101
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
102
|
Tummala H, Li X, Homayouni R. Interaction of a novel mitochondrial protein, 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1), with the amyloid precursor protein family. Eur J Neurosci 2010; 31:1926-34. [DOI: 10.1111/j.1460-9568.2010.07248.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
103
|
Li M, Zhong Z, Zhu J, Xiang D, Dai N, Cao X, Qing Y, Yang Z, Xie J, Li Z, Baugh L, Wang G, Wang D. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem 2010; 285:14871-14881. [PMID: 20231292 DOI: 10.1074/jbc.m109.069591] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dually targeted mitochondrial proteins usually possess an unconventional mitochondrial targeting sequence (MTS), which makes them difficult to predict by current bioinformatics approaches. Human apurinic/apyrimidinic endonuclease (APE1) plays a central role in the cellular response to oxidative stress. It is a dually targeted protein preferentially residing in the nucleus with conditional distribution in the mitochondria. However, the mitochondrial translocation mechanism of APE1 is not well characterized because it harbors an unconventional MTS that is difficult to predict by bioinformatics analysis. Two experimental approaches were combined in this study to identify the MTS of APE1. First, the interactions between the peptides from APE1 and the three purified translocase receptors of the outer mitochondrial membrane (Tom) were evaluated using a peptide array screen. Consequently, the intracellular distribution of green fluorescent protein-tagged, truncated, or mutated APE1 proteins was traced by tag detection. The results demonstrated that the only MTS of APE1 is harbored within residues 289-318 in the C terminus, which is normally masked by the intact N-terminal structure. As a dually targeted mitochondrial protein, APE1 possesses a special distribution pattern of different subcellular targeting signals, the identification of which sheds light on future prediction of MTSs.
Collapse
Affiliation(s)
- Mengxia Li
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Zhaoyang Zhong
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Jianwu Zhu
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Debing Xiang
- Department of Pathology of Research, Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Nan Dai
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Xiaojing Cao
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Yi Qing
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Zhenzhou Yang
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Jiayin Xie
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Zengpeng Li
- Department of Pathology of Research, Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Laura Baugh
- Department of Biology, University of Dallas, Irving, Texas 75062
| | - Ge Wang
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China
| | - Dong Wang
- Cancer Center, Cancer Center, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
104
|
Mokranjac D, Neupert W. The many faces of the mitochondrial TIM23 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1045-54. [PMID: 20116361 DOI: 10.1016/j.bbabio.2010.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 01/24/2023]
Abstract
The TIM23 complex in the inner membrane of mitochondria mediates import of essentially all matrix proteins and a large number of inner membrane proteins. Here we present an overview on the latest insights into the structure and function of this remarkable molecular machine.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians University, Butenandtstr. 5, 81377 Munich, Germany.
| | | |
Collapse
|
105
|
van der Laan M, Hutu DP, Rehling P. On the mechanism of preprotein import by the mitochondrial presequence translocase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:732-9. [PMID: 20100523 DOI: 10.1016/j.bbamcr.2010.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/05/2010] [Accepted: 01/11/2010] [Indexed: 12/22/2022]
Abstract
Mitochondria are organelles of endosymbiontic origin that contain more than one thousand different proteins. The vast majority of these proteins is synthesized in the cytosol and imported into one of four mitochondrial subcompartments: outer membrane, intermembrane space, inner membrane and matrix. Several import pathways exist and are committed to different classes of precursor proteins. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) mediates import of precursor proteins with cleavable amino-terminal presequences. Presequences direct precursors across the inner membrane. The combination of this presequence with adjacent regions determines if a precursor is fully translocated into the matrix or laterally sorted into the inner mitochondrial membrane. The membrane-embedded TIM23(SORT) complex mediates the membrane potential-dependent membrane insertion of precursor proteins with a stop-transfer sequence downstream of the mitochondrial targeting signal. In contrast, translocation of precursor proteins into the matrix requires the recruitment of the presequence translocase-associated motor (PAM) to the TIM23 complex. This ATP-driven import motor consists of mitochondrial Hsp70 and several membrane-associated co-chaperones. These two structurally and functionally distinct forms of the TIM23 complex (TIM23(SORT) and TIM23(MOTOR)) are in a dynamic equilibrium with each other. In this review, we discuss recent advances in our understanding of the mechanisms of matrix translocation and membrane insertion by the TIM23 machinery.
Collapse
Affiliation(s)
- Martin van der Laan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
106
|
Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer's and Parkinson's diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:11-9. [PMID: 19619643 PMCID: PMC2790550 DOI: 10.1016/j.bbadis.2009.07.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/09/2009] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction is an important intracellular lesion associated with a wide variety of diseases including neurodegenerative disorders. In addition to aging, oxidative stress and mitochondrial DNA mutations, recent studies have implicated a role for the mitochondrial accumulation of proteins such as plasma membrane associated amyloid precursor protein (APP) and cytosolic alpha synuclein in the pathogenesis of mitochondrial dysfunction in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which drive their transport across mitochondria. In general, mitochondrial entry of nuclear coded proteins is assisted by import receptors situated in both outer and inner mitochondrial membranes. A growing number of evidence suggests that APP and alpha synclein interact with import receptors to gain entry into mitochondrial compartment. Additionally, carboxy terminal cleaved product of APP, approximately 4 kDa Abeta, is also transported into mitochondria with the help of mitochondrial outer membrane import receptors. This review focuses on the mitochondrial targeting and accumulation of these two structurally different proteins and the mode of mechanism by which they affect the physiological functions of mitochondria.
Collapse
Affiliation(s)
- Latha Devi
- Department of Animal Biology, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA 19104
| | - Hindupur K. Anandatheerthavarada
- Department of Animal Biology, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
107
|
Berglund AK, Pujol C, Duchene AM, Glaser E. Defining the determinants for dual targeting of amino acyl-tRNA synthetases to mitochondria and chloroplasts. J Mol Biol 2009; 393:803-14. [PMID: 19733576 DOI: 10.1016/j.jmb.2009.08.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 12/12/2022]
Abstract
Most of the organellar amino acyl-tRNA synthetases (aaRSs) are dually targeted to both mitochondria and chloroplasts using dual targeting peptides (dTPs). We have investigated the targeting properties and domain structure of dTPs of seven aaRSs by studying the in vitro and in vivo import of N-terminal deleted constructs of dTPs fused to green fluorescent protein. The deletion constructs were designed based on prediction programs, TargetP and Predotar, as well as LogoPlots derived from organellar proteomes in Arabidopsis thaliana. In vitro import was performed either into a single isolated organelle or as dual import (i.e., into a mixture of isolated mitochondria and chloroplasts followed by reisolation of the organelles). In vivo import was investigated as transient expression of the green fluorescent protein constructs in Nicotiana benthamiana protoplasts. Characterization of recognition determinants showed that the N-terminal portions of TyrRS-, ValRS- and ThrRS-dTPs (27, 22 and 23 amino acids, respectively) are required for targeting into both mitochondria and chloroplasts. Surprisingly, these N-terminal portions contain no or very few arginines (or lysines) but very high number of hydroxylated residues (26-51%). For two aaRSs, a domain structure of the dTP became evident. Removal of 20 residues from the dTP of ProRS abolished chloroplastic import, indicating that the N-terminal region was required for chloroplast targeting, whereas deletion of 16 N-terminal amino acids from AspRS-dTP inhibited the mitochondrial import, showing that in this case, the N-terminal portion was required for the mitochondrial import. Finally, deletion of N-terminal regions of dTPs for IleRS and LysRS did not affect dual targeting. In summary, it can be concluded that there is no general rule for how the determinants for dual targeting are distributed within dTPs; in most cases, the N-terminal portion is essential for import into both organelles, but in a few cases, a domain structure was observed.
Collapse
Affiliation(s)
- Anna-Karin Berglund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
108
|
Panayiotou C, Solaroli N, Johansson M, Karlsson A. Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Int J Biochem Cell Biol 2009; 42:62-9. [PMID: 19766732 DOI: 10.1016/j.biocel.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.
Collapse
Affiliation(s)
- Christakis Panayiotou
- Department of Laboratory Medicine, Karolinska Institute, F68, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
109
|
De Rasmo D, Signorile A, Roca E, Papa S. cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 2009; 276:4325-33. [DOI: 10.1111/j.1742-4658.2009.07133.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Cheng TL, Liao CC, Tsai WH, Lin CC, Yeh CW, Teng CF, Chang WT. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem 2009; 107:1002-15. [DOI: 10.1002/jcb.22200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
111
|
Li J, Qian X, Hu J, Sha B. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J Biol Chem 2009; 284:23852-9. [PMID: 19581297 DOI: 10.1074/jbc.m109.023986] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
112
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
113
|
Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. Domain Organization of the Monomeric Form of the Tom70 Mitochondrial Import Receptor. J Mol Biol 2009; 388:1043-58. [DOI: 10.1016/j.jmb.2009.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
|
114
|
Anandatheerthavarada HK, Sepuri NBV, Avadhani NG. Mitochondrial targeting of cytochrome P450 proteins containing NH2-terminal chimeric signals involves an unusual TOM20/TOM22 bypass mechanism. J Biol Chem 2009; 284:17352-17363. [PMID: 19401463 DOI: 10.1074/jbc.m109.007492] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In this study, we investigated the mechanism of delivery of chimeric signal containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27A1 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of a chimeric signal containing client protein by Hsp90 required the cytosol-exposed NH(2)-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to import CYP proteins. These results suggest that compared with the unimodal mitochondrial targeting signals, the chimeric mitochondrial targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Naresh Babu V Sepuri
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Narayan G Avadhani
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
115
|
Mitochondrion-enriched anionic phospholipids facilitate flock house virus RNA polymerase membrane association. J Virol 2009; 83:4498-507. [PMID: 19244330 DOI: 10.1128/jvi.00040-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One characteristic of all positive-strand RNA viruses is the necessity to assemble viral RNA replication complexes on host intracellular membranes, a process whose molecular details are poorly understood. To study viral replication complex assembly we use the established model system of Flock House virus (FHV), which assembles its replication complexes on the mitochondrial outer membrane. The FHV RNA-dependent RNA polymerase, protein A, is the only viral protein necessary for genome replication in the budding yeast Saccharomyces cerevisiae. To examine the host components involved in protein A-membrane interactions, an initial step of FHV RNA replication complex assembly, we established an in vitro protein A membrane association assay. Protein A translated in vitro rapidly and specifically associated with mitochondria isolated from yeast, insect, and mammalian cells. This process was temperature dependent but independent of protease-sensitive mitochondrial outer membrane components or the host mitochondrial import machinery. Furthermore, lipid-binding studies revealed that protein A preferentially bound to specific anionic phospholipids, in particular the mitochondrion-specific phospholipid cardiolipin. These studies implicate membrane phospholipids as important host determinants for FHV RNA polymerase membrane association and provide evidence for the involvement of host phospholipids in positive-strand RNA virus membrane-specific targeting.
Collapse
|
116
|
TOM-independent complex formation of Bax and Bak in mammalian mitochondria during TNFα-induced apoptosis. Cell Death Differ 2009; 16:697-707. [DOI: 10.1038/cdd.2008.194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
117
|
Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. EUKARYOTIC CELL 2008; 8:19-26. [PMID: 19028997 DOI: 10.1128/ec.00313-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsporidia are a group of highly adapted obligate intracellular parasites that are now recognized as close relatives of fungi. Their adaptation to parasitism has resulted in broad and severe reduction at (i) a genomic level by extensive gene loss, gene compaction, and gene shortening; (ii) a biochemical level with the loss of much basic metabolism; and (iii) a cellular level, resulting in lost or cryptic organelles. Consistent with this trend, the mitochondrion is severely reduced, lacking ATP synthesis and other typical functions and apparently containing only a fraction of the proteins of canonical mitochondria. We have investigated the mitochondrial protein import apparatus of this reduced organelle in the microsporidian Encephalitozoon cuniculi and find evidence of reduced and modified machinery. Notably, a putative outer membrane receptor, Tom70, is reduced in length but maintains a conserved structure chiefly consisting of tetratricopeptide repeats. When expressed in Saccharomyces cerevisiae, EcTom70 inserts with the correct topology into the outer membrane of mitochondria but is unable to complement the growth defects of Tom70-deficient yeast. We have scanned genomic data using hidden Markov models for other homologues of import machinery proteins and find evidence of severe reduction of this system.
Collapse
|
118
|
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 2008; 290:51-9. [PMID: 18571833 PMCID: PMC2737506 DOI: 10.1016/j.mce.2008.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and others have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor beta (ERbeta) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERbeta is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERbeta can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
119
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
120
|
Anandatheerthavarada HK, Sepuri NBV, Biswas G, Avadhani NG. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. J Biol Chem 2008; 283:19769-80. [PMID: 18480056 DOI: 10.1074/jbc.m801464200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
121
|
Kimura T, Horibe T, Sakamoto C, Shitara Y, Fujiwara F, Komiya T, Yamamoto A, Hayano T, Takahashi N, Kikuchi M. Evidence for mitochondrial localization of P5, a member of the protein disulphide isomerase family. J Biochem 2008; 144:187-96. [PMID: 18424807 DOI: 10.1093/jb/mvn057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This report demonstrates for the first time that P5, a member of the protein disulphide isomerase (PDI) family, is present in the mitochondria. Various organelles were screened for proteins bearing the CGHC motif using an affinity column conjugated with the phage antibody 5E, which cross-reacts with PDI family proteins. P5 was found in bovine liver mitochondrial extract and identified by Western blot analysis using anti-P5 antibody and by mass spectrometric analysis. Results of cell fractionation, proteinase sensitivity experiments and immuno-electron microscopy supported the mitochondrial localization of P5 and also indicated the presence of ERp57, another PDI family protein, in mitochondria. Our findings will be useful for the elucidation of the translocation mechanism of PDI family proteins and their roles in mitochondria.
Collapse
Affiliation(s)
- Taiji Kimura
- Department of Bioscience & Technology, Faculty of Science & Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Perry AJ, Rimmer KA, Mertens HDT, Waller RF, Mulhern TD, Lithgow T, Gooley PR. Structure, topology and function of the translocase of the outer membrane of mitochondria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:265-74. [PMID: 18272380 DOI: 10.1016/j.plaphy.2007.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Indexed: 05/09/2023]
Abstract
Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.
Collapse
Affiliation(s)
- Andrew J Perry
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Biotechnology and Molecular Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are closely linked to degenerative diseases such as Alzheimer's disease, Parkinson's, neuronal death including ischemic and hemorrhagic stroke, acute and chronic degenerative cardiac myocyte death, and cancer. As a byproduct of oxidative phosphorylation, a steady stream of reactive species emerge from our cellular energy plants, the mitochondria. ROS and RNS potentially cause damage to all cellular components. Structure alteration, biomolecule fragmentation, and oxidation of side chains are trade-offs of cellular energy production. ROS and RNS escape results in the activation of cytosolic stress pathways, DNA damage, and the upregulation of JNK, p38, and p53. Incomplete scavenging of ROS and RNS particularly affects the mitochondrial lipid cardiolipin (CL), triggers the release of mitochondrial cytochrome c, and activates the intrinsic death pathway. Due to the active redox environment and the excess of NADH and ATP at the inner mitochondrial membrane, a broad range of agents including electron acceptors, electron donors, and hydride acceptors can be used to influence the biochemical pathways. The key to therapeutic value is to enrich selective redox modulators at the target sites. Our approach is based on conjugating nitroxides to segments of natural products with relatively high affinity for mitochondrial membranes. For example, a modified gramicidin S segment was successfully used for this purpose and proven to be effective in preventing superoxide production in cells and CL oxidation in mitochondria and in protecting cells against a range of pro-apoptotic triggers such as actinomycin D, radiation, and staurosporine. More importantly, these mitochondria-targeted nitroxide/gramicidin conjugates were able to protect against apoptosis in vivo by preventing CL oxidation induced by intestinal hemorrhagic shock. Optimization of nitroxide carriers could lead to a new generation of effective antiapoptotic agents acting at an early mitochondrial stage. Alternative chemistry-based approaches to targeting mitochondria include the use of proteins and peptides, as well as the attachment of payloads to lipophilic cationic compounds, sulfonylureas, anthracyclines, and other agents with proven or hypothetical affinities for mitochondria. Manganese superoxide dismutase (MnSOD), SS tetrapeptides with 2',6'-dimethyltyrosine (Dmt) residues, rhodamine, triphenylphosphonium salts, nonopioid analgesics, adriamycin, and diverse electron-rich aromatics and stilbenes were used to influence mitochondrial biochemistry and the biology of aging. Some general structural principles for effective therapeutic agents are now emerging. Among these are the presence of basic or positively charged functional groups, hydrophobic substructures, and, most promising for future selective strategies, classes of compounds that are actively shuttled into mitochondria, bind to mitochondria-specific proteins, or show preferential affinity to mitochondria-specific lipids.
Collapse
|
124
|
Lamarca V, Sanz-Clemente A, Pérez-Pé R, Martínez-Lorenzo MJ, Halaihel N, Muniesa P, Carrodeguas JA. Two isoforms of PSAP/MTCH1 share two proapoptotic domains and multiple internal signals for import into the mitochondrial outer membrane. Am J Physiol Cell Physiol 2007; 293:C1347-61. [PMID: 17670888 DOI: 10.1152/ajpcell.00431.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed.
Collapse
Affiliation(s)
- Violeta Lamarca
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Corona de Aragón 42, Edificio Cervantes, 50009, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
125
|
Habib SJ, Neupert W, Rapaport D. Analysis and prediction of mitochondrial targeting signals. Methods Cell Biol 2007; 80:761-81. [PMID: 17445721 DOI: 10.1016/s0091-679x(06)80035-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shukry J Habib
- Institut für Physiologische Chemie, Universität München, D-81377 Munich, Germany
| | | | | |
Collapse
|
126
|
Bohnert M, Pfanner N, van der Laan M. A dynamic machinery for import of mitochondrial precursor proteins. FEBS Lett 2007; 581:2802-10. [PMID: 17376437 DOI: 10.1016/j.febslet.2007.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
Mitochondria contain approximately 1000 different proteins, which are located in four different compartments, outer membrane, inner membrane, intermembrane space and matrix. The vast majority of these proteins has to be imported from the cytosol. Therefore, sophisticated molecular machineries have evolved that mediate protein translocation across or insertion into mitochondrial membranes and subsequent assembly into multi-subunit complexes. While the initial entry of virtually all mitochondrial proteins is mediated by the general import pore of the outer membrane, at least four different downstream pathways are dedicated to import and assembly of proteins into a specific compartment.
Collapse
Affiliation(s)
- Maria Bohnert
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
127
|
Seliskar M, Rozman D. Mammalian cytochromes P450—Importance of tissue specificity. Biochim Biophys Acta Gen Subj 2007; 1770:458-66. [PMID: 17097232 DOI: 10.1016/j.bbagen.2006.09.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.
Collapse
Affiliation(s)
- Matej Seliskar
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
128
|
MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1772:509-23. [PMID: 17300922 PMCID: PMC2702852 DOI: 10.1016/j.bbadis.2006.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/31/2022]
Abstract
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, 133 Piez Hall, State University of New York at Oswego, Oswego, NY 13126, USA.
| | | |
Collapse
|
129
|
Setoguchi K, Otera H, Mihara K. Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J 2006; 25:5635-47. [PMID: 17110923 PMCID: PMC1698885 DOI: 10.1038/sj.emboj.7601438] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 10/19/2006] [Indexed: 11/08/2022] Open
Abstract
C-tail-anchored (C-TA) proteins are anchored to specific organelle membranes by a single transmembrane segment (TMS) at the C-terminus, extruding the N-terminal functional domains into the cytoplasm in which the TMS and following basic segment function as the membrane-targeting signals. Here, we analyzed the import route of mitochondrial outer membrane (MOM) C-TA proteins, Bak, Bcl-XL, and Omp25, using digitonin-permeabilized HeLa cells, which provide specific and efficient import under competitive conditions. These experiments revealed that (i) C-TA proteins were imported to the MOM through a common pathway independent of the components of the preprotein translocase of the outer membrane, (ii) the C-TA protein-targeting signal functioned autonomously in the absence of cytoplasmic factors that specifically recognize the targeting signals and deliver the preproteins to the MOM, (iii) the function of a cytoplasmic chaperone was required if the cytoplasmic domains of the C-TA proteins assumed an import-incompetent conformation, and intriguingly, (iv) the MOM-targeting signal of Bak, in the context of the Bak molecule, required activation by the interaction of its cytoplasmic domain with VDAC2 before MOM targeting.
Collapse
Affiliation(s)
- Kiyoko Setoguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan. Tel.: +81 92 642 6176; Fax: +81 92 642 6183; E-mail:
| |
Collapse
|
130
|
Lee JG, Lee YJ, Lee CH, Maeng PJ. Mutational and functional analysis of the cryptic N-terminal targeting signal for both mitochondria and peroxisomes in yeast peroxisomal citrate synthase Cit2p. J Biochem 2006; 140:121-33. [PMID: 16877773 DOI: 10.1093/jb/mvj136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously found that the peroxisomal citrate synthase of Saccharomyces cerevisiae, Cit2p, contains a cryptic targeting signal for both peroxisomes (PTS) and mitochondria (MTS) within its 20-amino acid N-terminal segment [Lee et al. (2000) J. Biochem. 128, 1059-1072]. In the present study, the fine structure of the cryptic signal was scrutinized using green fluorescent protein fusions led by variants of the N-terminal segment. The minimum ranges of the cryptic signals for mitochondrial and peroxisomal targeting were shown to consist of the first 15- and 10-amino acid N-terminal segments, respectively. Substitution of the 3rd Val, 6th Leu, 7th Asn, or 8th Ser with Ala abolished the cryptic MTS function, however, no single substitution causing an obvious defect in PTS function was found. Neither the 15-amino acid N-terminal segment nor the C-terminal SKL sequence (PTS1) was necessary for Cit2p to restore the glutamate auxotrophy caused by the double Deltacit1 Deltacit2 mutation. The Cit2p variant lacking PTS1 [Cit2(DeltaSKL)p] partially restored the growth of both the Deltacit1 Deltacit2 and Deltacit1 mutants on acetate, while that carrying intact PTS1 or lacking the N-terminal segment [Cit2p, Cit2((DeltaNDeltaSKL))p, and Cit2((DeltaN))p] did not. It is thus suggested that the potential of the N-terminal segment as an ambidextrous targeting signal can be unmasked by deletion of PTS1.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Department of Microbiology, School of Biological Science & Biotechnology, Chungnam National University, Daejeon 305-764
| | | | | | | |
Collapse
|
131
|
Ahmed AU, Beech PL, Lay ST, Gilson PR, Fisher PR. Import-associated translational inhibition: novel in vivo evidence for cotranslational protein import into Dictyostelium discoideum mitochondria. EUKARYOTIC CELL 2006; 5:1314-27. [PMID: 16896215 PMCID: PMC1539133 DOI: 10.1128/ec.00386-05] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [(35)S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
132
|
Bushell SR, Bottomley SP, Rossjohn J, Beddoe T. Tracking the Unfolding Pathway of a Multirepeat Protein via Tryptophan Scanning. J Biol Chem 2006; 281:24345-50. [PMID: 16803880 DOI: 10.1074/jbc.m602966200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a degenerate 34-amino acid repeating motif that forms a repeating helix-turn-helix structure and is a well characterized mediator of protein-protein interactions. Recently, a biophysical investigation on one naturally occurring TPR protein, Tom70, found that the mitochondrial receptor displayed an unusual three-state unfolding pathway, distinct from the two-state model usually displayed by TPR proteins. To investigate this unusual behavior, we undertook a tryptophan-scanning analysis of Tom70, where both native and engineered tryptophan residues are used as fluorescent reporters to monitor the range of local and global unfolding events that comprise the unfolding pathway of Tom70. Specifically, seven Tom70 variants were constructed, each with a single tryptophan residue in each of the seven TPR repeats of Tom70. By combining equilibrium and kinetic fluorescent unfolding assays, with circular dichroism experiments, our study reveals that the unusual folding pathway of Tom70 is a consequence of the unfolding of two separate, autonomous TPR arrays, with the less stable region appearing to account for the low structural stability of Tom70.
Collapse
Affiliation(s)
- Simon R Bushell
- Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
133
|
Chou CH, Lee RS, Yang-Yen HF. An internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway. Mol Biol Cell 2006; 17:3952-63. [PMID: 16822835 PMCID: PMC1593170 DOI: 10.1091/mbc.e06-04-0319] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mcl-1 functions at an apical step in many regulatory programs that control cell death. Although the mitochondrion is one major subcellular organelle where Mcl-1 functions, the molecular mechanism by which Mcl-1 is targeted to mitochondria remains unclear. Here, we demonstrate that Mcl-1 is loosely associated with the outer membrane of mitochondria. Furthermore, we demonstrate that Mcl-1 interacts with the mitochondrial import receptor Tom70, and such interaction requires an internal domain of Mcl-1 that contains an EELD motif. A Tom70 antibody that blocks Mcl-1-Tom70 interaction blocks mitochondrial import of Mcl-1 in vitro. Furthermore, Mcl-1 is significantly less targeted to mitochondria in Tom70 knockdown than in the control cells. Similar targeting preference is also observed for the DM mutant of Mcl-1 whose mutation at the EELD motif markedly attenuates its Tom70 binding activity. Together, our results indicate that the internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway.
Collapse
Affiliation(s)
- Chiang-Hung Chou
- *Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Ru-Shuo Lee
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei 110, Taiwan; and
| | - Hsin-Fang Yang-Yen
- *Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei 110, Taiwan; and
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
134
|
Wu Y, Sha B. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat Struct Mol Biol 2006; 13:589-93. [PMID: 16767096 DOI: 10.1038/nsmb1106] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/10/2006] [Indexed: 11/09/2022]
Abstract
A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 A. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.
Collapse
Affiliation(s)
- Yunkun Wu
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, MCLM 364, 1918 Univ. Blvd., University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
135
|
Wu Y, McCombs D, Nagy L, DeLucas L, Sha B. Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70p. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:265-7. [PMID: 16511318 PMCID: PMC2197198 DOI: 10.1107/s1744309106004702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 02/07/2006] [Indexed: 11/10/2022]
Abstract
Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2 A using a synchrotron X-ray source and belong to space group P2(1), with unit-cell parameters a = 44.89, b = 168.78, c = 83.41 A, alpha = 90.00, beta = 102.74, gamma = 90.00 degrees. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way.
Collapse
Affiliation(s)
- Yunkun Wu
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, USA
| | - Debbie McCombs
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, USA
| | - Lisa Nagy
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, USA
| | - Lawrence DeLucas
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, USA
| | - Bingdong Sha
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, USA
- Correspondence e-mail:
| |
Collapse
|
136
|
Zara V, Ferramosca A, Papatheodorou P, Palmieri F, Rassow J. Import of rat mitochondrial citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import receptor Tom20 and inhibits membrane translocation. J Cell Sci 2005; 118:3985-95. [PMID: 16129883 DOI: 10.1242/jcs.02526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria contain a family of related carrier proteins that mediate transport of metabolites across the mitochondrial inner membrane. All members of this family are synthesized in the cytosol. We characterized the interactions of newly synthesized rat citrate carrier (CIC) precursor protein (pCIC) with the components of the mitochondrial protein import machinery. pCIC contains both a positively charged presequence of 13 amino acids and internal targeting sequences. We found that the pCIC presequence does not interfere with the import pathway and merely acts as an internal chaperone in the cytosol. Under conditions of increased ionic strength, the pCIC presequence binds to the import receptor Tom20 and accumulates at the mitochondrial surface, thereby delaying pCIC translocation across the mitochondrial outer membrane. Similarly, the presequence of the bovine phosphate carrier (PiC) precursor protein (pPiC) is arrested at the mitochondrial surface when salt concentrations are elevated. We conclude that presequences can only act as mediators of mitochondrial protein import if they allow rapid release from import receptor sites. Release from receptors sites may be rate-limiting in translocation.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, I-73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
137
|
Becker L, Bannwarth M, Meisinger C, Hill K, Model K, Krimmer T, Casadio R, Truscott KN, Schulz GE, Pfanner N, Wagner R. Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J Mol Biol 2005; 353:1011-20. [PMID: 16213519 DOI: 10.1016/j.jmb.2005.09.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/23/2022]
Abstract
Tom40 is the central pore-forming component of the translocase of the outer mitochondrial membrane (TOM complex). Different views exist about the secondary structure and electrophysiological characteristics of Tom40 from Saccharomyces cerevisiae and Neurospora crassa. We have directly compared expressed and renatured Tom40 from both species and find a high content of beta-structure in circular dichroism measurements in agreement with refined secondary structure predictions. The electrophysiological characterization of renatured Tom40 reveals the same characteristics as the purified TOM complex or mitochondrial outer membrane vesicles, with two exceptions. The total conductance of the TOM complex and outer membrane vesicles is twofold higher than the total conductance of renatured Tom40, consistent with the presence of two TOM pores. TOM complex and outer membrane vesicles possess a strongly enhanced sensitivity to a mitochondrial presequence compared to Tom40 alone, in agreement with the presence of several presequence binding sites in the TOM complex, suggesting a role of the non-channel Tom proteins in regulating channel activity.
Collapse
Affiliation(s)
- Lars Becker
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lister R, Hulett JM, Lithgow T, Whelan J. Protein import into mitochondria: origins and functions today (review). Mol Membr Biol 2005; 22:87-100. [PMID: 16092527 DOI: 10.1080/09687860500041247] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mitochondria are organelles derived from alpha-proteobacteria over the course of one to two billion years. Mitochondria from the major eukaryotic lineages display some variation in functions and coding capacity but sequence analysis demonstrates them to be derived from a single common ancestral endosymbiont. The loss of assorted functions, the transfer of genes to the nucleus, and the acquisition of various 'eukaryotic' proteins have resulted in an organelle that contains approximately 1000 different proteins, with most of these proteins imported into the organelle across one or two membranes. A single translocase in the outer membrane and two translocases in the inner membrane mediate protein import. Comparative sequence analysis and functional complementation experiments suggest some components of the import pathways to be directly derived from the eubacterial endosymbiont's own proteins, and some to have arisen 'de novo' at the earliest stages of 'mitochondrification' of the endosymbiont. A third class of components appears lineage-specific, suggesting they were incorporated into the process of protein import long after mitochondria was established as an organelle and after the divergence of the various eukaryotic lineages. Protein sorting pathways inherited from the endosymbiont have been co-opted and play roles in intraorganelle protein sorting after import. The import apparatus of animals and fungi show significant similarity to one another, but vary considerably to the plant apparatus. Increasing complexity in the eukaryotic lineage, i.e., from single celled to multi-cellular life forms, has been accompanied by an expansion in genes encoding each component, resulting in small gene families encoding many components. The functional differences in these gene families remain to be elucidated, but point to a mosaic import apparatus that can be regulated by a variety of signals.
Collapse
Affiliation(s)
- Ryan Lister
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | |
Collapse
|
139
|
Vergnolle M, Sawney H, Junne T, Dolfini L, Tokatlidis K. A cryptic matrix targeting signal of the yeast ADP/ATP carrier normally inserted by the TIM22 complex is recognized by the TIM23 machinery. Biochem J 2005; 385:173-80. [PMID: 15320873 PMCID: PMC1134685 DOI: 10.1042/bj20040650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The yeast ADP/ATP carrier (AAC) is a mitochondrial protein that is targeted to the inner membrane via the TIM10 and TIM22 translocase complexes. AAC is devoid of a typical mitochondrial targeting signal and its targeting and insertion are thought to be guided by internal amino acid sequences. Here we show that AAC contains a cryptic matrix targeting signal that can target up to two thirds of the N-terminal part of the protein to the matrix. This event is coordinated by the TIM23 translocase and displays all the features of the matrix-targeting pathway. However, in the context of the whole protein, this signal is 'masked' and rendered non-functional as the polypeptide is targeted to the inner membrane via the TIM10 and TIM22 translocases. Our data suggest that after crossing the outer membrane the whole polypeptide chain of AAC is necessary to commit the precursor to the TIM22-mediated inner membrane insertion pathway.
Collapse
Affiliation(s)
- Maïlys A. S. Vergnolle
- *School of Biological Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Helen Sawney
- *School of Biological Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Tina Junne
- †Biozentrum, Univeristy of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Luisita Dolfini
- †Biozentrum, Univeristy of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Kostas Tokatlidis
- *School of Biological Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
- ‡Institute of Molecular Biology and Biotechnology IMBB-FORTH, P.O. Box 1527, GR-711 10 Heraklion, Greece
- §Department of Chemistry, University of Crete, P.O. Box 1470, GR-71409 Heraklion, Greece
- To whom correspondence should be addressed (email )
| |
Collapse
|
140
|
Chen X, Moerschell RP, Pearce DA, Ramanan DD, Sherman F. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures. Curr Genet 2004; 47:67-83. [PMID: 15605252 DOI: 10.1007/s00294-004-0552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/31/2004] [Accepted: 11/02/2004] [Indexed: 11/30/2022]
Abstract
The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the rho+/rho- state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
141
|
Esaki M, Shimizu H, Ono T, Yamamoto H, Kanamori T, Nishikawa SI, Endo T. Mitochondrial Protein Import. J Biol Chem 2004; 279:45701-7. [PMID: 15337763 DOI: 10.1074/jbc.m404591200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (the cis site) and on the intermembrane space side (the trans site). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to the cis and trans sites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F(0)-ATPase are required for binding to the trans site. The interaction between the presequence and the cis site is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to the trans site and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
142
|
Asai T, Takahashi T, Esaki M, Nishikawa SI, Ohtsuka K, Nakai M, Endo T. Reinvestigation of the requirement of cytosolic ATP for mitochondrial protein import. J Biol Chem 2004; 279:19464-70. [PMID: 15001571 DOI: 10.1074/jbc.m401291200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.
Collapse
Affiliation(s)
- Takeyoshi Asai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Affiliation(s)
- Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
144
|
Chacinska A, Rehling P, Guiard B, Frazier AE, Schulze-Specking A, Pfanner N, Voos W, Meisinger C. Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM-TIM-preprotein supercomplex. EMBO J 2004; 22:5370-81. [PMID: 14532110 PMCID: PMC213786 DOI: 10.1093/emboj/cdg532] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Preproteins with N-terminal presequences are imported into mitochondria at translocation contact sites that include the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Little is known about the functional cooperation of these translocases. We have characterized translocation contact sites by a productive TOM-TIM-preprotein supercomplex to address the role of three translocase subunits that expose domains to the intermembrane space (IMS). The IMS domain of the receptor Tom22 is required for stabilization of the translocation contact site supercomplex. Surprisingly, the N-terminal segment of the channel Tim23, which tethers the TIM23 complex to the outer membrane, is dispensable for both protein import and generation of the TOM-TIM supercomplex. Tim50, with its large IMS domain, is crucial for generation but not for stabilization of the supercomplex. Thus, Tim50 functions as a dynamic factor and the IMS domain of Tom22 represents a stabilizing element in formation of a productive translocation contact site supercomplex.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Brydges SD, Carruthers VB. Mutation of an unusual mitochondrial targeting sequence of SODB2 produces multiple targeting fates in Toxoplasma gondii. J Cell Sci 2003; 116:4675-85. [PMID: 14576360 DOI: 10.1242/jcs.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins destined for the mitochondria travel an intricate pathway through two membranes, each with its own receptors and channels. These proteins interact with receptors via N-terminal presequences that form amphipathic helices. Generally, these helices contain abundant positive charges on one face and hydrophobic residues on the other, but share little primary sequence homology. While extensive research on mitochondrial import has been done in yeast and mammalian cells, little is known about import or contents of the single mitochondrion of Toxoplasma gondii, a parasite in the phylum Apicomplexa. We describe here the characterization of TgSODB2, a novel, mitochondrial superoxide dismutase in T. gondii with an unusual targeting sequence consisting of a hydrophobic segment resembling a signal peptide, followed by a presequence. We show that although the hydrophobic segment is competent to target a reporter protein to the secretory system, it is prevented from directing ER translocation when coupled with the presequence. When we mutated the only charged residue in the hydrophobic sequence, ER translocation is restored and the reporter targeted to the apicoplast, a chloroplast-like organelle found in most apicomplexans. The presequence that follows is predicted to form an amphipathic helix, but targeted the cytoplasm when the hydrophobic peptide is removed. In addition to having an unusual targeting sequence, TgSODB2 is only the second mitochondrially imported, iron-containing SOD to be described.
Collapse
Affiliation(s)
- Susannah D Brydges
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
146
|
Nuttall SD, Krishnan UV, Doughty L, Pearson K, Ryan MT, Hoogenraad NJ, Hattarki M, Carmichael JA, Irving RA, Hudson PJ. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3543-54. [PMID: 12919318 DOI: 10.1046/j.1432-1033.2003.03737.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.
Collapse
Affiliation(s)
- Stewart D Nuttall
- CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Endo T, Yamamoto H, Esaki M. Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J Cell Sci 2003; 116:3259-67. [PMID: 12857785 DOI: 10.1242/jcs.00667] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly all mitochondrial proteins are synthesized in the cytosol and subsequently imported into mitochondria with the aid of translocators: the TOM complex in the outer membrane, and the TIM23 and TIM22 complexes in the inner membrane. The TOM complex and the TIM complexes cooperate to achieve efficient transport of proteins to the matrix or into the inner membrane and several components, including Tom22, Tim23, Tim50 and small Tim proteins, mediate functional coupling of the two translocator systems. The TOM complex can be disconnected from the TIM systems and their energy sources (ATP and DeltaPsi), however, using alternative mechanisms to achieve vectorial protein translocation across the outer membrane
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
148
|
Gibbs JS, Malide D, Hornung F, Bennink JR, Yewdell JW. The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 2003; 77:7214-24. [PMID: 12805420 PMCID: PMC164823 DOI: 10.1128/jvi.77.13.7214-7224.2003] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 11th influenza A virus gene product is an 87-amino-acid protein provisionally named PB1-F2 (because it is encoded by an open reading frame overlapping the PB1 open reading frame). A significant fraction of PB1-F2 localizes to the inner mitochondrial membrane in influenza A virus-infected cells. PB1-F2 appears to enhance virus-induced cell death in a cell type-dependent manner. For the present communication we have identified and characterized a region near the COOH terminus of PB1-F2 that is necessary and sufficient for its inner mitochondrial membrane localization, as determined by transient expression of chimeric proteins consisting of elements of PB1-F2 genetically fused to enhanced green fluorescent protein (EGFP) in HeLa cells. Targeting of EGFP to mitochondria by this sequence resulted in the loss of the inner mitochondrial membrane potential, leading to cell death. The mitochondrial targeting sequence (MTS) is predicted to form a positively charged amphipathic alpha-helix and, as such, is similar to the MTS of the p13(II) protein of human T-cell leukemia virus type 1. We formally demonstrate the functional interchangeability of the two sequences for mitochondrial localization of PB1-F2. Mutation analysis of the putative amphipathic helix in the PB1-F2 reveals that replacement of five basic amino acids with Ala abolishes mitochondrial targeting, whereas mutation of two highly conserved Leu to Ala does not. These findings demonstrate that PB1-F2 possesses an MTS similar to other viral proteins and that this MTS, when fused to EGFP, is capable of independently compromising mitochondrial function and cellular viability.
Collapse
Affiliation(s)
- James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Apart from a handful of proteins encoded by the mitochondrial genome, most proteins residing in this organelle are nuclear-encoded and synthesised in the cytosol. Thus, delivery of proteins to their final destination depends on a network of specialised import components that form at least four main translocation complexes. The import machinery ensures that proteins earmarked for the mitochondrion are recognised and delivered to the organelle, transported across membranes, sorted to the correct compartment and assisted in overcoming energetic barriers.
Collapse
Affiliation(s)
- Kaye N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
150
|
von und zu Fraunberg M, Nyröen T, Kauppinen R. Mitochondrial targeting of normal and mutant protoporphyrinogen oxidase. J Biol Chem 2003; 278:13376-81. [PMID: 12556518 DOI: 10.1074/jbc.m300151200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the signal sequence for mitochondrial transport of mutants (I12T, 78insC, IVS2-2a-->c, 338G-->C, R152C, 470A-->C, and L401F) and the wild type protoporphyrinogen oxidase (PPOX), which is the penultimate enzyme in the heme biosynthesis. We constructed the corresponding green fluorescent protein fusion proteins and studied their intracellular localization in COS-1 cells. We showed that 28 amino acids in the amino terminus of PPOX contain an independently functioning signal for mitochondrial targeting. The experiments with amino-terminally truncated green fluorescent protein fusion proteins revealed that amino acids 25-477 of PPOX contained an additional mitochondrial targeting signal(s). We constructed a structural model for the interaction between the amino-terminal end of PPOX and the putative mitochondrial receptor protein Tom20. The model suggests that leucine and isoleucine residues Leu-8, Ile-12, and Leu-15 forming an alpha-helical hydrophobic motif, LXXXIXXL, were crucial for the recognition of the targeting signal. The validity of the model was tested using mutants L8Q, I12T, and L15Q disrupting the hydrophobic surface of the LXXXIXXL helix. The results from in vitro expression studies and molecular modeling were in accordance supporting the hypothesis that the recognition of the mitochondrial targeting signal is dependent on hydrophobic interactions between the targeting signal and the mitochondrial receptor.
Collapse
Affiliation(s)
- Mikael von und zu Fraunberg
- Department of Medicine, Division of Endocrinology, University of Helsinki, Biomedicum Helsinki, 00029 HUS, Helsinki, Finland.
| | | | | |
Collapse
|