101
|
Armstrong PB. Proteases and protease inhibitors: a balance of activities in host-pathogen interaction. Immunobiology 2006; 211:263-81. [PMID: 16697919 DOI: 10.1016/j.imbio.2006.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 01/12/2006] [Indexed: 12/30/2022]
Abstract
The immune system is the collection of effector molecules and cells of the host that act against invading parasites and their products. Secreted proteases serve important roles in parasitic metabolism and virulence and the several families of protein protease inhibitors of the plasma and blood cells play an important role in immunity by inactivating and clearing the protease virulence factors of parasites. The protease inhibitors are of two classes, the active-site inhibitors and the alpha2-macroglobulins. Inhibitors for the first class bind and inactivate the active site of the target protease. Proteins of the second class bind proteases by a unique molecular trap mechanism and deliver the bound protease to a receptor-mediated endocytic system for degradation in secondary lysosomes. Proteins of the alpha2-macroglobulin family are present in a variety of animal phyla, including the nematodes, arthropods, mollusks, echinoderms, urochordates, and vertebrates. A shared suite of unique functional characteristics have been documented for the alpha2-macroglobulins of vertebrates, arthropods, and mollusks. The alpha2-macroglobulins of nematodes, arthropods, mollusks, and vertebrates show significant sequence identity in key functional domains. Thus, the alpha2-macroglobulins comprise an evolutionarily conserved arm of the innate immune system with similar structure and function in animal phyla separated by 0.6 billion years of evolution.
Collapse
|
102
|
Faure K, Leberre R, Guery B. Pseudomonas aeruginosa et surfactant rôle de SP-A et SP-D. Med Mal Infect 2006; 36:63-71. [PMID: 16406431 DOI: 10.1016/j.medmal.2005.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Accepted: 08/21/2005] [Indexed: 11/30/2022]
Abstract
Surfactant-associated proteins A and D (SP-A and SP-D) are two pulmonary collectins that bind to bacterial, fungal and viral pathogens and have multiples classes of receptors on pneumocyte and macrophage membrane. They are chemoattractant for phagocytes, enhance uptake and killing of bacteria by macrophages and neutrophils. These molecules also act as activation ligand on macrophages and neutrophils to enhance phagocytosis, resulting in an increased bacterial clearance. Depending on activation of cells by stimuli, SP-A and SP-D modulate production of antimicrobial free radicals by phagocytes and secretion of cytokines. In vivo, SP-A deficient mice infected with Pseudomonas aeruginosa (P. aeruginosa) have decreased bacterial clearance and exacerbated inflammatory response in the lungs. Serious alterations in macrophages and increased production of reactive oxygen species were found in non-infected SP-D deficient mice. Patients with cystic fibrosis are frequently colonized by P. aeruginosa. Decreased levels of SP-A and SP-D have been measured in bronchoalveolar lavage fluid of these patients, as well as patients with acute pneumonia but no chronic lung disease. P. aeruginosa secretes various proteases, among them, elastase and protease IV have been found to degrade SP-A and SP-D and abrogate their immune function. However, further investigations are necessary to examine whether these deficiencies facilitate P. aeruginosa infections or stand as consequences.
Collapse
Affiliation(s)
- K Faure
- Laboratoire de recherche en pathologie infectieuse, EA 2689, faculté de médecine de Lille, 59045 Lille, France.
| | | | | |
Collapse
|
103
|
Thibodeaux BA, Caballero AR, Dajcs JJ, Marquart ME, Engel LS, O'Callaghan RJ. Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity. Ocul Immunol Inflamm 2005; 13:169-82. [PMID: 16019676 DOI: 10.1080/09273940490518937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To study antibody production to Pseudomonas aeruginosa protease IV (PIV) for immunoassay development and to assess the possible role of antibody in arresting corneal damage. METHODS Rabbits were immunized with PIV, urea-soluble recombinant PIV (rPIV), or precipitated rPIV. Antibody was analyzed by ELISA and Western blotting. Antibody-mediated inhibition of PIV activity was tested by colorimetric assay and during keratitis by slit-lamp examination of infected eyes. RESULTS Antibody was not produced after PIV immunization but was induced by rPIV. Rabbits immunized first with soluble and then precipitated rPIV produced high titers (log(10)) to rPIV (4.28 +/- 0.09) and significantly higher titers to PIV (3.90 +/- 0.06) compared to the other immunized groups. Antibody to rPIV reacted with PIV, but neither neutralized enzyme activity in vitro nor protected infected rabbits in vivo. CONCLUSIONS The present study demonstrates that PIV is a virulence factor which can escape a protective immune response.
Collapse
Affiliation(s)
- Brett A Thibodeaux
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, 70112, USA
| | | | | | | | | | | |
Collapse
|
104
|
Sriramulu DD, Nimtz M, Romling U. Proteome analysis reveals adaptation ofPseudomonas aeruginosa to the cystic fibrosis lung environment. Proteomics 2005; 5:3712-21. [PMID: 16097035 DOI: 10.1002/pmic.200401227] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pseudomonas aeruginosa is known for the chronic lung colonization of cystic fibrosis (CF) patients in addition to eye, ear and urinary tract infections. With the underlying disease CF patients are predisposed to P. aeruginosa chronic lung infection, which leads to morbidity and mortality. In this study, we compared the protein expression profile of a CF lung-adapted P. aeruginosa strain C with that of the burn-wound isolate PAO. Differentially expressed proteins from the whole-cell, membrane, periplasmic as well as extracellular fraction were identified. The whole-cell proteome of strain C showed down-regulation of several proteins involved in amino acid metabolism, fatty acid metabolism, energy metabolism and adaptation leading to a highly distinct proteome pattern for strain C in comparison to PAO. Analysis of secreted proteins by strain C compared to PAO revealed differential expression of virulence factors under non-inducing conditions. The membrane proteome of strain C showed modulation of the expression of porins involved in nutrient and antibiotic influx. The proteome of the periplasmic space of strain C showed retention of elastase despite that the equal amounts were secreted by strain C and PAO. Altogether, our results elucidate adaptive strategies of P. aeruginosa towards the nutrient-rich CF lung habitat during the course of chronic colonization.
Collapse
|
105
|
Abstract
Pseudomonas aeruginosa and Serratia marcescens can cause refractory keratitis resulting in corneal perforation and blindness. These bacteria produce various kinds of proteases. In addition to pseudomonal elastase (LasB) and alkaline protease, LasA protease and protease IV have recently been found to be more important virulence factors of P. aeruginosa . S. marcescens produces a cysteine protease in addition to metalloproteases. These bacterial proteases have a number of biological activities, such as degradation of tissue constituents and host defense-oriented proteins, as well as activation of zymogens (Hageman factor, prekallikrein and pro-matrix metalloproteinases) through limited proteolysis. In this article, the properties of these bacterial proteases are reviewed and the pathogenic roles of these proteases in pseudomonal keratitis are discussed.
Collapse
Affiliation(s)
- Koki Matsumoto
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-0811, Japan.
| |
Collapse
|
106
|
Rahman RNZA, Geok LP, Basri M, Salleh AB. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. BIORESOURCE TECHNOLOGY 2005; 96:429-436. [PMID: 15491823 DOI: 10.1016/j.biortech.2004.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 05/26/2004] [Accepted: 06/02/2004] [Indexed: 05/24/2023]
Abstract
The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
Collapse
Affiliation(s)
- Raja Noor Zaliha Abd Rahman
- Department of Biochemistry and Microbiology, Enzyme and Microbial Technology Research, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
107
|
Andrejko M, Cytryńska M, Jakubowicz T. Apolipophorin III is a substrate for protease IV fromPseudomonas aeruginosa. FEMS Microbiol Lett 2005; 243:331-7. [PMID: 15686832 DOI: 10.1016/j.femsle.2004.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/17/2004] [Accepted: 12/17/2004] [Indexed: 11/17/2022] Open
Abstract
Our results demonstrated that Pseudomonas aeruginosa serine protease IV degraded apolipophorin III from the haemolymph of Galleria mellonella larvae. ApoLp-III protein was degraded in a stepwise manner. Four intermediate forms of 15, 13.3, 11.9 and 9.5 kDa were detected after 30 min digestion while only one of 5.6 kDa was released after 1-h incubation time. N-terminal amino acid sequence analysis of 5.6 kDa peptide revealed that it was released from apoLp-III after cleavage between lysine 70 and 71. ApoLp-III degradation by protease IV was inhibited by 1 mM TLCK but not 1 mM EDTA, additionally demonstrating that digestion was catalysed by a serine protease. Our data also indicated apoLp-III degradation in vivo during P. aeruginosa infection of G. mellonella larvae.
Collapse
Affiliation(s)
- Mariola Andrejko
- Department of Invertebrate Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | |
Collapse
|
108
|
Kessler E, Safrin M, Blumberg S, Ohman DE. A continuous spectrophotometric assay for Pseudomonas aeruginosa LasA protease (staphylolysin) using a two-stage enzymatic reaction. Anal Biochem 2005; 328:225-32. [PMID: 15113701 DOI: 10.1016/j.ab.2004.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa LasA protease is a secreted metalloendopeptidase that can lyse Staphylococcus aureus cells by cleaving the pentaglycine bridges of their peptidoglycan. It can also degrade elastin and stimulate shedding of cell-surface proteoglycans, activities implicated in pathogenesis of P. aeruginosa infections. The activity of LasA protease can be assayed spectrophotometrically by following the reduction in turbidity of S. aureus cell suspensions. This assay, however, does not permit kinetic studies and its reproducibility is poor. Here we describe a two-stage enzymatic reaction for the continuous measurement of LasA protease activity using a defined substrate, succinyl-Gly-Gly-Phe-4-nitroanilide, supplemented with Streptomyces griseus aminopeptidase. Cleavage of the Gly-Phe bond by LasA protease is followed by hydrolysis of the product Phe-4-nitroanilide by the aminopeptidase and the rate of release of the chromophore (4-nitroaniline) is measured spectrophotometrically using a 96-well microplate reader. Activity of nanogram amounts of LasA protease could be determined within a few minutes. Furthermore, this assay permitted the determination of Km and kcat values for LasA protease, which were 0.46 mM and 11.8s(-1), respectively. Pseudomonas elastase was also active in the assay. However, it was less effective than LasA protease and its activity was inhibited by phosphoramidon. The assay is highly sensitive and reproducible, providing a convenient tool for further studies of LasA protease function(s) and mechanism of action.
Collapse
Affiliation(s)
- Efrat Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | | | | | |
Collapse
|
109
|
Malloy JL, Veldhuizen RAW, Thibodeaux BA, O'Callaghan RJ, Wright JR. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 2004; 288:L409-18. [PMID: 15516485 DOI: 10.1152/ajplung.00322.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.
Collapse
Affiliation(s)
- Jaret L Malloy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
110
|
Alcorn JF, Wright JR. Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elastase abrogates innate immune function. J Biol Chem 2004; 279:30871-9. [PMID: 15123664 DOI: 10.1074/jbc.m400796200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alveolar epithelium is lined by surfactant, a lipoprotein complex that both reduces surface tension and mediates several innate immune functions including bacterial aggregation, alteration of alveolar macrophage function, and regulation of bacterial clearance. Surfactant protein-D (SP-D) participates in several of these immune functions, and specifically it enhances the clearance of the pulmonary pathogen Pseudomonas aeruginosa, a common cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa secretes a variety of virulence factors including elastase, a zinc-metalloprotease, which degrades both SP-A and SP-D. Here we show that SP-D is cleaved by elastase to produce a stable 35-kDa fragment in a time-, temperature-, and dose-dependent manner. Degradation is inhibited by divalent metal cations, a metal chelator, and the elastase inhibitor, phosphoramidon. Sequencing the SP-D degradation products localized the major cleavage sites to the C-terminal lectin domain. The SP-D fragment fails to bind or aggregate bacteria that are aggregated by intact SP-D. SP-D fragment is observed when normal rat bronchoalveolar lavage (BAL) is treated with Pseudomonas aeruginosa elastase, and SP-D fragments are present in the BAL of CF lung allograft patients. These data show that degradation of SP-D occurs in the BAL environment and that degradation eliminates many normal immune functions of SP-D.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
111
|
Marquart ME, Dajcs JJ, Caballero AR, Thibodeaux BA, O'Callaghan RJ. Calcium and magnesium enhance the production of Pseudomonas aeruginosa protease IV, a corneal virulence factor. Med Microbiol Immunol 2003; 194:39-45. [PMID: 14628143 DOI: 10.1007/s00430-003-0207-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Indexed: 10/26/2022]
Abstract
The effect of calcium and magnesium on protease IV production during the growth of Pseudomonas aeruginosa was investigated. Strain PA103 was grown to stationary phase in medium containing various concentrations of either calcium or magnesium. Culture supernatants were concentrated, standardized relative to cell density, and the pyoverdine concentrations were measured. Overall extracellular protease activity and specific protease IV (lysine endoproteinase) activity were measured with or without TLCK, a serine protease inhibitor effective against protease IV activity. Protease IV activity was also observed by casein zymography. Calcium and magnesium were quantified in the corneas and aqueous humor of rabbits that were inoculated intrastromally with strain PA103. Pyoverdine production was not significantly different in cultures grown in medium with added calcium or magnesium, but extracellular caseinase activity increased in these cultures. Susceptibility of caseinase activity to TLCK inhibition and a specific assay for protease IV indicated that protease IV activity increased in cultures grown in calcium or magnesium. Casein zymography supported the observation that protease IV activity increased in the cultures with added calcium and magnesium. Addition of calcium or magnesium to the protease IV-specific assay had no effect on the catalytic activity of pure protease IV. Infection of rabbit corneas with PA103 did not change the magnesium concentration in either corneas or aqueous humor, but significantly increased the concentration of calcium in corneas. These results indicate that calcium and magnesium enhance the production of protease IV, but not pyoverdine production. Calcium increases in the cornea following infection with P. aeruginosa could favor production of protease IV.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
112
|
Meyer-Hoffert U, Wichmann N, Schwichtenberg L, White PC, Wiedow O. Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp Dermatol 2003; 12:418-25. [PMID: 12930298 DOI: 10.1034/j.1600-0625.2002.120409.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elafin is a skin-derived serine-protease inhibitor. It is thought to be important to prevent human leukocyte elastase-mediated tissue damage and might play an important role in maintaining the integrity of the human epidermis. Recent studies have provided evidence for an antimicrobial activity of elafin against P. aeruginosa. As gram-negative infections typically occur in barrier-disrupted skin we were interested to determine whether supernatants of the gram-negative bacteria P. aeruginosa and Escherichia coli were capable of inducing elafin expression. Supernatants of various P. aeruginosa strains stimulated elafin mRNA-expression and protein release, whereas supernatants of E. coli did not induce elafin expression. In non-differentiated cells the relative increase of elafin mRNA was much higher (100-fold) than in differentiated cells (sixfold), although the latter exhibited higher constitutive mRNA-expression (150-fold). However, concentrations of secreted elafin were similar in differentiated and non-differentiated cells after stimulation. We could not confirm a bactericidal effect against P. aeruginosa as described previously but observed that its growth was inhibited as demonstrated for different strains in liquid cultures. Growth of E. coli was not affected by elafin. In conclusion, the data presented in this paper suggest that elafin represents an innate immune response factor induced by secreted products of P. aeruginosa. Besides its elastase inhibitory potency elafin is an antimicrobial agent against P. aeruginosa.
Collapse
|
113
|
Traidej M, Marquart ME, Caballero AR, Thibodeaux BA, O'Callaghan RJ. Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation. J Biol Chem 2003; 278:2549-53. [PMID: 12419815 DOI: 10.1074/jbc.m208973200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations by alanine substitution were introduced into six selected residues including the predicted triad and identical residues located close to the triad. Mutations at any of the amino acids of the predicted catalytic triad or Ser-197 caused a loss of enzymatic activity and absence of the mature form of protease IV. In contrast, mutations at His-116 or Ser-200 resulted in normal processing into the enzymatically active mature form. A purified proenzyme that accumulated in the His-72 mutant was shown in vitro to be susceptible to cleavage by protease IV purified from P. aeruginosa. Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV. These results identify the catalytic triad of protease IV, demonstrate that autodigestion is essential for the processing of protease IV into a mature protease, and predict sites essential to enzyme conformation.
Collapse
Affiliation(s)
- Mullika Traidej
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans 70112, USA
| | | | | | | | | |
Collapse
|
114
|
Zhu H, Thuruthyil SJ, Willcox MDP. Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J Med Microbiol 2002; 51:1063-1070. [PMID: 12466404 DOI: 10.1099/0022-1317-51-12-1063] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Pseudomonas aeruginosa in contact lens-induced microbial keratitis has been linked to various extracellular and cell-associated bacterial products, such as proteases and toxins. Recently, a group of bacterial signal molecules, N-acyl-homoserine lactones (AHLs), has been reported to play an important role in the regulation of the production of several bacterial virulence factors in P. aeruginosa. The aim of this study was to determine the signal molecules produced by P. aeruginosa keratitis strains, and to elucidate any possible correlation between the production of signal molecules and the expression of phenotypic characteristics, including protease production, bacterial invasion and acute cytotoxic activity. The presence and profiles of AHLs in ocular P. aeruginosa isolates were analysed by a combination of thin-layer chromatography and bioassay. All 17 keratitis isolates produced AHLs. There were differences both in the amounts and the types of AHL production in the various phenotypes of isolates. High levels of AHLs were found among the isolates with high protease activity and invasiveness. Acutely cytotoxic isolates displayed low AHL and protease activities. Invasive strains were more common than cytotoxic strains from keratitis patients. These results suggest that quorum-sensing systems of P. aeruginosa display a complexity even within the same species, and the production of certain AHL signal molecules may be associated with certain phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Hua Zhu
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Sophy J Thuruthyil
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
115
|
Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA. Mechanisms of bacterial pathogenicity. Postgrad Med J 2002; 78:216-24. [PMID: 11930024 PMCID: PMC1742320 DOI: 10.1136/pmj.78.918.216] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic bacteria utilise a number of mechanisms to cause disease in human hosts. Bacterial pathogens express a wide range of molecules that bind host cell targets to facilitate a variety of different host responses. The molecular strategies used by bacteria to interact with the host can be unique to specific pathogens or conserved across several different species. A key to fighting bacterial disease is the identification and characterisation of all these different strategies. The availability of complete genome sequences for several bacterial pathogens coupled with bioinformatics will lead to significant advances toward this goal.
Collapse
Affiliation(s)
- J W Wilson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
116
|
Armstrong PB, Quigley JP. A role for protease inhibitors in immunity of long-lived animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:141-60. [PMID: 11418980 DOI: 10.1007/978-1-4615-1291-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- P B Armstrong
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
117
|
Cahan R, Axelrad I, Safrin M, Ohman DE, Kessler E. A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J Biol Chem 2001; 276:43645-52. [PMID: 11533066 DOI: 10.1074/jbc.m106950200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.
Collapse
Affiliation(s)
- R Cahan
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | |
Collapse
|
118
|
Lomholt JA, Poulsen K, Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 2001; 69:6284-95. [PMID: 11553572 PMCID: PMC98763 DOI: 10.1128/iai.69.10.6284-6295.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic structure of a population of Pseudomonas aeruginosa, isolated from patients with keratitis, endophthalmitis, and contact lens-associated red eye, contact lens storage cases, urine, ear, blood, lungs, wounds, feces, and the environment was determined by multilocus enzyme electrophoresis. The presence and characteristics of virulence factors were determined by restriction fragment length polymorphism analysis with DNA probes for lasA, lasB, aprA, exoS, exoT, exoU, and ctx and by zymography of staphylolysin, elastase, and alkaline protease. These analyses revealed an epidemic population structure of P. aeruginosa, characterized by frequent recombination in which a particular successful clone may increase, predominate for a time, and then disappear as a result of recombination. Epidemic clones were found among isolates from patients with keratitis. They were characterized by high activity of a hitherto-unrecognized size variant of elastase, high alkaline protease activity, and possession of the exoU gene encoding the cytotoxic exoenzyme U. These virulence determinants are not exclusive traits in strains causing keratitis, as strains with other properties may cause keratitis in the presence of predisposing conditions. There were no uniform patterns of characteristics of isolates from other types of infection; however, all strains from urinary tract infections possessed the exoS gene, all strains from environment and feces and the major part of keratitis and wound isolates exhibited high elastase and alkaline protease activity, and all strains from feces showed high staphylolysin activity, indicating that these virulence factors may be important in the pathogenesis of these infectious diseases.
Collapse
Affiliation(s)
- J A Lomholt
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
119
|
Wilderman PJ, Vasil AI, Johnson Z, Wilson MJ, Cunliffe HE, Lamont IL, Vasil ML. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 2001; 69:5385-94. [PMID: 11500408 PMCID: PMC98648 DOI: 10.1128/iai.69.9.5385-5394.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of many virulence factors in Pseudomonas aeruginosa is dependent upon environmental conditions, including iron levels, oxygen, temperature, and osmolarity. The virulence of P. aeruginosa PAO1 is influenced by the iron- and oxygen-regulated gene encoding the alternative sigma factor PvdS, which is regulated through the ferric uptake regulator (Fur). We observed that overexpression of PvdS in strain PAO1 and a DeltapvdS::Gm mutant resulted in increased pyoverdine production and proteolytic activity compared to when PvdS was not overexpressed. To identify additional PvdS-regulated genes, we compared extracellular protein profiles from PAO1 and the DeltapvdS::Gm mutant grown under iron-deficient conditions. A protein present in culture supernatants from PAO1 but not in supernatants from DeltapvdS::Gm was investigated. Amino acid sequence analysis and examination of the genomic database of PAO1 revealed that the N terminus of this 27-kDa protein is identical to that of protease IV of P. aeruginosa strain PA103-29 and is homologous to an endoprotease produced by Lysobacter enzymogenes. In this study, the gene encoding an endoprotease was cloned from PAO1 and designated prpL (PvdS-regulated endoprotease, lysyl class). All (n = 41) but one of the strains of P. aeruginosa, including clinical and environmental isolates, examined carry prpL. Moreover, PrpL production among these strains was highly variable. Analysis of RNase protection assays identified the transcription initiation site of prpL and confirmed that its transcription is iron dependent. In the DeltapvdS::Gm mutant, the level of prpL transcription was iron independent and decreased relative to the level in PAO1. Furthermore, transcription of prpL was independent of PtxR, a PvdS-regulated protein. Finally, PrpL cleaves casein, lactoferrin, transferrin, elastin, and decorin and contributes to PAO1's ability to persist in a rat chronic pulmonary infection model .
Collapse
Affiliation(s)
- P J Wilderman
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Lindorfer MA, Nardin A, Foley PL, Solga MD, Bankovich AJ, Martin EN, Henderson AL, Price CW, Gyimesi E, Wozencraft CP, Goldberg JB, Sutherland WM, Taylor RP. Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2240-9. [PMID: 11490011 DOI: 10.4049/jimmunol.167.4.2240] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the ability of a bispecific mAb reagent, consisting of a mAb specific for the primate erythrocyte complement receptor cross-linked with an anti-bacterial mAb, to target bacteria in the bloodstream in an acute infusion model in monkeys. In vitro studies demonstrated a variable level of complement-mediated binding (immune adherence) of Pseudomonas aeruginosa (strain PAO1) to primate E in serum. In vivo experiments in animals depleted of complement revealed that binding of bacteria to E was <1% before administration of the bispecific reagent, but within 5 min of its infusion, >99% of the bacteria bound to E. In complement-replete monkeys, a variable fraction of infused bacteria bound to E. This finding may have significant implications in the interpretation of animal models and in the understanding of bacteremias in humans. Treatment of these complement-replete monkeys with the bispecific reagent led to >99% binding of bacteria to E. Twenty-four-hour survival studies were conducted; several clinical parameters, including the degree of lung damage, cytokine levels, and liver enzymes in the circulation, indicate that the bispecific mAb reagent provides a degree of protection against the bacterial challenge.
Collapse
Affiliation(s)
- M A Lindorfer
- Department of Biochemistry and Molecular Genetics, Center for Comparative Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Petermann SR, Doetkott C, Rust L. Elastase deficiency phenotype of Pseudomonas aeruginosa canine otitis externa isolates. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:632-6. [PMID: 11329471 PMCID: PMC96114 DOI: 10.1128/cdli.8.3.632-636.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa veterinary isolates were assayed for elastase and total matrix protease activity. The elastase activity of canine ear isolates was much less than that of strain PAO1 and that of all other veterinary isolates (P < 0.0001). The results indicate that canine ear isolates have a distinct elastase phenotype.
Collapse
Affiliation(s)
- S R Petermann
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | |
Collapse
|
122
|
Caballero AR, Moreau JM, Engel LS, Marquart ME, Hill JM, O'Callaghan RJ. Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal Biochem 2001; 290:330-7. [PMID: 11237336 DOI: 10.1006/abio.2001.4999] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases.
Collapse
Affiliation(s)
- A R Caballero
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
123
|
Vessillier S, Delolme F, Bernillon J, Saulnier J, Wallach J. Hydrolysis of glycine-containing elastin pentapeptides by LasA, a metalloelastase from Pseudomonas aeruginosa. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1049-57. [PMID: 11179971 DOI: 10.1046/j.1432-1327.2001.01967.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable hosts. It may produce various virulence factors including proteases. Among them, LasA possesses both elastolytic and staphylolytic (hydrolysis of pentaglycine cross-links in the cell wall peptidoglycan) activities. To understand if its elastolytic activity results from a preference for glycine-rich substrates, we studied its ability to hydrolyse the 65 pentapeptides of human tropoelastin containing at least three glycines. As demonstrated by capillary electrophoresis (CE), 22 of these peptides were hydrolysed by LasA, generally at a single peptide bond and the catalytic ratio kcat/KM was determined for most of them. The highest value was obtained for LGGGA, 59 +/- 9 min(-1) x mmol(-1) x L. The specificity of hydrolysis was elucidated by CE, liquid secondary ion mass spectrometry and, in some cases, collision activated dissociation-mass analysis of ion kinetic energy. The preferred cleavage sites are GG and GA peptide bonds, the sequence GG(cleavage site)A being especially sensitive to hydrolysis. Both positions P2 and P'2 must be occupied for hydrolysis and the presence of an amino acid in P3 (but not in P'3) significantly increases the catalytic ratio. Considering these results, about 30 GGX sequences (X: G, A or Y) of human tropoelastin could be susceptible to LasA elastolysis.
Collapse
Affiliation(s)
- S Vessillier
- Laboratoire de Biochimie Analytique et Synthèse Bioorganique, Université Lyon 1, Villeurbanne, France; Service Central d'Analyse, CNRS, Vernaison, France
| | | | | | | | | |
Collapse
|
124
|
|
125
|
Modulation of hemostatic mechanisms in bacterial infectious diseases. Blood 2000. [DOI: 10.1182/blood.v96.7.2329.h8002329_2329_2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
126
|
Travis J, Potempa J. Bacterial proteinases as targets for the development of second-generation antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:35-50. [PMID: 10708847 DOI: 10.1016/s0167-4838(99)00278-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms.
Collapse
Affiliation(s)
- J Travis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|