5.5-6.5) treatments which may mimic physiologically relevant situations in normal or inflamed tissues. Thus, mAb MEM-148 is a novel valuable tool for detection and induction of specific conformations of human leukocyte integrins.
Collapse
Affiliation(s)
- K Drbal
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
116
|
|
117
|
Lu C, Shimaoka M, Ferzly M, Oxvig C, Takagi J, Springer TA. An isolated, surface-expressed I domain of the integrin alphaLbeta2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Proc Natl Acad Sci U S A 2001; 98:2387-92. [PMID: 11226249 PMCID: PMC30148 DOI: 10.1073/pnas.041606398] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We introduced disulfide bonds to lock the integrin alphaLbeta2 I domain in predicted open, ligand binding or closed, nonbinding conformations. Transfectants expressing alphaLbeta2 heterodimers containing locked-open but not locked-closed or wild-type I domains constitutively adhered to intercellular adhesion molecule-1 (ICAM-1) substrates. Locking the I domain closed abolished constitutive and activatable adhesion. The isolated locked-open I domain bound as well as the activated alphaLbeta2 heterodimer, and binding was abolished by reduction of the disulfide. Lovastatin, which binds under the conformationally mobile C-terminal alpha-helix of the I domain, inhibited binding to ICAM-1 by alphaLbeta2 with wild-type, but not locked-open I domains. These data establish the importance of conformational change in the alphaL I domain for adhesive function and show that this domain is sufficient for full adhesive activity.
Collapse
Affiliation(s)
- C Lu
- The Center for Blood Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
118
|
Leitinger B, McDowall A, Stanley P, Hogg N. The regulation of integrin function by Ca(2+). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:91-8. [PMID: 11108953 DOI: 10.1016/s0167-4889(00)00086-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrins are metalloproteins whose receptor function is dependent on the interplay between Mg(2+) and Ca(2+). Although the specificity of the putative divalent cation binding sites has been poorly understood, some issues are becoming clearer and this review will focus on the more recent information. The MIDAS motif is a unique Mg(2+)/Mn(2+) binding site located in the integrin alpha subunit I domain. Divalent cation bound at this site has a structural role in coordinating the binding of ligand to the I domain containing integrins. The I-like domain of the integrin beta subunit also has a MIDAS-like motif but much less is known about its cation binding preferences. The N-terminal region of the integrin alpha subunit has been modelled as a beta-propeller, containing three or four 'EF hand' type divalent cation binding motifs for which the function is ill defined. It seems certain that most integrins have a high affinity Ca(2+) site which is critical for alphabeta heterodimer formation, but the location of this site is unknown. Finally intracellular Ca(2+) fluxes activate the Ca(2+) requiring enzyme, calpain, which regulates cluster formation of leucocyte integrins.
Collapse
Affiliation(s)
- B Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | | | | | |
Collapse
|
119
|
Xiong JP, Li R, Essafi M, Stehle T, Arnaout MA. An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J Biol Chem 2000; 275:38762-7. [PMID: 11034990 DOI: 10.1074/jbc.c000563200] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to cell activation signals, integrins switch from a low to a high affinity state. Physiologic ligands bind to integrins through a von Willebrand Factor A-type domain. Crystallographic studies revealed two conformations of this domain, "closed" and "open." The latter crystallizes in complex with a pseudoligand or ligand, suggesting that it represents the high affinity state; data linking structure and activity are lacking however. In this communication, we expressed stable low and high affinity forms of integrin CD11b A-domain and determined their binding isotherms and crystal structures. The low affinity form, generated by deleting an N-terminal extension extrinsic to the domain, did not bind to physiologic ligands, and crystallized in the closed conformation. The high affinity form was generated by either deleting or substituting an invariable C-terminal Ile(316), wedged into a hydrophobic socket in the closed form, but displaced from it in the open structure. Both mutants crystallized in the open conformation, and the Ile(316) --> Gly-modified integrin displayed high affinity. Structural differences between the low and high affinity forms were detected in solution. These data establish the structure-function correlates for the CD11b A-domain, and define a ligand-independent isoleucine-based allosteric switch intrinsic to this domain that controls its conformation and affinity.
Collapse
Affiliation(s)
- J P Xiong
- Leukocyte Biology and Inflammation Program, Renal Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
120
|
Liddington RC, Bankston LA. The structural basis of dynamic cell adhesion: heads, tails, and allostery. Exp Cell Res 2000; 261:37-43. [PMID: 11082273 DOI: 10.1006/excr.2000.5058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R C Liddington
- Program on Cell Adhesion, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|