101
|
Gumbo M, Beteck RM, Mandizvo T, Seldon R, Warner DF, Hoppe HC, Isaacs M, Laming D, Tam CC, Cheng LW, Liu N, Land KM, Khanye SD. Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules 2018; 23:E2038. [PMID: 30111695 PMCID: PMC6222898 DOI: 10.3390/molecules23082038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens.
Collapse
Affiliation(s)
- Maureen Gumbo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Richard M Beteck
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Tawanda Mandizvo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Digby F Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Nicole Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
102
|
Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 2018; 157:783-790. [PMID: 30142615 DOI: 10.1016/j.ejmech.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis is known to secrete low molecular mass compounds called siderophores especially under low iron conditions to chelate iron from host environment. Iron is essential for growth and other essential processes to sustain life of the bacterium in the host. Hence targeting siderophore is considered to be an alternative approach to prevent further virulence of bacterium into the host. This review article presents classification of siderophores, their role in transporting iron into the tubercular cell, biosynthesis of mycobactins, viability of siderophore as a therapeutic target and also focuses on overview on various approaches to target siderophore. The approaches encompass mutation effect on genes involved in siderophore recycling, synthetic as well as natural compounds that can inhibit further spread of bacterium by targeting siderophore.
Collapse
Affiliation(s)
- Kavitkumar Patel
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India.
| | - Sahil Butala
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Atul Sherje
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Bhushan Dravyakar
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| |
Collapse
|
103
|
A reevaluation of iron binding by Mycobactin J. J Biol Inorg Chem 2018; 23:995-1007. [DOI: 10.1007/s00775-018-1592-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
|
104
|
Pini E, Poli G, Tuccinardi T, Chiarelli LR, Mori M, Gelain A, Costantino L, Villa S, Meneghetti F, Barlocco D. New Chromane-Based Derivatives as Inhibitors of Mycobacterium tuberculosis Salicylate Synthase (MbtI): Preliminary Biological Evaluation and Molecular Modeling Studies. Molecules 2018; 23:molecules23071506. [PMID: 29933627 PMCID: PMC6099841 DOI: 10.3390/molecules23071506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis is the leading cause of death from a single infectious agent worldwide; therefore, the need for new antitubercular drugs is desperate. The recently validated target salicylate synthase MbtI is the first enzyme involved in the biosynthesis of mycobactins, compounds able to chelate iron, an essential cofactor for the survival of Mycobacterium tuberculosis in the host. Here, we report on the synthesis and biological evaluation of chromane-based compounds as new potential inhibitors of MbtI. Our approach successfully allowed the identification of a novel lead compound (1), endowed with a promising activity against this enzyme (IC50 = 55 μM). Molecular modeling studies were performed in order to evaluate the binding mode of 1 and rationalize the preliminary structure-activity relationships, thus providing crucial information to carry out further optimization studies.
Collapse
Affiliation(s)
- Elena Pini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Giulio Poli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Luca Costantino
- Dipartimento Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy.
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| | - Daniela Barlocco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|
105
|
Chiarelli LR, Mori M, Barlocco D, Beretta G, Gelain A, Pini E, Porcino M, Mori G, Stelitano G, Costantino L, Lapillo M, Bonanni D, Poli G, Tuccinardi T, Villa S, Meneghetti F. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. Eur J Med Chem 2018; 155:754-763. [PMID: 29940465 DOI: 10.1016/j.ejmech.2018.06.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023]
Abstract
We report on the virtual screening, synthesis, and biological evaluation of new furan derivatives targeting Mycobacterium tuberculosis salicylate synthase (MbtI). A receptor-based virtual screening procedure was applied to screen the Enamine database, identifying two compounds, I and III, endowed with a good enzyme inhibitory activity. Considering the most active compound I as starting point for the development of novel MbtI inhibitors, we obtained new derivatives based on the furan scaffold. Among the SAR performed on this class, compound 1a emerged as the most potent MbtI inhibitor reported to date (Ki = 5.3 μM). Moreover, compound 1a showed a promising antimycobacterial activity (MIC99 = 156 μM), which is conceivably related to mycobactin biosynthesis inhibition.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Daniela Barlocco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giangiacomo Beretta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Elena Pini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Marianna Porcino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giorgia Mori
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giovanni Stelitano
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121, Modena, Italy
| | - Margherita Lapillo
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Davide Bonanni
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Giulio Poli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6, 56126, Pisa, Italy.
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
106
|
Antonova AV, Gryadunov DA, Zimenkov DV. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 2018. [DOI: 10.1134/s0026893318030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
107
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
108
|
Das S, Hameed S, Fatima Z. Potential Drug Targets in Mycobacterial Cell Wall: Non-Lipid Perspective. Curr Drug Discov Technol 2018; 17:147-153. [PMID: 29875004 DOI: 10.2174/1570163815666180605113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), still remains a deadly disease worldwide. With prolonged usage of anti-TB drugs, the current therapeutic regimes are becoming ineffective, particularly due to emergence of drug resistance in MTB. Under such compelling circumstances, it is pertinent to look for new drug targets. The cell wall envelope of MTB is composed of unique lipids that are frequently targeted for anti-TB therapy. This is evident from the fact that most of the commonly used front line drugs (Isoniazid and Ethambutol) act on lipid machinery of MTB. Thus, despite the fact that much of the attention is towards understanding the MTB lipid biology, in search for identification of new drug targets, our knowledge of bacterial cell wall non-lipid components remains rudimentary and underappreciated. Better understanding of such components of mycobacterial cell structure will help in the identification of new drug targets that can be utilized on the persistent mycobacterium. This review at a common platform summarizes some of the non-lipid cell wall components in MTB that have potential to be exploited as future drug targets.
Collapse
Affiliation(s)
- Shrayanee Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
109
|
Oliveira FM, Da Costa AC, Procopio VO, Garcia W, Araújo JN, Da Silva RA, Junqueira-Kipnis AP, Kipnis A. Mycobacterium abscessus subsp. massiliense mycma_0076 and mycma_0077 Genes Code for Ferritins That Are Modulated by Iron Concentration. Front Microbiol 2018; 9:1072. [PMID: 29910777 PMCID: PMC5992710 DOI: 10.3389/fmicb.2018.01072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus complex has been characterized in the last decade as part of a cluster of mycobacteria that evolved from an opportunistic to true human pathogen; however, the factors responsible for pathogenicity are still undefined. It appears that the success of mycobacterial infection is intrinsically related with the capacity of the bacteria to regulate intracellular iron levels, mostly using iron storage proteins. This study evaluated two potential M. abscessus subsp. massiliense genes involved in iron storage. Unlike other opportunist or pathogenic mycobacteria studied, M. abscessus complex has two genes similar to ferritins from M. tuberculosis (Rv3841), and in M. abscessus subsp. massiliense, those genes are annotated as mycma_0076 and mycma_0077. Molecular dynamic analysis of the predicted expressed proteins showed that they have a ferroxidase center. The expressions of mycma_0076 and mycma_0077 genes were modulated by the iron levels in both in vitro cultures as well as infected macrophages. Structural studies using size-exclusion chromatography, circular dichroism spectroscopy and dynamic light scattering showed that r0076 protein has a structure similar to those observed in the ferritin family. The r0076 forms oligomers in solution most likely composed of 24 subunits. Functional studies with recombinant proteins, obtained from heterologous expression of mycma_0076 and mycma_0077 genes in Escherichia coli, showed that both proteins were capable of oxidizing Fe2+ into Fe3+, demonstrating that these proteins have a functional ferroxidase center. In conclusion, two ferritins proteins were shown, for the first time, to be involved in iron storage in M. abscessus subsp. massiliense and their expressions were modulated by the iron levels.
Collapse
Affiliation(s)
- Fábio M. Oliveira
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Adeliane C. Da Costa
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Victor O. Procopio
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Federal University of ABC (UFABC), Santo André, Brazil
| | - Juscemácia N. Araújo
- Centro de Ciências Naturais e Humanas, Federal University of ABC (UFABC), Santo André, Brazil
| | - Roosevelt A. Da Silva
- Collaborative Center of Biosystems, Regional Jataí, Federal University of Goiás, Goiânia, Brazil
| | - Ana Paula Junqueira-Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - André Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
110
|
Dawadi S, Boshoff HIM, Park SW, Schnappinger D, Aldrich CC. Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis. ACS Med Chem Lett 2018; 9:386-391. [PMID: 29670706 DOI: 10.1021/acsmedchemlett.8b00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS, 1) is a nucleoside antibiotic that inhibits incorporation of salicylate into siderophores required for bacterial iron acquisition and has potent activity against Mycobacterium tuberculosis (Mtb). Cinnolone analogues exemplified by 5 were designed to replace the acidic acyl-sulfamate functional group of 1 (pKa = 3) by a more stable sulfonamide linkage (pKa = 6.0) in an attempt to address potential metabolic liabilities and improve membrane permeability. We showed 5 potently inhibited the mycobacterial salicylate ligase MbtA (apparent Ki = 12 nM), blocked production of the salicylate-capped siderophores in whole-cell Mtb, and exhibited excellent antimycobacterial activity under iron-deficient conditions (minimum inhibitor concentration, MIC = 2.3 μM). To provide additional confirmation of the mechanism of action, we demonstrated the whole-cell activity of 5 could be fully antagonized by the addition of exogenous salicylate to the growth medium. Although the total polar surface area (tPSA) of 5 still exceeds the nominal threshold value (140 Å) typically required for oral bioavailability, we were pleasantly surprised to observe introduction of the less acidic and conformationally constrained cinnolone moiety conferred improved drug disposition properties as evidenced by the 7-fold increase in volume of distribution in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
111
|
Choi SR, Britigan BE, Switzer B, Hoke T, Moran D, Narayanasamy P. In Vitro Efficacy of Free and Nanoparticle Formulations of Gallium(III) meso-Tetraphenylporphyrine against Mycobacterium avium and Mycobacterium abscessus and Gallium Biodistribution in Mice. Mol Pharm 2018; 15:1215-1225. [DOI: 10.1021/acs.molpharmaceut.7b01036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bradley E. Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Barbara Switzer
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Traci Hoke
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - David Moran
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
112
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
113
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
114
|
Gamngoen R, Putim C, Salee P, Phunpae P, Butr-Indr B. A comparison of Rv0559c and Rv0560c expression in drug-resistant Mycobacterium tuberculosis in response to first-line antituberculosis drugs. Tuberculosis (Edinb) 2017. [PMID: 29523329 DOI: 10.1016/j.tube.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug resistance to Mycobacterium tuberculosis is a major health problem worldwide. Mycobacterium tuberculosis can progress to be mono-drug resistant or multi-drug resistant by improper treatment. The chemical stress of M. tuberculosis was performed in this study. Rv0559c is an unknown secreted protein. Rv0560c is a putative benzoquinone methyltransferase of M. tuberculosis cell. Rv0559c gene is located downstream of Rv0560c gene. Both genes respond to salicylate stress. Drug susceptible, isoniazid resistant, rifampicin resistant and multi-drug resistant phenotypes of M. tuberculosis clinical isolates were used to determine the expression of Rv0559c and Rv0560c by qRT-PCR. In all of mycobacteria strains there was up-regulation in both genes when stressed with isoniazid. This study determined the expression of both genes, which may play important roles in the drug resistance mechanism of mycobacteria.
Collapse
Affiliation(s)
- Ratikorn Gamngoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanyanuch Putim
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parichat Salee
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
115
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|
116
|
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci U S A 2017. [PMID: 28634299 DOI: 10.1073/pnas.1705016114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Collapse
|
117
|
Malhotra H, Patidar A, Boradia VM, Kumar R, Nimbalkar RD, Kumar A, Gani Z, Kaur R, Garg P, Raje M, Raje CI. Mycobacterium tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Functions as a Receptor for Human Lactoferrin. Front Cell Infect Microbiol 2017. [PMID: 28642848 PMCID: PMC5462994 DOI: 10.3389/fcimb.2017.00245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.
Collapse
Affiliation(s)
- Himanshu Malhotra
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Anil Patidar
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Vishant M Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajender Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajbeer Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Manoj Raje
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Chaaya I Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| |
Collapse
|
118
|
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol 2017; 88:181-195. [PMID: 28495571 DOI: 10.1016/j.biocel.2017.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled in throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.
Collapse
Affiliation(s)
- Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Rafia Karim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Ali Shahandeh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Firouz Abbasian
- Global Centre for Environmental Remediation, Faculty of Science, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | | | - Daniel Johnstone
- Bosch Institute and Discipline of Physiology, The University of Sydney, Sydney NSW 2000, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
119
|
Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem 2017; 170:75-84. [DOI: 10.1016/j.jinorgbio.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/27/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
120
|
Sonnenschein EC, Stierhof M, Goralczyk S, Vabre FM, Pellissier L, Hanssen KØ, de la Cruz M, Díaz C, de Witte P, Copmans D, Andersen JH, Hansen E, Kristoffersen V, Tormo JR, Ebel R, Milne BF, Deng H, Gram L, Jaspars M, Tabudravu JN. Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
121
|
Sargazi A, Gharebagh RA, Sargazi A, Aali H, Oskoee HO, Sepehri Z. Role of essential trace elements in tuberculosis infection: A review article. Indian J Tuberc 2017; 64:246-251. [PMID: 28941847 DOI: 10.1016/j.ijtb.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/18/2016] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
Abstract
Malnutrition is one of the risk factors in tuberculosis (TB) infection. Mineral levels perturbation is seen in patients with TB. Moreover there are some strategies to starve pathogens of essential metals. Here we decided to conclude association between some essential elements and TB. Copper, calcium and iron are essential for hosts' immune system although calcium and iron are necessary for Mycobacterium tuberculosis vitality. Changing these elements alongside with anti-TB therapy is suggested for better treatment outcomes.
Collapse
Affiliation(s)
- Aliyeh Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Roghayeh Afsar Gharebagh
- Assistant Professor of Cardiology, Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Halimeh Aali
- Internist, Department of Internal Medicine, University of Medical Sciences, Zabol, Iran
| | - Hamid Owaysee Oskoee
- Department of Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sepehri
- Research and Technology Department, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
122
|
Anti-tubercular drug discovery: in silico implications and challenges. Eur J Pharm Sci 2017; 104:1-15. [PMID: 28341614 DOI: 10.1016/j.ejps.2017.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) has been reported as a major public health concern, especially in the developing countries. WHO report on tuberculosis 2016 shows a high mortality rate caused by TB leading to 1.8 million deaths worldwide (including deaths due to TB in HIV positive individuals), which is one of the top 10 causes of mortality in 2015. However, the main therapy used for the treatment of TB is still the Direct Observed Therapy Short-course (DOTS) that consists of four main first-line drugs. Due to the prolonged and unorganized use of these drugs, Mycobacterium tuberculosis (Mtb) has developed drug-resistance against them. To overcome this drug-resistance, efforts are continuously being made to develop new therapeutics. New drug-targets of Mtb are pursued by the researchers to develop their inhibitors. For this, new methodologies that comprise of the computational drug designing techniques are vigorously applied. A major limitation that is found with these techniques is the inability of the newly identified target-based inhibitors to inhibit the whole cell bacteria. A foremost factor for this limitation is the inability of these inhibitors to penetrate the bacterial cell wall. In this regard, various strategies to overcome this limitation have been discussed in detail in this review, along with new targets and new methodologies. A bunch of in silico tools available for the prediction of physicochemical properties that need to be explored to deal with the permeability issue of the Mtb inhibitors has also been discussed.
Collapse
|
123
|
Zhang XK, Liu F, Fiers WD, Sun WM, Guo J, Liu Z, Aldrich CC. Synthesis of Transition-State Inhibitors of Chorismate Utilizing Enzymes from Bromobenzene cis-1,2-Dihydrodiol. J Org Chem 2017; 82:3432-3440. [PMID: 28282140 DOI: 10.1021/acs.joc.6b02801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to survive in a mammalian host, Mycobacterium tuberculosis (Mtb) produces aryl-capped siderophores known as the mycobactins for iron acquisition. Salicylic acid is a key building block of the mycobactin core and is synthesized by the bifunctional enzyme MbtI, which converts chorismate into isochorismate via a SN2″ reaction followed by further transformation into salicylate through a [3,3]-sigmatropic rearrangement. MbtI belongs to a family of chorismate-utilizing enzymes (CUEs) that have conserved topology and active site residues. The transition-state inhibitor 1 described by Bartlett, Kozlowski, and co-workers is the most potent reported inhibitor to date of CUEs. Herein, we disclose a concise asymmetric synthesis and the accompanying biochemical characterization of 1 along with three closely related analogues beginning from bromobenzene cis-1S,2S-dihydrodiol produced through microbial oxidation that features a series of regio- and stereoselective transformations for introduction of the C-4 hydroxy and C-6 amino substituents. The flexible synthesis enables late-stage introduction of the carboxy group and other bioisosteres at the C-1 position as well as installation of the enol-pyruvate side chain at the C-5 position.
Collapse
Affiliation(s)
- Xiao-Kang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Feng Liu
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, Minnesota 55455, United States
| | - William D Fiers
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, Minnesota 55455, United States
| | - Wen-Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
124
|
Thyagarajan SL, Ramanathan G, Singaravelu S, Kandhasamy S, Perumal P, Sivagnanam UT. Microbial Siderophore as MMP inhibitor:An interactive approach on wound healing application. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
125
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
126
|
Mycobacterium tuberculosis Rv1474c is a TetR-like transcriptional repressor that regulates aconitase, an essential enzyme and RNA-binding protein, in an iron-responsive manner. Tuberculosis (Edinb) 2017; 103:71-82. [PMID: 28237036 DOI: 10.1016/j.tube.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.
Collapse
|
127
|
Uchiya KI, Tomida S, Nakagawa T, Asahi S, Nikai T, Ogawa K. Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease. Sci Rep 2017; 7:39750. [PMID: 28045086 PMCID: PMC5206733 DOI: 10.1038/srep39750] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
Pulmonary disease caused by nontuberculous mycobacteria (NTM) is increasing worldwide. Mycobacterium avium is the most clinically significant NTM species in humans and animals, and comprises four subspecies: M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS), M. avium subsp. paratuberculosis (MAP), and M. avium subsp. hominissuis (MAH). To improve our understanding of the genetic landscape and diversity of M. avium and its role in disease, we performed a comparative genome analysis of 79 M. avium strains. Our analysis demonstrated that MAH is an open pan-genome species. Phylogenetic analysis based on single nucleotide variants showed that MAH had the highest degree of sequence variability among the subspecies, and MAH strains isolated in Japan and those isolated abroad possessed distinct phylogenetic features. Furthermore, MAP strains, MAS and MAA strains isolated from birds, and many MAH strains that cause the progression of pulmonary disease were grouped in each specific cluster. Comparative genome analysis revealed the presence of genetic elements specific to each lineage, which are thought to be acquired via horizontal gene transfer during the evolutionary process, and identified potential genetic determinants accounting for the pathogenic and host range characteristics of M. avium.
Collapse
Affiliation(s)
- Kei-Ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Shuta Tomida
- Department of Biobank, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan.,Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan
| | - Shoki Asahi
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan.,Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan
| |
Collapse
|
128
|
Ishikawa E, Mori D, Yamasaki S. Recognition of Mycobacterial Lipids by Immune Receptors. Trends Immunol 2017; 38:66-76. [DOI: 10.1016/j.it.2016.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023]
|
129
|
Stringer T, Seldon R, Liu N, Warner DF, Tam C, Cheng LW, Land KM, Smith PJ, Chibale K, Smith GS. Antimicrobial activity of organometallic isonicotinyl and pyrazinyl ferrocenyl-derived complexes. Dalton Trans 2017; 46:9875-9885. [DOI: 10.1039/c7dt01952a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isonicotinyl and pyrazinyl ferrocenyl-derived complexes were evaluatedin vitrofor antimycobacterial and antiparasitic activity.
Collapse
|
130
|
Abshire CF, Prasai K, Soto I, Shi R, Concha M, Baddoo M, Flemington EK, Ennis DG, Scott RS, Harrison L. Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. NPJ Microgravity 2016; 2:16038. [PMID: 28725743 PMCID: PMC5515531 DOI: 10.1038/npjmgrav.2016.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/04/2022] Open
Abstract
Waterborne pathogenic mycobacteria can form biofilms, and certain species can cause hard-to-treat human lung infections. Astronaut health could therefore be compromised if the spacecraft environment or water becomes contaminated with pathogenic mycobacteria. This work uses Mycobacterium marinum to determine the physiological changes in a pathogenic mycobacteria grown under low-shear modeled microgravity (LSMMG). M. marinum were grown in high aspect ratio vessels (HARVs) using a rotary cell culture system subjected to LSMMG or the control orientation (normal gravity, NG) and the cultures used to determine bacterial growth, bacterium size, transcriptome changes, and resistance to stress. Two exposure times to LSMMG and NG were examined: bacteria were grown for ~40 h (short), or 4 days followed by re-dilution and growth for ~35 h (long). M. marinum exposed to LSMMG transitioned from exponential phase earlier than the NG culture. They were more sensitive to hydrogen peroxide but showed no change in resistance to gamma radiation or pH 3.5. RNA-Seq detected significantly altered transcript levels for 562 and 328 genes under LSMMG after short and long exposure times, respectively. Results suggest that LSMMG induced a reduction in translation, a downregulation of metabolism, an increase in lipid degradation, and increased chaperone and mycobactin expression. Sigma factor H (sigH) was the only sigma factor transcript induced by LSMMG after both short and long exposure times. In summary, transcriptome studies suggest that LSMMG may simulate a nutrient-deprived environment similar to that found within macrophage during infection. SigH is also implicated in the M. marinum LSMMG transcriptome response.
Collapse
Affiliation(s)
- Camille F Abshire
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Israel Soto
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Runhua Shi
- Department of Medicine and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Monica Concha
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, LA, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
131
|
Jung J, Bashiri G, Johnston JM, Baker EN. Mass spectral determination of phosphopantetheinylation specificity for carrier proteins in Mycobacterium tuberculosis. FEBS Open Bio 2016; 6:1220-1226. [PMID: 28203522 PMCID: PMC5302061 DOI: 10.1002/2211-5463.12140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphopantetheinyl transferases (PPTases) are key elements in the modular syntheses performed by multienzyme systems such as polyketide synthases. PPTases transfer phosphopantetheine derivatives from Coenzyme A to carrier proteins (CPs), thus orchestrating substrate supply. We describe an efficient mass spectrometry-based protocol for determining CP specificity for a particular PPTase in organisms possessing several candidate PPTases. We show that the CPs MbtL and PpsC, both involved in synthesis of essential metabolites in Mycobacterium tuberculosis, are exclusively activated by the type 2 PPTase PptT and not the type 1 AcpS. The assay also enables conclusive identification of the reactive serine on each CP.
Collapse
Affiliation(s)
- James Jung
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand; Present address: W. M. Keck Structural Biology Laboratory Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | - Ghader Bashiri
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| | - Jodie M Johnston
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| |
Collapse
|
132
|
Vergnolle O, Xu H, Tufariello JM, Favrot L, Malek AA, Jacobs WR, Blanchard JS. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. J Biol Chem 2016; 291:22315-22326. [PMID: 27566542 PMCID: PMC5064009 DOI: 10.1074/jbc.m116.744532] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/17/2016] [Indexed: 11/06/2022] Open
Abstract
Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD+-dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection.
Collapse
Affiliation(s)
| | - Hua Xu
- From the Department of Biochemistry and
| | - JoAnn M Tufariello
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Adel A Malek
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | - William R Jacobs
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
133
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
134
|
John SF, Aniemeke E, Ha NP, Chong CR, Gu P, Zhou J, Zhang Y, Graviss EA, Liu JO, Olaleye OA. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101S:S73-S77. [PMID: 27856197 DOI: 10.1016/j.tube.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) and the Human Immunodeficiency Virus (HIV) pose a major public health threat. The 2015 World Health Organization (WHO) report estimates that one in three HIV deaths is due to Mtb, the causative agent of Tuberculosis (TB). The lethal synergy between these two pathogens leads to a decline in the immune function of infected individuals as well as a rise in morbidity and mortality rates. The deadly interaction between TB and HIV, along with the heightened emergence of drug resistance, drug-drug interactions, reduced drug efficacy and increased drug toxicity, has made the therapeutic management of co-infected individuals a major challenge. Hence, the development of new drug targets and/or new drug leads are imperative for the effective therapeutic management of co-infected patients. Here, we report the characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (311), a known inhibitor of HIV-1 replication and transcription as a new inhibitor of methionine aminopeptidases (MetAPs) from Mycobacterium tuberculosis: MtMetAP1a and MtMetAP1c. MetAP is a metalloprotease that removes the N-terminal methionine during protein synthesis. The essential role of MetAP in microbes makes it a promising chemotherapeutic target. We demonstrated that 311 is a potent and selective inhibitor of MtMetAP1a and MtMetAP1c. Furthermore, we found that 311 is active against replicating and aged non-growing Mtb at low micromolar concentrations. These results suggest that 311 is a promising lead for the development of novel class of therapeutic agents with dual inhibition of TB and HIV for the treatment of TB-HIV co-infection.
Collapse
Affiliation(s)
- Sarah F John
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Emmanuel Aniemeke
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ngan P Ha
- Department of Pathology and Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Curtis R Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peihua Gu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiangbing Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Omonike A Olaleye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
135
|
Baartzes N, Stringer T, Okombo J, Seldon R, Warner DF, de Kock C, Smith PJ, Smith GS. Mono- and polynuclear ferrocenylthiosemicarbazones: Synthesis, characterisation and antimicrobial evaluation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
136
|
Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis (Edinb) 2016; 100:32-45. [DOI: 10.1016/j.tube.2016.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
137
|
Du P, Sohaskey CD, Shi L. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence. Front Microbiol 2016; 7:1346. [PMID: 27630619 PMCID: PMC5005354 DOI: 10.3389/fmicb.2016.01346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.
Collapse
Affiliation(s)
- Peicheng Du
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Charles D Sohaskey
- VA Long Beach Healthcare System, United States Department of Veterans Affairs Long Beach, CA, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ, USA
| |
Collapse
|
138
|
Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J Bacteriol 2016; 198:2399-409. [PMID: 27402628 DOI: 10.1128/jb.00359-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe(3+)-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases.
Collapse
|
139
|
Bailey DC, Drake EJ, Grant TD, Gulick AM. Structural and Functional Characterization of Aerobactin Synthetase IucA from a Hypervirulent Pathotype of Klebsiella pneumoniae. Biochemistry 2016; 55:3559-70. [PMID: 27253399 PMCID: PMC4928626 DOI: 10.1021/acs.biochem.6b00409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is a vital mineral nutrient required by virtually all life forms to prosper; pathogenic bacteria are no exception. Despite the abundance of iron within the human host, highly regulated iron physiology can result in exceedingly low levels of iron bioavailable to prospective invading bacteria. To combat this scarcity of iron, many pathogenic bacteria have acquired specific and efficient iron acquisition systems, which allow them to thrive in iron-deficient host environments. One of the more prominent bacterial iron acquisition systems involves the synthesis, secretion, and reuptake of small-molecule iron chelators known as siderophores. Aerobactin, a citrate-hydroxamate siderophore originally isolated nearly 50 years ago, is produced by a number of pathogenic Gram-negative bacteria. Aerobactin has recently been demonstrated to play a pivotal role in mediating the enhanced virulence of a particularly invasive pathotype of Klebsiella pneumoniae (hvKP). Toward further understanding of this key virulence factor, we report the structural and functional characterization of aerobactin synthetase IucA from a strain of hvKP. The X-ray crystal structures of unliganded and ATP-bound forms of IucA were solved, forming the foundation of our structural analysis. Small angle X-ray scattering (SAXS) data suggest that, unlike its closest structurally characterized homologues, IucA adopts a tetrameric assembly in solution. Finally, we employed activity assays to investigate the substrate specificity and determine the apparent steady-state kinetic parameters of IucA.
Collapse
Affiliation(s)
- Daniel C Bailey
- The Hauptman-Woodward Medical Research Institute , Buffalo, New York, United States
| | - Eric J Drake
- The Hauptman-Woodward Medical Research Institute , Buffalo, New York, United States
| | - Thomas D Grant
- The Hauptman-Woodward Medical Research Institute , Buffalo, New York, United States
| | - Andrew M Gulick
- The Hauptman-Woodward Medical Research Institute , Buffalo, New York, United States
| |
Collapse
|
140
|
Peters JS, Calder B, Gonnelli G, Degroeve S, Rajaonarifara E, Mulder N, Soares NC, Martens L, Blackburn JM. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence. Front Microbiol 2016; 7:813. [PMID: 27303394 PMCID: PMC4885829 DOI: 10.3389/fmicb.2016.00813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/12/2016] [Indexed: 11/22/2022] Open
Abstract
Evidence currently suggests that as a species Mycobacterium tuberculosis exhibits very little genomic sequence diversity. Despite limited genetic variability, members of the M. tuberculosis complex (MTBC) have been shown to exhibit vast discrepancies in phenotypic presentation in terms of virulence, elicited immune response and transmissibility. Here, we used qualitative and quantitative mass spectrometry tools to investigate the proteomes of seven clinically-relevant mycobacterial strains—four M. tuberculosis strains, M. bovis, M. bovis BCG, and M. avium—that show varying degrees of pathogenicity and virulence, in an effort to rationalize the observed phenotypic differences. Following protein preparation, liquid chromatography mass spectrometry (LC MS/MS) and data capture were carried out using an LTQ Orbitrap Velos. Data analysis was carried out using a novel bioinformatics strategy, which yielded high protein coverage and was based on high confidence peptides. Through this approach, we directly identified a total of 3788 unique M. tuberculosis proteins out of a theoretical proteome of 4023 proteins and identified an average of 3290 unique proteins for each of the MTBC organisms (representing 82% of the theoretical proteomes), as well as 4250 unique M. avium proteins (80% of the theoretical proteome). Data analysis showed that all major classes of proteins are represented in every strain, but that there are significant quantitative differences between strains. Targeted selected reaction monitoring (SRM) assays were used to quantify the observed differential expression of a subset of 23 proteins identified by comparison to gene expression data as being of particular relevance to virulence. This analysis revealed differences in relative protein abundance between strains for proteins which may promote bacterial fitness in the more virulent W. Beijing strain. These differences may contribute to this strain's capacity for surviving within the host and resisting treatment, which has contributed to its rapid spread. Through this approach, we have begun to describe the proteomic portrait of a successful mycobacterial pathogen. Data are available via ProteomeXchange with identifier PXD004165.
Collapse
Affiliation(s)
- Julian S Peters
- Centre of Excellence for Biomedical TB Research, Witwatersrand University Johannesburg, South Africa
| | - Bridget Calder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | | | | | - Elinambinina Rajaonarifara
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nelson C Soares
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | | | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
141
|
Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, Fortune SM, Moody DB. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. J Biol Chem 2016; 291:14248-14256. [PMID: 27226566 DOI: 10.1074/jbc.m116.716704] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/06/2022] Open
Abstract
Global control of tuberculosis has become increasingly complicated with the emergence of multidrug-resistant strains of Mycobacterium tuberculosis First-line treatments are anchored by two antibiotics, rifampin and isoniazid. Most rifampin resistance occurs through the acquisition of missense mutations in the rifampin resistance-determining region, an 81-base pair region encoding the rifampin binding site on the β subunit of RNA polymerase (rpoB). Although these mutations confer a survival advantage in the presence of rifampin, they may alter the normal process of transcription, thereby imposing significant fitness costs. Because the downstream biochemical consequences of the rpoB mutations are unknown, we used an organism-wide screen to identify the number and types of lipids changed after rpoB mutation. A new mass spectrometry-based profiling platform systematically compared ∼10,000 cell wall lipids in a panel of rifampin-resistant mutants within two genetically distinct strains, CDC1551and W-Beijing. This unbiased lipidomic survey detected quantitative alterations (>2-fold, p < 0.05) in more than 100 lipids in each mutant. By focusing on molecular events that change among most mutants and in both genetic backgrounds, we found that rifampin resistance mutations lead to altered concentrations of mycobactin siderophores and acylated sulfoglycolipids. These findings validate a new organism-wide lipidomic analysis platform for drug-resistant mycobacteria and provide direct evidence for characteristic remodeling of cell wall lipids in rifampin-resistant strains of M. tuberculosis The specific links between rifampin resistance and named lipid factors provide diagnostic and therapeutic targets that may be exploited to address the problem of drug resistance.
Collapse
Affiliation(s)
- Nivedita Lahiri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Rupal R Shah
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Emilie Layre
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - David Young
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Chris Ford
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Megan B Murray
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
142
|
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90:1585-604. [PMID: 27161440 DOI: 10.1007/s00204-016-1727-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
143
|
Synthesis, characterization and antimicrobial evaluation of mono- and polynuclear ferrocenyl-derived amino and imino complexes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
144
|
Rodriguez GM, Prados-Rosales R. Functions and importance of mycobacterial extracellular vesicles. Appl Microbiol Biotechnol 2016; 100:3887-92. [PMID: 27020292 DOI: 10.1007/s00253-016-7484-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
Abstract
The release of cellular factors by means of extracellular vesicles (EVs) is conserved in archaea, bacteria, and eukaryotes. EVs are released by growing bacteria as part of their interaction with their environment and, for pathogenic bacteria, constitute an important component of their interactions with the host. While EVs released by gram-negative bacteria have been extensively studied, the vesicles released by thick cell wall microorganisms like mycobacteria were recognized only recently and are less well understood. Nonetheless, studies of mycobacterial EVs have already suggested roles in pathogenesis, opening exciting new avenues of research aimed at understanding their biogenesis and potential use in antitubercular strategies. In this minireview, we discuss the discovery of mycobacterial vesicles, the current understanding of their nature, content, regulation, and possible functions, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- G Marcela Rodriguez
- Public Health Research Institute Center and New Jersey Medical School-Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NY, 07103, USA.
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY, 10461, USA.,Infectious Diseases Program, CIC bioGUNE, Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| |
Collapse
|
145
|
Tiwari R, Miller PA, Chiarelli LR, Mori G, Šarkan M, Centárová I, Cho S, Mikušová K, Franzblau SG, Oliver AG, Miller MJ. Design, Syntheses, and Anti-TB Activity of 1,3-Benzothiazinone Azide and Click Chemistry Products Inspired by BTZ043. ACS Med Chem Lett 2016; 7:266-70. [PMID: 26985313 DOI: 10.1021/acsmedchemlett.5b00424] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/03/2016] [Indexed: 11/28/2022] Open
Abstract
Electron deficient nitroaromatic compounds such as BTZ043 and its closest congener, PBTZ169, and related agents are a promising new class of anti-TB compounds. Herein we report the design and syntheses of 1,3-benzothiazinone azide (BTZ-N3) and related click chemistry products based on the molecular mode of activation of BTZ043. Our computational docking studies indicate that BTZ-N3 binds in the essentially same pocket as that of BTZ043. Detailed biochemical studies with cell envelope enzyme fractions of Mycobacterium smegmatis combined with our model biochemical reactivity studies with nucleophiles indicated that, in contrast to BTZ043, the azide analogue may have a different mode of activation for anti-TB activity. Subsequent enzymatic studies with recombinant DprE1 from Mtb followed by MIC determination in NTB1 strain of Mtb (harboring Cys387Ser mutation in DprE1 and is BTZ043 resistant) unequivocally indicated that BTZ-N3 is an effective reversible and noncovalent inhibitor of DprE1.
Collapse
Affiliation(s)
- Rohit Tiwari
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland
Science Hall, Notre Dame, Indiana 46556, United States
| | - Patricia A. Miller
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland
Science Hall, Notre Dame, Indiana 46556, United States
| | - Laurent R. Chiarelli
- Department
of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Giorgia Mori
- Department
of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Michal Šarkan
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Ivana Centárová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Sanghyun Cho
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Katarína Mikušová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Allen G. Oliver
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland
Science Hall, Notre Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland
Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
146
|
Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem Lett 2016; 26:2068-71. [PMID: 26951749 DOI: 10.1016/j.bmcl.2016.02.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) remains one of the most threatening diseases in the world and the need for development of new therapies is dire. Herein we describe the rationale for the design and subsequent syntheses and studies of conjugates between pBTZ and both the imidazopyridine and cephalosporin scaffolds. Overall some compounds exhibited notable anti-TB activity in the range of 2-0.2 μM in the Microplate Alamar Blue (MABA) Assay.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rohit Tiwari
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
147
|
Ishikawa F, Kakeya H. A Competitive Enzyme-Linked Immunosorbent Assay System for Adenylation Domains in Nonribosomal Peptide Synthetases. Chembiochem 2016; 17:474-8. [PMID: 26748933 DOI: 10.1002/cbic.201500553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We describe a proof-of-concept study of a competitive enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) with active-site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold. A biotin functionality immobilizes the probes onto a streptavidin-coated solid support. Dissociation constants were determined with a series of ligands, including enzyme substrates and a library of sulfamoyloxy-linked aminoacyl/aryl-AMP analogues. As it enables direct readout of protein-ligand interaction, the competitive ELISA technique provided information on comparative structure- activity relationships and insights into the enzyme active-site architecture of NRPS A-domains. These studies indicate that the ELISA technique can accelerate the discovery of small-molecule inhibitors of the A-domains with new scaffolds that perturb the production of NRPS-related virulence factors.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
148
|
Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C, Jones CM, Cole LE, Tinaztepe E, Thompson V, Fenyö D, Niederweis M, Ueberheide B, Philips JA, Jacobs WR. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A 2016; 113:E348-57. [PMID: 26729876 PMCID: PMC4725510 DOI: 10.1073/pnas.1523321113] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.
Collapse
Affiliation(s)
- JoAnn M Tufariello
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jessica R Chapman
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016
| | - Christopher A Kerantzas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ka-Wing Wong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, School of Basic Medical Sciences, Fudan University, Shanghai 201508, China
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher M Jones
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laura E Cole
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Emir Tinaztepe
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - David Fenyö
- Laboratory of Computational Proteomics, Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Beatrix Ueberheide
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016;
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
149
|
Iron Acquisition in Mycobacterium avium subsp. paratuberculosis. J Bacteriol 2015; 198:857-66. [PMID: 26712939 PMCID: PMC4810606 DOI: 10.1128/jb.00922-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/18/2015] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is a host-adapted pathogen that evolved from the environmental bacterium M. avium subsp. hominissuis through gene loss and gene acquisition. Growth of M. avium subsp. paratuberculosis in the laboratory is enhanced by supplementation of the media with the iron-binding siderophore mycobactin J. Here we examined the production of mycobactins by related organisms and searched for an alternative iron uptake system in M. avium subsp. paratuberculosis. Through thin-layer chromatography and radiolabeled iron-uptake studies, we showed that M. avium subsp. paratuberculosis is impaired for both mycobactin synthesis and iron acquisition. Consistent with these observations, we identified several mutations, including deletions, in M. avium subsp. paratuberculosis genes coding for mycobactin synthesis. Using a transposon-mediated mutagenesis screen conditional on growth without myobactin, we identified a potential mycobactin-independent iron uptake system on a M. avium subsp. paratuberculosis-specific genomic island, LSPP15. We obtained a transposon (Tn) mutant with a disruption in the LSPP15 gene MAP3776c for targeted study. The mutant manifests increased iron uptake as well as intracellular iron content, with genes downstream of the transposon insertion (MAP3775c to MAP3772c [MAP3775-2c]) upregulated as the result of a polar effect. As an independent confirmation, we observed the same iron uptake phenotypes by overexpressing MAP3775-2c in wild-type M. avium subsp. paratuberculosis. These data indicate that the horizontally acquired LSPP15 genes contribute to iron acquisition by M. avium subsp. paratuberculosis, potentially allowing the subsequent loss of siderophore production by this pathogen. IMPORTANCE Many microbes are able to scavenge iron from their surroundings by producing iron-chelating siderophores. One exception is Mycobacterium avium subsp. paratuberculosis, a fastidious, slow-growing animal pathogen whose growth needs to be supported by exogenous mycobacterial siderophore (mycobactin) in the laboratory. Data presented here demonstrate that, compared to other closely related M. avium subspecies, mycobactin production and iron uptake are different in M. avium subsp. paratuberculosis, and these phenotypes may be caused by numerous deletions in its mycobactin biosynthesis pathway. Using a genomic approach, supplemented by targeted genetic and biochemical studies, we identified that LSPP15, a horizontally acquired genomic island, may encode an alternative iron uptake system. These findings shed light on the potential physiological consequence of horizontal gene transfer in M. avium subsp. paratuberculosis evolution.
Collapse
|
150
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|