101
|
Abstract
In 1975, tau protein was isolated as a microtubule-associated factor from the porcine brain. In the previous year, a paired helical filament (PHF) protein had been identified in neurofibrillary tangles in the brains of individuals with Alzheimer disease (AD), but it was not until 1986 that the PHF protein and tau were discovered to be one and the same. In the AD brain, tau was found to be abnormally hyperphosphorylated, and it inhibited rather than promoted in vitro microtubule assembly. Almost 80 disease-causing exonic missense and intronic silent mutations in the tau gene have been found in familial cases of frontotemporal dementia but, to date, no such mutation has been found in AD. The first phase I clinical trial of an active tau immunization vaccine in patients with AD was recently completed. Assays for tau levels in cerebrospinal fluid and plasma are now available, and tau radiotracers for PET are under development. In this article, we provide an overview of the pivotal discoveries in the tau research field over the past 40 years. We also review the current status of the field, including disease mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| |
Collapse
|
102
|
Mc Donald JM, O'Malley TT, Liu W, Mably AJ, Brinkmalm G, Portelius E, Wittbold WM, Frosch MP, Walsh DM. The aqueous phase of Alzheimer's disease brain contains assemblies built from ∼4 and ∼7 kDa Aβ species. Alzheimers Dement 2015; 11:1286-305. [PMID: 25846299 PMCID: PMC4592782 DOI: 10.1016/j.jalz.2015.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Much knowledge about amyloid β (Aβ) aggregation and toxicity has been acquired using synthetic peptides and mouse models, whereas less is known about soluble Aβ in human brain. METHODS We analyzed aqueous extracts from multiple AD brains using an array of techniques. RESULTS Brains can contain at least four different Aβ assembly forms including: (i) monomers, (ii) a ∼7 kDa Aβ species, and larger species (iii) from ∼30-150 kDa, and (iv) >160 kDa. High molecular weight species are by far the most prevalent and appear to be built from ∼7 kDa Aβ species. The ∼7 kDa Aβ species resist denaturation by chaotropic agents and have a higher Aβ42/Aβ40 ratio than monomers, and are unreactive with antibodies to Asp1 of Ab or APP residues N-terminal of Asp1. DISCUSSION Further analysis of brain-derived ∼7 kDa Aβ species, the mechanism by which they assemble and the structures they form should reveal therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Republic of Ireland
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Alexandra J Mably
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Gunnar Brinkmalm
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Göteborg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Göteborg, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Massachusetts General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA.
| |
Collapse
|
103
|
Fas-associated factor 1 promotes in neurofibrillary tangle-mediated cell death of basal forebrain cholinergic neurons in P301L transgenic mice. Neuroreport 2015; 26:767-72. [DOI: 10.1097/wnr.0000000000000423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
104
|
Zhang XF, Zhao YF, Zhu SW, Huang WJ, Luo Y, Chen QY, Ge LJ, Li RS, Wang JF, Sun M, Xiao ZC, Fan GH. CXCL1 Triggers Caspase-3 Dependent Tau Cleavage in Long-Term Neuronal Cultures and in the Hippocampus of Aged Mice: Implications in Alzheimer’s Disease. J Alzheimers Dis 2015; 48:89-104. [DOI: 10.3233/jad-150041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiao-Fang Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yan-Feng Zhao
- Neuroinflammation DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Shun-Wei Zhu
- Neurodegeneration DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Wei-Jie Huang
- Neurodegeneration DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Yan Luo
- Neurodegeneration DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Qing-Ying Chen
- Neurodegeneration DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Li-Jun Ge
- Department of Laboratory Animal Sciences, Platform Technology Sciences, GlaxoSmithKline R&D Center, Shanghai, China
| | - Run-Sheng Li
- Neuroinflammation DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Jian-Fei Wang
- Department of Laboratory Animal Sciences, Platform Technology Sciences, GlaxoSmithKline R&D Center, Shanghai, China
| | - Mu Sun
- Neurodegeneration DPU, GlaxoSmithKline R&D Center, Shanghai, China
| | - Zhi-Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
- Shunxi-Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Guo-Huang Fan
- Neuroinflammation DPU, GlaxoSmithKline R&D Center, Shanghai, China
- Tongji University School of Life Sciences and Technology, Shanghai, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
105
|
Dujardin S, Colin M, Buée L. Invited review: Animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol 2015; 41:59-80. [DOI: 10.1111/nan.12200] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Simon Dujardin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Morvane Colin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Luc Buée
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| |
Collapse
|
106
|
Barman A, Hamelberg D. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association ofcis-tau peptide. Proteins 2015; 83:436-44. [DOI: 10.1002/prot.24740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/07/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Arghya Barman
- Department of Chemistry and the Center for Biotechnology and Drug Design; Georgia State University; Atlanta Georgia 30302-4098
| | - Donald Hamelberg
- Department of Chemistry and the Center for Biotechnology and Drug Design; Georgia State University; Atlanta Georgia 30302-4098
| |
Collapse
|
107
|
Ali Y, Ruan K, Grace Zhai R. Drosophila Models of Tauopathy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
108
|
Inoue M, Kaida S, Nakano S, Annoni C, Nakata E, Konno T, Morii T. Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human tau. Bioorg Med Chem 2014; 22:6471-80. [DOI: 10.1016/j.bmc.2014.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022]
|
109
|
Li C, Liu S, Xing Y, Tao F. The role of hippocampal tau protein phosphorylation in isoflurane-induced cognitive dysfunction in transgenic APP695 mice. Anesth Analg 2014; 119:413-419. [PMID: 24977637 DOI: 10.1213/ane.0000000000000315] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies have shown that exposure to inhaled anesthetics can cause cognitive dysfunction, suggesting that general anesthesia might be a risk factor for the development of Alzheimer disease. However, the underlying mechanisms remain to be elucidated. In the present study, we tested our hypothesis that enhanced tau protein phosphorylation in hippocampus contributes to isoflurane-induced cognitive dysfunction in a mouse model of Alzheimer disease. METHODS Fifty-four male wild-type (WT) mice (12 months old) and 54 male amyloid precursor protein 695 (APP695) mice (12 months old) were either anesthetized for 4 hours with 1.0 minimum alveolar concentration isoflurane or sham-anesthetized (control). Learning and memory behaviors were measured using the Morris Water Maze test for mice. Phosphorylation of hippocampal tau protein at Ser262 site was analyzed with quantitative Western blotting. RESULTS In the Morris Water Maze test, both WT and transgenic APP695 mice showed decreased latency times during a 4-day training period. Isoflurane exposure significantly increased the latency times on days 2 and 3 in WT mice as well as on days 3 and 4 in APP695 mice (WT: P = 0.005 for day 2 and P = 0.002 for day 3; APP695: P = 0.001 for day 3 and P < 0.0001 for day 4) and reduced platform quadrant times (WT: P < 0.0001; APP695: P < 0.0001) in both types of mice. Compared with WT mice, transgenic APP695 mice displayed worse learning and memory behaviors after isoflurane exposure (P = 0.0005 for escape latency testing on day 4 training; P = 0.009 for platform probe testing). Western blot analysis showed that the levels of phosphorylation of hippocampal tau protein at Ser262 site (tau[pS262]) in the transgenic APP695 mice were higher than those in WT mice (P < 0.0001) and that isoflurane exposure time dependently enhanced the hippocampal tau[pS262] levels in both types of mice, but this effect was much more significant in the transgenic APP695 mice (P < 0.0001). Our data also showed that isoflurane exposure had no effect on the expression of total tau protein in the hippocampi of all mice (P ≥ 0.54). CONCLUSIONS Isoflurane may induce cognitive dysfunction by enhancing phosphorylation of hippocampal tau protein at Ser262 site, and this effect is more significant in transgenic APP695 mice.
Collapse
Affiliation(s)
- Changsheng Li
- From the College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | | | | | | |
Collapse
|
110
|
Nakajima A, Ohizumi Y, Yamada K. Anti-dementia Activity of Nobiletin, a Citrus Flavonoid: A Review of Animal Studies. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:75-82. [PMID: 25191498 PMCID: PMC4153867 DOI: 10.9758/cpn.2014.12.2.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia among the elderly, is characterized by the progressive decline of cognitive function and has a detrimental impact worldwide. Despite intensive laboratory and clinical research over the last three decades, pharmacological options for the prevention and effective long-term treatment of AD are not currently available. Consequently, successful therapeutic and preventive treatments for AD are needed. When researching materials from natural resources having anti-dementia drug activity, we identified nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin exhibited memory-improving effects in various animal models of dementia and exerted a wide range of beneficial effects against pathological features of AD including amyloid-β (Aβ) pathology, tau hyperphosphorylation, oxidative stress, cholinergic neurodegeneration and dysfunction of synaptic plasticity-related signaling, suggesting this natural compound could become a novel drug for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasushi Ohizumi
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan. ; Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Sendai, Japan. ; Laboratory of Kampo Medicines, Yokohama College of Pharmacy, Yokohama, Japan. ; Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
111
|
Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model. ALZHEIMERS RESEARCH & THERAPY 2014; 6:44. [PMID: 25478017 PMCID: PMC4255368 DOI: 10.1186/alzrt278] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/10/2014] [Indexed: 01/25/2023]
Abstract
INTRODUCTION We have identified structural determinants on tau protein that are essential for pathological tau-tau interaction in Alzheimer's disease (AD). These regulatory domains, revealed by monoclonal antibody DC8E8, represent a novel target for tau-directed therapy. In order to validate this target, we have developed an active vaccine, AADvac1. METHODS A tau peptide encompassing the epitope revealed by DC8E8 was selected for the development of an active vaccine targeting structural determinants on mis-disordered tau protein that are essential for pathological tau-tau interaction. The efficacy of the vaccine was tested in a transgenic rat model of human tauopathies. Toxicology and safety pharmacology studies were conducted under good laboratory practice conditions in multiple rodent and nonrodent species. RESULTS We have administered the tau peptide vaccine to a rat model of AD to investigate whether the vaccine can improve its clinical, histopathological and biochemical AD phenotype. Our results show that vaccination induced a robust protective humoral immune response, with antibodies discriminating between pathological and physiological tau. Active immunotherapy reduced the levels of tau oligomers and the extent of neurofibrillary pathology in the brains of transgenic rats. Strikingly, immunotherapy has reduced AD-type hyperphosphorylation of tau by approximately 95%. Also, the tau peptide vaccine improved the clinical phenotype of transgenic animals. Toxicology and safety pharmacology studies showed an excellent safety and tolerability profile of the AADvac1 vaccine. CONCLUSIONS Active immunisation targeting crucial domains of Alzheimer tau eliminated tau aggregation and neurofibrillary pathology. Most importantly, the AD type of tau hyperphosphorylation was abolished by vaccination across a wide range of AD phospho-epitopes. Our results demonstrate that active immunisation led to elimination of all major hallmarks of neurofibrillary pathology, which was reflected by a profound improvement in the clinical presentation of transgenic rats. This makes the investigated tau peptide vaccine a highly promising candidate therapeutic for the disease-modifying treatment of AD. The tested vaccine displayed a highly favourable safety profile in preclinical toxicity studies, which opens up the possibility of using it for AD prophylaxis in the future. The vaccine has already entered phase I clinical trial under the name AADvac1. TRIAL REGISTRATION Current Controlled Trials NCT01850238. Registered 7 May 2013.
Collapse
Affiliation(s)
- Eva Kontsekova
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Norbert Zilka
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Branislav Kovacech
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic ; Present address: Institute of Neuroimmunology, Dubravska cesta 9, 84510 Bratislava, Slovak Republic
| | - Petr Novak
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Michal Novak
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| |
Collapse
|
112
|
Kimura T, Ishiguro K, Hisanaga SI. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 2014; 7:65. [PMID: 25076872 PMCID: PMC4097945 DOI: 10.3389/fnmol.2014.00065] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| |
Collapse
|
113
|
Cook C, Stankowski JN, Carlomagno Y, Stetler C, Petrucelli L. Acetylation: a new key to unlock tau's role in neurodegeneration. ALZHEIMERS RESEARCH & THERAPY 2014; 6:29. [PMID: 25031639 PMCID: PMC4075151 DOI: 10.1186/alzrt259] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification of tau protein as a major constituent of neurofibrillary tangles spurred considerable effort devoted to identifying and validating pathways through which therapeutics may alleviate tau burden in Alzheimer's disease and related tauopathies, including chronic traumatic encephalopathy associated with sport- and military-related injuries. Most tau-based therapeutic strategies have previously focused on modulating tau phosphorylation, given that tau species present within neurofibrillary tangles are hyperphosphorylated on a number of different residues. However, the recent discovery that tau is modified by acetylation necessitates additional research to provide greater mechanistic insight into the spectrum of physiological consequences of tau acetylation, which may hold promise as a novel therapeutic target. In this review, we discuss recent findings evaluating tau acetylation in the context of previously accepted notions regarding tau biology and pathophysiology. We also examine the evidence demonstrating the neuroprotective and beneficial consequences of inhibiting histone deacetylase (HDAC)6, a tau deacetylase, including its effect on microtubule stabilization. We also discuss the rationale for pharmacologically modulating HDAC6 in tau-based pathologies as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Casey Cook
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | - Yari Carlomagno
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
114
|
Tenreiro S, Eckermann K, Outeiro TF. Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 2014; 7:42. [PMID: 24860424 PMCID: PMC4026737 DOI: 10.3389/fnmol.2014.00042] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022] Open
Abstract
Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system.
Collapse
Affiliation(s)
- Sandra Tenreiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal
| | - Katrin Eckermann
- Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| | - Tiago F Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal ; Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal ; Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
115
|
Abstract
Tau-tubulin kinase (TTBK) belongs to casein kinase superfamily and phosphorylates microtubule-associated protein tau and tubulin. TTBK has two isoforms, TTBK1 and TTBK2, which contain highly homologous catalytic domains but their non-catalytic domains are distinctly different. TTBK1 is expressed specifically in the central nervous system and is involved in phosphorylation and aggregation of tau. TTBK2 is ubiquitously expressed in multiple tissues and genetically linked to spinocerebellar ataxia type 11. TTBK1 directly phosphorylates tau protein, especially at Ser422, and also activates cycline-dependent kinase 5 in a unique mechanism. TTBK1 protein expression is significantly elevated in Alzheimer’s disease (AD) brains, and genetic variations of the TTBK1 gene are associated with late-onset Alzheimer’s disease in two cohorts of Chinese and Spanish populations. TTBK1 transgenic mice harboring the entire 55-kilobase genomic sequence of human TTBK1 show progression of tau accumulation, neuroinflammation, and neurodegeneration when crossed with tau mutant mice. Our recent study shows that there is a striking switch in mononuclear phagocyte and activation phenotypes in the anterior horn of the spinal cord from alternatively activated (M2-skewed) microglia in P301L tau mutant mice to pro-inflammatory (M1-skewed) infiltrating peripheral monocytes by crossing the tau mice with TTBK1 transgenic mice. TTBK1 is responsible for mediating M1-activated microglia-induced neurotoxicity, and its overexpression induces axonal degeneration in vitro. These studies suggest that TTBK1 is an important molecule for the inflammatory axonal degeneration, which may be relevant to the pathobiology of tauopathy including AD.
Collapse
Affiliation(s)
- Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA ; Department of Neurology, Boston University School of Medicine Boston, MA, USA ; Alzheimer's Disease Center, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
116
|
Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:808-18. [PMID: 24418258 DOI: 10.1016/j.ajpath.2013.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Abstract
Tau-tubulin kinase-1 (TTBK1) is a central nervous system (CNS)-specific protein kinase implicated in the pathological phosphorylation of tau. TTBK1-transgenic mice show enhanced neuroinflammation in the CNS. Double-transgenic mice expressing TTBK1 and frontotemporal dementia with parkinsonism-17-linked P301L (JNPL3) tau mutant (TTBK1/JNPL3) show increased accumulation of oligomeric tau protein in the CNS and enhanced loss of motor neurons in the ventral horn of the lumbar spinal cord. To determine the role of TTBK1-induced neuroinflammation in tauopathy-related neuropathogenesis, age-matched TTBK1/JNPL3, JNPL3, TTBK1, and non-transgenic littermates were systematically characterized. There was a striking switch in the activation phenotype and population of mononuclear phagocytes (resident microglia and infiltrating macrophages) in the affected spinal cord region: JNPL3 mice showed accumulation of alternatively activated microglia, whereas TTBK1 and TTBK1/JNPL3 mice showed accumulation of classically activated infiltrating peripheral monocytes. In addition, expression of chemokine ligand 2, a chemokine important for the recruitment of peripheral monocytes, was enhanced in TTBK1 and TTBK1/JNPL3 but not in other groups in the spinal cord. Furthermore, primary cultured mouse motor neurons showed axonal degeneration after transient expression of the TTBK1 gene or treatment with conditioned media derived from lipopolysaccharide-stimulated microglia; this was partially blocked by silencing of the endogenous TTBK1 gene in neurons. These data suggest that TTBK1 accelerates motor neuron neurodegeneration by recruiting proinflammatory monocytes and enhancing sensitivity to neurotoxicity in inflammatory conditions.
Collapse
|
117
|
|
118
|
Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl) 2014; 231:345-56. [PMID: 23958944 DOI: 10.1007/s00213-013-3240-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Abstract
RATIONALE Xanthoceraside, a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, reverses cognitive deficits in intracerebroventricular injection of Aβ25-35 or Aβ1-42 mice. However, whether xanthoceraside has a positive effect on hyperphosphorylated tau protein remains unclear. OBJECTIVES We investigated the effects of xanthoceraside on behavioural impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and its potential mechanisms. MATERIALS AND METHODS The rats were administered with xanthoceraside (0.06, 0.12 or 0.24 mg/kg) or vehicle once daily after STZ intracerebroventricular injections. The Y-maze test and novel object recognition test were performed 21 and 22 days after the second STZ injection, respectively. The levels of hyperphosphorylated tau, phosphatidylinositol-3-kinase (PI3K)/serine/threonine protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), protein phosphatase 1 (PP-1) and protein phosphatase 2A (PP-2A) were also tested by Western blot. RESULTS Xanthoceraside treatment significantly attenuated learning and memory impairments and reduced the level of STZ-induced hyperphosphorylated tau protein. Xanthoceraside also enhanced PP-2A and PP-1 expressions, increased PI3K (p85) and Akt (Ser473) phosphorylation and decreased GSK-3β (tyr216) phosphorylation. CONCLUSIONS Xanthoceraside has protective effect against learning and memory impairments and inhibits tau hyperphosphorylation in the hippocampus, possibly through the inhibition of the PI3K/Akt-dependent GSK-3β signalling pathway and an enhancement of phosphatases activity.
Collapse
|
119
|
|
120
|
Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One 2013; 8:e84615. [PMID: 24367683 PMCID: PMC3868614 DOI: 10.1371/journal.pone.0084615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
β-amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer’s disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser262 phosphorylation was shown to mediate β-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3ζ is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3ζ promotes tau phosphorylation at Ser262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3ζ causes an increase in Ser262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3ζ overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3ζ promotes proteosomal degradation of synaptophysin. When 14-3-3ζ overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3ζ accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3ζ may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD.
Collapse
|
121
|
Abstract
The nature of “toxic” tau in Alzheimer’s disease (AD) has been unclear. During pathogenesis, the importance of tau oligomerization vs. tau phosphorylation is controversial and the investigation of both remains critical toward defining the “toxicity” of tau. The phosphorylation of tau on serines and/or threonines occurs early in the disease course and altering phosphorylation has been shown to disrupt neuropathogenesis. We have recently reported that in PC12-derived cells, tau had a role in signal transduction processes activated by NGF. By depleting tau, NGF-induced MAPK activation was attenuated and by restoring tau, MAPK activation was restored. Furthermore, the phosphorylation of tau on Thr231 was required for tau to potentiate MAPK activation. Here we report the effects of additional disease-related tau phosphorylation sites and tau isoform on the ability of tau to potentiate MAPK activation. Our findings, which tested three other sites of phosphorylation, showed that phosphorylation at these other sites mainly lessened MAPK activation; none potentiated MAPK activation. In comparing 0N3R tau to the other five brain tau isoforms, most showed a trend toward less MAPK activation, with only 2N4R tau showing significantly less activation. Since MAPK activation has been reported in AD brain and is characteristic of cell proliferation mechanisms, tau phosphorylation that promotes MAPK activation could promote cell cycle activation mechanisms. In neurons, the activation of the cell cycle leads to cell death, suggesting that abnormally phosphorylated tau can be a toxic species. The relationship between tau oligomerization and its ability to potentiate MAPK activation needs to be determined.
Collapse
Affiliation(s)
- Chad J Leugers
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| | | | | | | |
Collapse
|
122
|
Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav Brain Res 2013; 250:351-60. [DOI: 10.1016/j.bbr.2013.05.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/13/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
123
|
Noble W, Hanger DP, Miller CCJ, Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 2013; 4:83. [PMID: 23847585 PMCID: PMC3696910 DOI: 10.3389/fneur.2013.00083] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 01/20/2023] Open
Abstract
Fibrillar deposits of highly phosphorylated tau are a key pathological feature of several neurodegenerative tauopathies including Alzheimer's disease (AD) and some frontotemporal dementias. Increasing evidence suggests that the presence of these end-stage neurofibrillary lesions do not cause neuronal loss, but rather that alterations to soluble tau proteins induce neurodegeneration. In particular, aberrant tau phosphorylation is acknowledged to be a key disease process, influencing tau structure, distribution, and function in neurons. Although typically described as a cytosolic protein that associates with microtubules and regulates axonal transport, several additional functions of tau have recently been demonstrated, including roles in DNA stabilization, and synaptic function. Most recently, studies examining the trans-synaptic spread of tau pathology in disease models have suggested a potential role for extracellular tau in cell signaling pathways intrinsic to neurodegeneration. Here we review the evidence showing that tau phosphorylation plays a key role in neurodegenerative tauopathies. We also comment on the tractability of altering phosphorylation-dependent tau functions for therapeutic intervention in AD and related disorders.
Collapse
Affiliation(s)
- Wendy Noble
- Department of Neuroscience, King's College London, Institute of Psychiatry , London , UK
| | | | | | | |
Collapse
|
124
|
Microtubule-associated protein tau in bovine retinal photoreceptor rod outer segments: comparison with brain tau. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1549-59. [PMID: 23712071 DOI: 10.1016/j.bbadis.2013.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 01/09/2023]
Abstract
Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.e., its isoforms, its phosphorylation mode and its interaction with microtubules, and by comparing them with those of brain tau. We find that ROS contains at least four isoforms: three are identical to those in brain and one is unique in ROS. All ROS isoforms, like brain isoforms, are modified with multiple phosphate molecules; however, ROS isoforms show their own specific phosphorylation pattern, and these phosphorylation patterns appear not to be identical to those of brain tau. Interestingly, some ROS isoforms, under the normal conditions, are phosphorylated at the sites identical to those in Alzheimer's patient isoforms. Surprisingly, a large portion of ROS isoforms tightly associates with a membranous component(s) other than microtubules, and this association is independent of their phosphorylation states. These observations strongly suggest that tau plays various roles in ROS and that some of these functions may not be comparable to those of brain tau. We believe that knowledge about tau in the entire retinal network and/or its individual cells are also essential for elucidation of tau-mediated retinal diseases, if any.
Collapse
|
125
|
Savelieff MG, Lee S, Liu Y, Lim MH. Untangling amyloid-β, tau, and metals in Alzheimer's disease. ACS Chem Biol 2013; 8:856-65. [PMID: 23506614 DOI: 10.1021/cb400080f] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein misfolding and metal ion dyshomeostasis are believed to underlie numerous neurodegenerative diseases, including Alzheimer's disease (AD). The pathological hallmark of AD is accumulation of misfolded amyloid-β (Aβ) peptides and hyperphosphorylated tau (ptau) proteins in the brain. Since AD etiology remains unclear, several hypotheses have emerged to elucidate its pathological pathways. The amyloid cascade hypothesis, a leading hypothesis for AD development, advocates Aβ as the principal culprit. Additionally, evidence suggests that tau may contribute to AD pathology. Aβ and tau have also been shown to impact each other's pathology either directly or indirectly. Furthermore, metal ion dyshomeostasis is associated with these misfolded proteins. Metal interactions with Aβ and tau/ptau also influence their aggregation properties and neurotoxicity. Herein, we present current understanding on the roles of Aβ, tau, and metal ions, placing equal emphasis on each of these proposed features, as well as their inter-relationships in AD pathogenesis.
Collapse
Affiliation(s)
- Masha G. Savelieff
- Life
Sciences Institute and ‡Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Sanghyun Lee
- Life
Sciences Institute and ‡Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Yuzhong Liu
- Life
Sciences Institute and ‡Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Mi Hee Lim
- Life
Sciences Institute and ‡Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109,
United States
| |
Collapse
|
126
|
Mendoza J, Sekiya M, Taniguchi T, Iijima KM, Wang R, Ando K. Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro. J Proteome Res 2013; 12:2654-65. [PMID: 23550703 DOI: 10.1021/pr400008f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperphosphorylation of microtubule-associated protein tau is thought to contribute to Alzheimer's disease (AD) pathogenesis. We previously showed that DNA damage-activated cell cycle checkpoint kinases Chk1 and Chk2 phosphorylate tau at an AD-related site and enhance tau toxicity, suggesting potential roles of these kinases in AD. The purpose of this study is to systematically identify which sites in tau are directly phosphorylated by Chk1 and Chk2. Using recombinant human tau phosphorylated by Chk1 and Chk2 in vitro, we first analyzed tau phosphorylation at the AD-related sites by Western blot with phospho-tau-specific antibodies. Second, to globally identify phosphorylated sites in tau, liquid chromatography-tandem mass spectrometry (LC-MS(3)) was employed. These systematic analyses identified a total of 27 Ser/Thr residues as Chk1- or Chk2- target sites. None of them were proline-directed kinase targets. Many of these sites are located within the microtubule-binding domain and C-terminal domain, whose phosphorylation has been shown to reduce tau binding to microtubules and/or has been implicated in tau toxicity. Among these 27 sites, 13 sites have been identified to be phosphorylated in AD brains. Since DNA damage is accumulated in diseased brains, Chk1 and Chk2 may be involved in tau phosphorylation and toxicity in AD pathogenesis.
Collapse
Affiliation(s)
- Jhoana Mendoza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, New York 10029, United States
| | | | | | | | | | | |
Collapse
|
127
|
Platt TL, Reeves VL, Murphy MP. Transgenic models of Alzheimer's disease: better utilization of existing models through viral transgenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1437-48. [PMID: 23619198 DOI: 10.1016/j.bbadis.2013.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Animal models have been used for decades in the Alzheimer's disease (AD) research field and have been crucial for the advancement of our understanding of the disease. Most models are based on familial AD mutations of genes involved in the amyloidogenic process, such as the amyloid precursor protein (APP) and presenilin 1 (PS1). Some models also incorporate mutations in tau (MAPT) known to cause frontotemporal dementia, a neurodegenerative disease that shares some elements of neuropathology with AD. While these models are complex, they fail to display pathology that perfectly recapitulates that of the human disease. Unfortunately, this level of pre-existing complexity creates a barrier to the further modification and improvement of these models. However, as the efficacy and safety of viral vectors improves, their use as an alternative to germline genetic modification is becoming a widely used research tool. In this review we discuss how this approach can be used to better utilize common mouse models in AD research. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Thomas L Platt
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
128
|
Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation. Cell Biochem Biophys 2013; 67:485-99. [DOI: 10.1007/s12013-013-9550-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
129
|
Li L, Liu Z, Liu J, Tai X, Hu X, Liu X, Wu Z, Zhang G, Shi M, Zhao G. Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A. Neurobiol Dis 2013; 54:320-8. [PMID: 23321003 DOI: 10.1016/j.nbd.2013.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/25/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibrillary tangles are aggregates of hyperphosphorylated tau that are one of the pathological hallmarks of Alzheimer's disease (AD). Tau phosphorylation is regulated by a balance of kinase and phosphatase activities. Our previous study has demonstrated that ginsenoside Rd, one of the principal active ingredients of Pana notoginseng, inhibits okadaic acid-induced tau phosphorylation in vivo and in vitro, but the underlying mechanism(s) is unknown. In this study, we showed that ginsenoside Rd pretreatment inhibited tau phosphorylation at multiple sites in beta-amyloid (Aβ)-treated cultured cortical neurons, and in vivo in both a rat and transgenic mouse model. Ginsenoside Rd not only reduced Aβ-induced increased expression of glycogen synthase kinase 3beta (GSK-3β), the most important kinase involved in tau phosphorylation, but also inhibited its activity by enhancing and attenuating its phosphorylation at Ser9 and Tyr216, respectively. Moreover, ginsenoside Rd enhanced the activity of protein phosphatase 2A (PP-2A), a key phosphatase involved in tau dephosphorylation. Finally, an in vitro biochemical assay revealed that ginsenoside Rd directly affected GSK-3β and PP-2A activities. Thus, our findings provide the first evidence that ginsenoside Rd attenuates Aβ-induced pathological tau phosphorylation by altering the functional balance of GSK-3β and PP-2A.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
131
|
Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0144-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.
Collapse
|
132
|
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev 2013; 12:39-49. [PMID: 22771380 DOI: 10.1016/j.arr.2012.06.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby that might contributes to tau aggregation. Thus, understanding the regulation modes of tau dephosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these lesions in AD. Among the possible and relatively specific interventions that reverse tau phosphorylation is the stimulation of certain tau phosphatases. Here, we reviewed tau protein phosphatases, their physiological roles and regulation, their involvement in tau phosphorylation and the relevance to AD. We also reviewed the most common compounds acting on each tau phosphatase including PP2A.
Collapse
Affiliation(s)
- Ludovic Martin
- Groupe de Neurobiologie Cellulaire, Homéostasie cellulaire et pathologies, Faculté de Médecine, Limoges, France.
| | | | | | | | | | | |
Collapse
|
133
|
STOX1A induces phosphorylation of tau proteins at epitopes hyperphosphorylated in Alzheimer's disease. Neurosci Lett 2012; 528:104-9. [PMID: 22995177 DOI: 10.1016/j.neulet.2012.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/22/2022]
Abstract
Intraneuronal fibrillary tangles are a major hallmark of several neurodegenerative diseases including Alzheimer's disease. The major constituents of these hallmarks are hyper-phosphorylated tau. In this study we used a neuronal cellular model which over-expresses transcription factor STOX1A in combination with the longest human tau isoform to test the effect of STOX1A on tau phosphorylation. Our results show that STOX1A induces phosphorylation of the longest human tau isoform at phospho-epitopes typically found in neurofibrillary tangles in Alzheimer's disease. In conclusion, our results show a STOX1A-dependent effect on tau phosphorylation found in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
134
|
Cui B, Zhu L, She X, Wu M, Ma Q, Wang T, Zhang N, Xu C, Chen X, An G, Liu H. Chronic noise exposure causes persistence of tau hyperphosphorylation and formation of NFT tau in the rat hippocampus and prefrontal cortex. Exp Neurol 2012; 238:122-9. [PMID: 22971273 DOI: 10.1016/j.expneurol.2012.08.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/05/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The non-auditory effects of noise exposure on the central nervous system have been established both epidemiologically and experimentally. Chronic noise exposure (CNE) has been associated with tau hyperphosphorylation and Alzheimer's disease (AD)-like pathological changes. However, experimental evidence for these associations remains limited. The aim of the current study was to explore the effects of CNE [100 dB sound pressure level (SPL) white noise, 4 h/d×14 d] on tau phosphorylation in the rat hippocampus and the prefrontal cortex. Forty-eight male Wistar rats were randomly assigned to two groups: a noise-exposed group and a control group. The levels of radioimmunoprecipitation assay (RIPA)-soluble and RIPA-insoluble phosphorylated tau at Ser202, Ser396, Ser404, and Ser422 in the hippocampus and the prefrontal cortex were measured at different time points (days 0, 3, 7, and 14) after the end of the last noise exposure. Exposure to white noise for 14 consecutive days significantly increased the levels of tau phosphorylation at Ser202, Ser396, Ser404, and Ser422, the sites typically phosphorylated in AD brains, in the hippocampus and the prefrontal cortex. Tau hyperphosphorylation persisted for 7 to 14 d after the cessation of noise exposure. These alterations were also concomitant with the generation of pathological neurofibrillary tangle (NFT) tau 3, 7 and 14 d after the end of the stimulus. Furthermore, lasting increases in proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were found to occur in close correspondence with increase in tau hyperphosphorylation. The results of this study show that CNE leads to long-lasting increases in non-NFT hyperphosphorylated tau and delayed formation of misfolded NFT tau in the hippocampus and the prefrontal cortex. Our results also provide evidence for the involvement of GSK3β and PP2A in these processes.
Collapse
Affiliation(s)
- Bo Cui
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 2012; 287:35222-35233. [PMID: 22910909 DOI: 10.1074/jbc.m112.348300] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer disease (AD) is neuropathologically characterized by the formation of senile plaques from amyloid-β (Aβ) and neurofibrillary tangles composed of phosphorylated Tau. Although there is growing evidence for the pathogenic role of soluble Aβ species in AD, the major question of how Aβ induces hyperphosphorylation of Tau remains unanswered. To address this question, we here developed a novel cell coculture system to assess the effect of extracellular Aβ at physiologically relevant levels naturally secreted from donor cells on the phosphorylation of Tau in recipient cells. Using this assay, we demonstrated that physiologically relevant levels of secreted Aβ are sufficient to cause hyperphosphorylation of Tau in recipient N2a cells expressing human Tau and in primary culture neurons. This hyperphosphorylation of Tau is inhibited by blocking Aβ production in donor cells. The expression of familial AD-linked PSEN1 mutants and APP ΔE693 mutant that induce the production of oligomeric Aβ in donor cells results in a similar hyperphosphorylation of Tau in recipient cells. The mechanism underlying the Aβ-induced Tau hyperphosphorylation is mediated by the impaired insulin signal transduction because we demonstrated that the phosphorylation of Akt and GSK3β upon insulin stimulation is less activated under this condition. Treating cells with the insulin-sensitizing drug rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, attenuates the Aβ-dependent hyperphosphorylation of Tau. These findings suggest that the disturbed insulin signaling cascade may be implicated in the pathways through which soluble Aβ induces Tau phosphorylation and further support the notion that correcting insulin signal dysregulation in AD may offer a potential therapeutic approach.
Collapse
Affiliation(s)
- Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kensaku Kasuga
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Ryuji Yajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yumi Sekine
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshiyuki Tezuka
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Center for Transdisciplinary Research, Niigata University, Niigata 951-8585, Japan.
| |
Collapse
|
136
|
Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2012; 8:666-77. [PMID: 21679154 DOI: 10.2174/156720511796717195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer's disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained.
Collapse
Affiliation(s)
- A Boutajangout
- Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
137
|
Ratia M, Giménez-Llort L, Camps P, Muñoz-Torrero D, Pérez B, Clos MV, Badia A. Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD). NEURODEGENER DIS 2012; 11:129-40. [PMID: 22626981 DOI: 10.1159/000336427] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Different studies have established that cholinergic neurodegeneration could be a major pathological feature of Alzheimer's disease (AD). Thus, enhancement of the central cholinergic neurotransmission has been regarded as one of the most promising strategies for the symptomatic treatment of AD, mainly by means of reversible acetylcholinesterase inhibitors (AChEIs). The cognitive-enhancing properties of both huprine X, a new AChEI, and the structurally related huperzine A, as well as their effects on the regulation of several neurochemical processes related to AD have been studied in triple transgenic mice (3xTg-AD). METHODS Seven-month-old homozygous 3xTg-AD male mice, which received chronic intraperitoneal treatment with either saline, huprine X (0.12 µmol·kg(-1)) or huperzine A (0.8 µmol·kg(-1)) were subjected to a battery of behavioural tests after 3 weeks of treatment and thereafter the brains were dissected to study the neurochemical effects induced by the two AChEIs. RESULTS Treatments with huprine X and huperzine A improved learning and memory in the Morris water maze and some indicators of emotionality without inducing important adverse effects. Moreover, huprine X and huperzine A activate protein kinase C/mitogen-activated protein kinase pathway signalling, α-secretases (ADAM 10 and TACE) and increase the fraction of phospho-glycogen synthase kinase 3-β. CONCLUSION Results obtained herein using a sample of 3xTg-AD animals strongly suggest that the treatment with the two AChEIs not only improves the cognitive performance of the animals but also induces some neurochemical changes that could contribute to the beneficial effects observed.
Collapse
Affiliation(s)
- M Ratia
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
138
|
Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J Neurosci 2012; 32:2430-41. [PMID: 22396417 DOI: 10.1523/jneurosci.5927-11.2012] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein Tau is a major component of the neurofibrillary tangles that serve as a neuropathological hallmark of Alzheimer's disease. Tau is a substrate for protein phosphorylation at multiple sites and occurs in tangles in a hyperphosphorylated state. However, the physiological functions of Tau phosphorylation or how it may contribute mechanistically to Alzheimer's pathophysiology are not completely understood. Here, we examined the function of human Tau phosphorylation at three sites, Ser199, Ser202, and Thr205, which together comprise the AT8 sites that mark abnormal phosphorylation in Alzheimer's disease. Overexpression of wild-type Tau or mutated forms in which these sites had been changed to either unphosphorylatable alanines or phosphomimetic aspartates inhibited mitochondrial movement in the neurite processes of PC12 cells as well as the axons of mouse brain cortical neurons. However, the greatest effects on mitochondrial translocation were induced by phosphomimetic mutations. These mutations also caused expansion of the space between microtubules in cultured cells when membrane tension was reduced by disrupting actin filaments. Thus, Tau phosphorylation at the AT8 sites may have meaningful effects on mitochondrial movement, likely by controlling microtubule spacing. Hyperphosphorylation of the AT8 sites may contribute to axonal degeneration by disrupting mitochondrial transport in Alzheimer's disease.
Collapse
|
139
|
Abstract
In Alzheimer’s disease (AD), tau hyperphosphorylation and neurofibrillary tangle (NFT) formation are strongly associated with dementia, a characteristic and early feature of this disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal kinase in both the normal and pathological phosphorylation of tau. In the diseased state, hyperphosphorylated tau is deposited in NFTs, the formation of which, drive the disease process. GSK-3β which is also involved in long-term depression induction, interacts with tau to inhibit synaptic long-term potentiation. Strong lines of evidence suggest that the activation of GSK-3β is responsible for the memory deficits seen in both advanced age and AD. In this review, we will focus on the role of GSK-3β in brain function, particularly in memory maintenance. We will examine human and mouse studies which suggest a role for GSK-3β in memory maintenance and the eventual development of memory deficits.
Collapse
Affiliation(s)
- Akihiko Takashima
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
140
|
Inoue M, Konno T, Tainaka K, Nakata E, Yoshida HO, Morii T. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Biochemistry 2012; 51:1396-406. [PMID: 22304362 DOI: 10.1021/bi201451z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-β structure. In addition, the phosphoserine-containing peptides showed the characteristics of β-sandwiches that could interact with both faces of the β-sheet. On the basis of these observations, possible protofilament models with four β-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between β-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.
Collapse
Affiliation(s)
- Masafumi Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
Tauopathies are age-related neurodegenerative diseases that are characterized by the presence of aggregates of abnormally phosphorylated tau. As tau was originally discovered as a microtubule-associated protein, it has been hypothesized that neurodegeneration results from a loss of the ability of tau to associate with microtubules. However, tau has been found to have other functions aside from the promotion and stabilization of microtubule assembly. It is conceivable that such functions may be affected by the abnormal phosphorylation of tau and might have consequences for neuronal function or viability. This chapter provides an overview of tau structure, functions, and its involvement in neurodegenerative diseases.
Collapse
|
142
|
Yoshida H, Goedert M. Phosphorylation of microtubule-associated protein tau by AMPK-related kinases. J Neurochem 2011; 120:165-76. [DOI: 10.1111/j.1471-4159.2011.07523.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
143
|
Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Wesseling H, Rahmoune H, Bahn S. The need for phosphoproteomic approaches in psychiatric research. J Psychiatr Res 2011; 45:1404-6. [PMID: 21616503 DOI: 10.1016/j.jpsychires.2011.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/07/2011] [Accepted: 04/18/2011] [Indexed: 12/30/2022]
|
144
|
Lee VMY, Brunden KR, Hutton M, Trojanowski JQ. Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. Cold Spring Harb Perspect Med 2011; 1:a006437. [PMID: 22229117 PMCID: PMC3234455 DOI: 10.1101/cshperspect.a006437] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A hallmark of the Alzheimer disease (AD) brain is the presence of inclusions within neurons that are comprised of fibrils formed from the microtubule-stabilizing protein tau. The formation of misfolded multimeric tau species is believed to contribute to the progressive neuron loss and cognitive impairments of AD. Moreover, mutations in tau have been shown to cause a form of frontotemporal lobar degeneration in which tau neuronal inclusions observed in the brain are similar to those seen in AD. Here we review the more compelling strategies that are designed to reduce the contribution of misfolded tau to AD neuropathology, including those directed at correcting a possible loss of tau function resulting from sequestration of cellular tau and to minimizing possible gain-of-function toxicities caused by multimeric tau species. Finally, we discuss the challenges and potential benefits of tau-directed drug discovery programs.
Collapse
Affiliation(s)
- Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
145
|
Hanger DP, Noble W. Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis 2011; 2011:352805. [PMID: 21776376 PMCID: PMC3139124 DOI: 10.4061/2011/352805] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022] Open
Abstract
Tau is primarily a neuronal microtubule-associated protein that has functions related to the stabilisation of microtubules. Phosphorylation of tau is an important dynamic and regulatory element involved in the binding of tau to tubulin. Thus, highly phosphorylated tau is more likely to be present in the cytosolic compartment of neurons, whereas reduced phosphate burden allows tau to bind to and stabilise the microtubule cytoskeleton. Highly phosphorylated forms of tau are deposited in the brain in a range of neurodegenerative disorders including Alzheimer's disease, progressive supranuclear palsy, and frontotemporal lobar degeneration associated with Pick bodies. A key candidate kinase for both physiological and pathological tau phosphorylation is glycogen synthase kinase-3 (GSK-3). Multiple phosphorylation sites have been identified on tau exposed to GSK-3 in vitro and in cells. In this review, we highlight recent data suggesting a role for GSK-3 activity on physiological tau function and on tau dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Diane P Hanger
- Department of Neuroscience (P037), MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | | |
Collapse
|
146
|
Novel screening cascade identifies MKK4 as key kinase regulating Tau phosphorylation at Ser422. Mol Cell Biochem 2011; 357:199-207. [PMID: 21638028 DOI: 10.1007/s11010-011-0890-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer's disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65'000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.
Collapse
|
147
|
Differential regional distribution of phosphorylated tau and synapse loss in the nucleus accumbens in tauopathy model mice. Neurobiol Dis 2011; 42:404-14. [DOI: 10.1016/j.nbd.2011.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 11/22/2022] Open
|
148
|
Hundelt M, Fath T, Selle K, Oesterwind K, Jordan J, Schultz C, Götz J, von Engelhardt J, Monyer H, Lewejohann L, Sachser N, Bakota L, Brandt R. Altered phosphorylation but no neurodegeneration in a mouse model of tau hyperphosphorylation. Neurobiol Aging 2011; 32:991-1006. [DOI: 10.1016/j.neurobiolaging.2009.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/10/2009] [Accepted: 06/27/2009] [Indexed: 01/16/2023]
|
149
|
Hu JP, Xie JW, Wang CY, Wang T, Wang X, Wang SL, Teng WP, Wang ZY. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res Bull 2011; 85:194-200. [DOI: 10.1016/j.brainresbull.2011.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
|
150
|
Lu Y, Li T, Qureshi HY, Han D, Paudel HK. Early growth response 1 (Egr-1) regulates phosphorylation of microtubule-associated protein tau in mammalian brain. J Biol Chem 2011; 286:20569-81. [PMID: 21489990 DOI: 10.1074/jbc.m111.220962] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the normal brain, tau protein is phosphorylated at a number of proline- and non-proline directed sites, which reduce tau microtubule binding and thus regulate microtubule dynamics. In Alzheimer disease (AD), tau is abnormally hyperphosphorylated, leading to neurofibrillary tangle formation and microtubule disruption, suggesting a loss of regulatory mechanisms controlling tau phosphorylation. Early growth response 1 (Egr-1) is a transcription factor that is significantly up-regulated in AD brain. The pathological significance of this up-regulation is not known. In this study, we found that lentivirus-mediated overexpression of Egr-1 in rat brain hippocampus and primary neurons in culture activates proline-directed kinase Cdk5, inactivates PP1, promotes tau phosphorylation at both proline-directed Ser(396/404) and non-proline-directed Ser(262) sites, and destabilizes microtubules. Furthermore, in Egr-1(-/-) mouse brain, Cdk5 activity was decreased, PP1 activity was increased, and tau phosphorylation was reduced at both proline-directed and non-proline-directed sites. By using nerve growth factor-exposed PC12 cells, we determined that Egr-1 activates Cdk5 to promote phosphorylation of tau and inactivates PP1 via phosphorylation. When Cdk5 was inhibited, tau phosphorylation at both proline- and non-proline directed sites and PP1 phosphorylation were blocked, indicating that Egr-1 acts through Cdk5. By using an in vitro kinase assay and HEK-293 cells transfected with tau, PP1, and Cdk5, we found that Cdk5 phosphorylates Ser(396/404) directly. In addition, by phosphorylating and inactivating PP1, Cdk5 promotes tau phosphorylation at Ser(262) indirectly. Our results indicate that Egr-1 is an in vivo regulator of tau phosphorylation and suggest that in AD brain increased levels of Egr-1 aberrantly activate an Egr-1/Cdk5/PP1 pathway, leading to accumulation of hyperphosphorylated tau, thus destabilizing the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Yifan Lu
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|