101
|
Schmitz U, Thömmes K, Beier I, Vetter H. Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochem Biophys Res Commun 2002; 291:687-91. [PMID: 11855845 DOI: 10.1006/bbrc.2002.6493] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA) has been shown to be a potent mitogen for vascular smooth muscle cells. Src-dependent transactivation of receptor tyrosine kinases has been previously demonstrated to mediate LPA-induced activation of MAP kinase ERK1/2. Furthermore, generation of reactive oxygen species (ROS) by LPA is also known to contribute to MAP kinase activation. Rho family small G-proteins Rac and Cdc42, and their immediate downstream effector p21-activated kinase (PAK), have been demonstrated to mediate important effects on the cytoskeleton that are relevant for cell migration and proliferation. In the present report we evaluated stimulation of PAK by LPA in rat aortic vascular smooth muscle cells (VSMC) by PAK immunocomplex MBP in-gel kinase assay. LPA increased PAK activity 3-fold, peaking at 5 min and showing sustained activation up to 45 min. Inhibition of tyrosine kinases by pretreatment of VSMC with genistein or specific inhibition of Src by PP1 greatly diminished LPA-induced PAK activation, whereas specific inhibition of PDFG- and EGF receptor kinase by tyrphostin AG1296 and AG1478 had no effect. Furthermore, inhibition of Galpha(i) by pertussis toxin and inhibition of NADH/NADPH oxidase by diphenylene iodonium also diminished LPA-induced stimulation of PAK. This is the first study to demonstrate that LPA activates PAK. In VSMC, PAK activation by LPA is mediated by Galpha(i) and is dependent on Src, whereas EGF- or PDGF receptor transactivation are not involved. Furthermore, generation of ROS is required for LPA-induced activation of PAK.
Collapse
Affiliation(s)
- Udo Schmitz
- Medizinische Universitäts-Poliklinik, Wilhelmstrasse 35-37, Bonn, 53111, Germany.
| | | | | | | |
Collapse
|
102
|
Dorsey JF, Cunnick JM, Mane SM, Wu J. Regulation of the Erk2-Elk1 signaling pathway and megakaryocytic differentiation of Bcr-Abl(+) K562 leukemic cells by Gab2. Blood 2002; 99:1388-97. [PMID: 11830491 DOI: 10.1182/blood.v99.4.1388] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the blast crisis phase of chronic myelogenous leukemia (CML), Bcr-Abl(+) myeloblasts fail to undergo terminal maturation. The extracellular signal-regulated kinase (Erk) mitogen-activated protein (MAP) kinase has been shown to mediate terminal differentiation of myeloid cells. Interestingly, Bcr-Abl(+) CML cell lines established from blast crisis were found to have low Erk MAP kinase activity. In this study, we analyzed the role of the Gab2 docking protein in regulation of the Erk MAP kinase in Bcr-Abl(+) K562 human CML cells. Overexpression of Gab2 in K562 cells resulted in transcriptional activation of the c-fos serum response element (SRE) promoter, whereas overexpression of SHP2, Grb2, and CrkL had no effect. Activation of the c-fos SRE transcriptional activity by Gab2 required tyrosine 604, which is a SHP2 docking site on Gab2, and the SHP2 tyrosine phosphatase activity. Elk1, c-Jun, and CHOP trans-reporting assays indicated that overexpression of Gab2 selectively activated the Erk2-Elk1 signaling pathway. To determine cellular consequences of elevating the Gab2 level in K562 cells, stable cell lines for doxycycline-inducible expression of the wild-type Gab2 (Gab2WT) and an SHP2-binding defective Gab2 (Gab2Tyr604Phe) were established. Analysis of these cell lines indicated that induction of Gab2WT expression, but not Gab2Tyr604Phe expression, led to Erk activation, growth arrest, cell spreading, and enlargement; expression of megakaryocyte/platelet lineage-specific integrins alphaIIb/beta3 (CD41/CD61); and upregulation of RNA for megakaryocyte/platelet proteins. All of these changes are characteristics of megakaryocytic differentiation. Together, these results reveal Gab2 as a limiting signaling component for Erk MAP kinase activation and terminal differentiation of K562 CML cells.
Collapse
Affiliation(s)
- Jay F Dorsey
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
103
|
Nicholson PR, Empereur S, Glover HR, Dilworth SM. ShcA tyrosine phosphorylation sites can replace ShcA binding in signalling by middle T-antigen. EMBO J 2001; 20:6337-46. [PMID: 11707405 PMCID: PMC125738 DOI: 10.1093/emboj/20.22.6337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ShcA and Grb2 are crucial components in signalling by most tyrosine kinase-associated receptors. How ever, it is not clear whether Grb2 bound directly to the receptor is equivalent to Grb2 associated via ShcA. We have used signalling stimulated by the middle T-antigen (MT) of polyoma virus to address this question. The two known Grb2-binding sites from murine ShcA, 313Y and 239/240YY, could functionally replace the MT ShcA-interacting region in transformation assays using Rat2 fibroblasts. This demonstrates that signal output from membrane-bound ShcA requires only these two sequences and the ShcA-binding site in MT does not recruit other signalling molecules. Two standard Grb2-interacting sequences, either from the EGF receptor or the ShcA 313Y region, could not replace the requirement for ShcA binding to MT, indicating an enhanced role for the ShcA 239/240YY motif. Sos1 and the docking protein Gab1 are brought into the MT complex through Grb2 association and this may be more effective using the 239/240YY sequence.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Dilworth
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
Corresponding author e-mail:
| |
Collapse
|
104
|
Bisotto S, Fixman ED. Src-family tyrosine kinases, phosphoinositide 3-kinase and Gab1 regulate extracellular signal-regulated kinase 1 activation induced by the type A endothelin-1 G-protein-coupled receptor. Biochem J 2001; 360:77-85. [PMID: 11695994 PMCID: PMC1222204 DOI: 10.1042/0264-6021:3600077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multisubstrate docking protein, growth-factor-receptor-bound protein 2-associated binder 1 (Gab1), which is phosphorylated on tyrosine residues following activation of receptor tyrosine kinases and cytokine receptors, regulates cell proliferation, survival and epithelial morphogenesis. Gab1 is also tyrosine phosphorylated following activation of G-protein-coupled receptors (GPCRs) where its function is poorly understood. To elucidate the role of Gab1 in GPCR signalling, we investigated the mechanism by which the type A endothelin-1 (ET-1) GPCR induced tyrosine phosphorylation of Gab1. Tyrosine phosphorylation of Gab1 induced by endothelin-1 was inhibited by PP1, a pharmacological inhibitor of Src-family tyrosine kinases. ET-1-induced Gab1 tyrosine phosphorylation was also inhibited by LY294002, which inhibits phosphoinositide 3-kinase (PI 3-kinase) enzymes. Inhibition of Src-family tyrosine kinases or PI 3-kinase also inhibited ET-1-induced activation of the mitogen activated protein kinase family member, extracellular signal-regulated kinase (ERK) 1. Thus we determined whether Gab1 regulated ET-1-induced ERK1 activation. Overexpression of wild-type Gab1 potentiated ET-1-induced activation of ERK1. Structure-function analyses of Gab1 indicated that mutant forms of Gab1 that do not bind the Src homology (SH) 2 domains of the p85 adapter subunit of PI 3-kinase or the SH2-domain-containing protein tyrosine phosphatase 2 (SHP-2) were impaired in their ability to potentiate ET-1-induced ERK1 activation. Taken together, our data indicate that PI 3-kinase and Src-family tyrosine kinases regulate ET-1-induced Gab1 tyrosine phosphorylation, which, in turn, induces ERK1 activation via PI 3-kinase- and SHP-2-dependent pathways.
Collapse
Affiliation(s)
- S Bisotto
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain, Montreal, QC, H2X 2P2, Canada
| | | |
Collapse
|
105
|
Rojnuckarin P, Miyakawa Y, Fox NE, Deou J, Daum G, Kaushansky K. The roles of phosphatidylinositol 3-kinase and protein kinase Czeta for thrombopoietin-induced mitogen-activated protein kinase activation in primary murine megakaryocytes. J Biol Chem 2001; 276:41014-22. [PMID: 11535599 DOI: 10.1074/jbc.m106508200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) stimulates a network of intracellular signaling pathways that displays extensive cross-talk. We have demonstrated previously that the ERK/mitogen-activated protein kinase pathway is important for TPO-induced endomitosis in primary megakaryocytes (MKs). One known pathway by which TPO induces ERK activation is through the association of Shc with the penultimate phosphotyrosine within the TPO receptor, Mpl. However, several investigators found that the membrane-proximal half of the cytoplasmic domain of Mpl is sufficient to activate ERK in vitro and support base-line megakaryopoiesis in vivo. Using BaF3 cells expressing a truncated Mpl (T69Mpl) as a tool to identify non-Shc/Ras-dependent signaling pathways, we describe here novel mechanisms of TPO-induced ERK activation mediated, in part, by phosphoinositide 3-kinase (PI3K). Similar to cells expressing full-length receptor, PI3K was activated by its incorporation into a complex with IRS2 or Gab2. Furthermore, the MEK-phosphorylating activity of protein kinase Czeta (PKCzeta) was also enhanced after TPO stimulation of T69Mpl, contributing to ERK activity. PKCzeta and PI3K also contribute to TPO-induced ERK activation in MKs, confirming their physiological relevance. Like in BaF3 cells, a TPO-induced signaling complex containing p85PI3K is detectable in MKs expressing T61Mpl and is probably responsible for PI3K activation. These data demonstrate a novel role of PI3K and PKCzeta in steady-state megakaryopoiesis.
Collapse
Affiliation(s)
- P Rojnuckarin
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
106
|
Barnache S, Mayeux P, Payrastre B, Moreau-Gachelin F. Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Blood 2001; 98:2372-81. [PMID: 11588033 DOI: 10.1182/blood.v98.8.2372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the cell transformation processes leading to erythroleukemia, erythroid progenitors often become erythropoietin (Epo)-independent for their proliferation. The biochemical events that could lead an erythroleukemic cell to growth factor-independence were investigated using spi-1 transgenic poerythroblasts. Spi-1/PU.1 is a myeloid and B-cell transcription factor of the ETS family and is activated by insertional mutagenesis during Friend erythroleukemia. Its overexpression in proerythroblasts induces their differentiation arrest without altering their erythropoietin requirement for proliferation (HS1 cells). At a later step, genetic alterations most probably occur allowing spi-1 transgenic poerythroblasts to proliferate in the absence of erythropoietin (HS2 cells). The signaling transduction pathways in HS1 and HS2 proerythroblasts were analyzed. The authors have previously shown that the Jak/STAT pathway was not activated in Epo-independent cells, but remained sensitive to Epo stimulation. In the present study, it is shown that the Epo-independent proliferation of HS2 cells requires active phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. In these cells, PI3K was constitutively associated with the molecular adapters Grb2 and Gab1, and with the phosphatases SHP-2 and SHIP. Moreover, PI3K activity was correlated with the constitutive phosphorylation of serine-threonine protein kinase (AKT) in HS2 cells. Lastly, a constitutive activation of the MAPKs extracellular signal-regulated kinases (ERK1/2) in HS2 cells was observed that occurs in a PI3K-independent manner, but depends strictly on the activity of the protein kinase C (PKC). These results suggest that constitutive activations of PI3K/AKT and PKC/MAPK pathways can act in synergy to lead a proerythroblast to proliferate without Epo.
Collapse
Affiliation(s)
- S Barnache
- Inserm U528, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
107
|
Yoshida A, Ueda H. Neurobiology of the Edg2 lysophosphatidic acid receptor. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:104-9. [PMID: 11700008 DOI: 10.1254/jjp.87.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lysophosphatidic acid (LPA, 1-acyl-sn-glycerol-3-phosphate) is a well-known lipid growth factor that is found widely in various tissues including brain and is reported to drive different intracellular signaling pathways. In the nervous system, LPA studies have drawn many neuroscientists' attention because it has some actions related to neurogenesis such as cell rounding and proliferation. Remarkable advances in this field have been obtained along with the discovery of the cDNA clone for its receptor, vzg1/edg2, a member of the seven transmembrane-type edg family. Successive studies have revealed that edg2 activation by LPA mediates several neurobiological actions related to neurogenesis, neuronal excitability and survival activity on developing and postnatal neurons. Here we focused their molecular basis of signaling through G proteins and in vivo roles of edg2 in such neurobiological events.
Collapse
Affiliation(s)
- A Yoshida
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University School of Pharmaceutical Sciences, Japan
| | | |
Collapse
|
108
|
Yu CF, Roshan B, Liu ZX, Cantley LG. ERK regulates the hepatocyte growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem 2001; 276:32552-8. [PMID: 11445578 DOI: 10.1074/jbc.m104493200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on our previous observations that active ERK associates with and phosphorylates Gab1 in response to HGF, and the prediction that the ERK phosphorylation site is adjacent to one of the phosphatidylinositol 3-kinase (PI3K) SH2 binding motifs, we examined the possibility that ERK phosphorylation can regulate the Gab1/PI3K association. The HGF-mediated association of Gab1 with either full-length GST-p85 or its isolated N- or C-terminal SH2 domains was inhibited by approximately 50% in the setting of ERK inhibition, a result confirmed by co-immunoprecipitation of the native proteins. A 14-amino acid peptide encoding (472)YVPMTP(477) (one of the major p85 binding sites in Gab1 and the predicted ERK phosphorylation site) was synthesized with either phosphotyrosine alone (pY), or phosphotyrosine + phosphothreonine (pYT). In both pull-down assays and competition assays, pYT demonstrated a higher affinity for p85 than did pY alone. Finally, examination of the phosphorylation state of Akt after HGF stimulation revealed that ERK inhibition resulted in a decrease in Akt activation at both 5 and 10 min. These results suggest that activated ERK can phosphorylate Gab1 in response to HGF stimulation and thereby potentiate the Gab1/PI3K association and subsequent PI3K activation.
Collapse
Affiliation(s)
- C F Yu
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520-8062, USA.
| | | | | | | |
Collapse
|
109
|
Koncz G, Tóth GK, Bökönyi G, Kéri G, Pecht I, Medgyesi D, Gergely J, Sármay G. Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3898-906. [PMID: 11453982 DOI: 10.1046/j.1432-1327.2001.02295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Motifs
- Antigens, CD/metabolism
- Intracellular Signaling Peptides and Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphopeptides/metabolism
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- G Koncz
- Research Group of the Hungarian Academy of Science at the Department of Immunology, Loránd Eötvös University, Göd, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Craddock BL, Hobbs J, Edmead CE, Welham MJ. Phosphoinositide 3-kinase-dependent regulation of interleukin-3-induced proliferation: involvement of mitogen-activated protein kinases, SHP2 and Gab2. J Biol Chem 2001; 276:24274-83. [PMID: 11335710 DOI: 10.1074/jbc.m009098200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated previously that class I(A) phosphoinositide 3-kinases play a major role in regulation of interleukin-3 (IL)-3-dependent proliferation. Investigations into the downstream targets involved have identified the MAPK cascade as a target. Expression of Deltap85 and incubation with LY294002 both inhibited IL-3-induced activation of Mek, Erk1, and Erk2. This was most pronounced during the initial phase of Erk activation. The Mek inhibitor, PD98059, blocked IL-3-driven proliferation, an effect enhanced by Deltap85 expression, suggesting that inhibition of Mek and Erks by Deltap85 contributes to the decrease in IL-3-induced proliferation in these cells but that additional pathways may also be involved. To investigate the mechanism leading to decreased activation of Erks, we investigated effects on SHP2 and Gab2, both implicated in IL-3 regulation of Erk activation. Expression of Deltap85 led to a reduction in SHP2 tyrosine phosphorylation and its ability to interact with Grb2 and Gab2 but increased overall tyrosine phosphorylation of Gab2. LY294002 did not perturb SHP2 interactions, potentially related to differences in the effects of these inhibitors on levels of phosphoinositides. These results imply that the regulation of Erks by class I(A) phosphoinositide 3-kinase may contribute to IL-3-driven proliferation and that both SHP2 and Gab2 are possibly involved in this regulation.
Collapse
Affiliation(s)
- B L Craddock
- Department of Pharmacy and Pharmacology, the University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
111
|
Cunnick JM, Mei L, Doupnik CA, Wu J. Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2. J Biol Chem 2001; 276:24380-7. [PMID: 11323411 DOI: 10.1074/jbc.m010275200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A major Grb2-associated binder-1 (Gab1) binding partner in epidermal growth factor (EGF)-stimulated cells is protein-tyrosine phosphatase (PTPase) SHP2, which contains tandem SH2 domains. The SHP2 PTPase activity is required for activation of the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinase by EGF. To investigate the mechanism by which Gab1 and SHP2 mediate ERK activation, we characterized the Gab1-SHP2 interaction. We found that both Tyr-627 and Tyr-659 of Gab1 were required for SHP2 binding to Gab1 and for ERK2 activation by EGF. Far Western blot analysis suggested that the tandem SH2 domains of SHP2 bind to Gab1 in a specific orientation, in which the N-SH2 domain binds to phosphotyrosine (Tyr(P))-627 and the C-SH2 domain binds to Tyr(P)-659. When assayed with peptide substrates, SHP2 PTPase was activated by a bisphosphopeptide containing both Tyr(P)-627 and Tyr(P)-659, but not by monophosphopeptides containing Tyr(P)-627 or Tyr(P)-659 or a mixture of these monophosphopeptides. These results suggest that Tyr(P)-627 and Tyr(P)-659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) that binds and activates SHP2. Remarkably, while a constitutively active SHP2 (SHP2DeltaN) could not rescue the defect of a SHP2-binding defective Gab1 (Gab1FF) in ERK2 activation, expression of a Gab1FF-SHP2DeltaN chimera resulted in constitutive activation of ERK2 in transfected cells. Thus, physical association of activated SHP2 with Gab1 is necessary and sufficient to mediate the ERK mitogen-activated protein kinase activation. Phosphopeptides derived from Gab1 were dephosphorylated by active SHP2 in vitro. Consistently, substrate-trapping experiments with a SHP2 catalytic inactive mutant suggested that Gab1 was a SHP2 PTPase substrate in the cells. Therefore, Gab1 not only is a SHP2 activator but also is a target of its PTPase.
Collapse
Affiliation(s)
- J M Cunnick
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
112
|
Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A 2001; 98:6074-9. [PMID: 11353842 PMCID: PMC33424 DOI: 10.1073/pnas.111114298] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The docking protein FRS2 is a major downstream effector that links fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein kinase signaling cascade. In this report, we demonstrate that FRS2 also plays a pivotal role in FGF-induced recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase). We demonstrate that tyrosine phosphorylation of FRS2alpha leads to Grb2-mediated complex formation with the docking protein Gab1 and its tyrosine phosphorylation, resulting in the recruitment and activation of PI3-kinase. Furthermore, Grb2 bound to tyrosine-phosphorylated FRS2 through its SH2 domain interacts primarily via its carboxyl-terminal SH3 domain with a proline-rich region in Gab1 and via its amino-terminal SH3 domain with the nucleotide exchange factor Sos1. Assembly of FRS2alpha:Grb2:Gab1 complex induced by FGF stimulation results in activation of PI3-kinase and downstream effector proteins such as the S/T kinase Akt, whose cellular localization and activity are regulated by products of PI3-kinase. These experiments reveal a unique mechanism for generation of signal diversity by growth factor-induced coordinated assembly of a multidocking protein complex that can activate the Ras/mitogen-activated protein kinase cascade to induce cell proliferation and differentiation, and PI3-kinase to activate a mediator of a cell survival pathway.
Collapse
Affiliation(s)
- S H Ong
- Department of Pharmacology and The Skirball Institute, New York University, Medical School, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
113
|
Ingham RJ, Santos L, Dang-Lawson M, Holgado-Madruga M, Dudek P, Maroun CR, Wong AJ, Matsuuchi L, Gold MR. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J Biol Chem 2001; 276:12257-65. [PMID: 11278704 DOI: 10.1074/jbc.m010590200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.
Collapse
Affiliation(s)
- R J Ingham
- Departments of Microbiology and Immunology and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Harada S, Esch GL, Holgado-Madruga M, Wong AJ. Grb-2-associated binder-1 is involved in insulin-induced egr-1 gene expression through its phosphatidylinositol 3'-kinase binding site. DNA Cell Biol 2001; 20:223-9. [PMID: 11403719 DOI: 10.1089/104454901750219107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Grb2-associated binder-1 (Gab1) is one of the major adapter molecules downstream of growth factor receptor signaling. Even though insulin causes tyrosine phosphorylation of Gab1, its role in insulin signaling has not been identified yet. We have demonstrated that insulin increased expression of early growth response gene-1 (egr-1), which is one of the most important transcription factors involved in cell proliferation and differentiation. In the present study, the possible role of Gab1 in insulin-induced egr-1 expression was studied using Rat1 fibroblasts expressing human insulin receptors and wildtype Gab1 (HIRc/Gab1(WT)), Gab1 with three tyrosines in the phosphatidylinositol (PI) 3'-kinase binding domain mutated to phenylalanine (HIRc/Gab1(DeltaPI3K)), or histidinol resistance only (HIRc/HIS). Insulin-induced egr-1 expression in HIRc/Gab1(DeltaPI3K) cells was much lower than in the other cells, as determined by Northern blot analysis. These results suggest that Gab1 is involved in the signaling pathway for insulin-induced egr-1 expression through increasing PI3'-kinase activity. The MAP kinase activity increased less with insulin treatment in HIRc/Gab1(DeltaPI3K) cells than in other cells. Inhibition of MAP kinase by the MEK inhibitor completely abolished insulin-induced egr-1 expression. These results suggest that Gab1 increases MAP kinase activity through its PI3'-kinase binding site, which then leads to egr-1 expression. Our results indicate that Gab1 is involved in the control of egr-1 expression regulated by insulin.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
115
|
Yart A, Laffargue M, Mayeux P, Chretien S, Peres C, Tonks N, Roche S, Payrastre B, Chap H, Raynal P. A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem 2001; 276:8856-64. [PMID: 11134009 DOI: 10.1074/jbc.m006966200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although the mechanisms involved in the activation of mitogen-activated protein kinases (MAPK) by receptor tyrosine kinases do not display an obvious role for phosphoinositide 3-kinases (PI3Ks), we have observed in the nontransformed cell line Vero stimulated with epidermal growth factor (EGF) that wortmannin and LY294002 nearly abolished MAPK activation. The effect was observed under strong stimulation and was independent of EGF concentration. In addition, three mutants of class Ia PI3Ks were found to inhibit MAPK activation to an extent similar to their effect on Akt/protein kinase B activation. To determine the importance of PI3K lipid kinase activity in MAPK activation, we have used the phosphatase PTEN and the pleckstrin homology domain of Tec kinase. Overexpression of these proteins, but not control mutants, was found to inhibit MAPK activation, suggesting that the lipid products of class Ia PI3K are necessary for MAPK signaling. We next investigated the location of PI3K in the MAPK cascade. Pharmacological inhibitors and dominant negative forms of PI3K were found to block the activation of Ras induced by EGF. Upstream from Ras, although association of Grb2 with its conventional effectors was independent of PI3K, we have observed that the recruitment of the tyrosine phosphatase SHP2 required PI3K. Because SHP2 was also essential for Ras activation, this suggested the existence of a PI3K/SHP2 pathway leading to the activation of Ras. In addition, we have observed that the docking protein Gab1, which is involved in PI3K activation during EGF stimulation, is also implicated in this pathway downstream of PI3K. Indeed, the association of Gab1 with SHP2 was blocked by PI3K inhibitors, and expression of Gab1 mutant deficient for binding to SHP2 was found to inhibit Ras stimulation without interfering with PI3K activation. These results show that, in addition to Shc and Grb2, a PI3K-dependent pathway involving Gab1 and SHP2 is essential for Ras activation under EGF stimulation.
Collapse
Affiliation(s)
- A Yart
- INSERM U326, IFR 30, Hôpital Purpan, Toulouse 31059, INSERM U363, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Insulin resistance is thought to be the primary defect in the pathophysiology of type 2 diabetes. Thus, understanding the cellular mechanisms of insulin action may contribute significantly to developing new treatments for this disease. Although the effects of insulin on glucose and lipid metabolism are well documented, gaps remain in our understanding of the precise molecular mechanisms of signal transduction for the hormone. One potential clue to understanding the unique cellular effects of insulin may lie in the compartmentalization of signaling molecules and metabolic enzymes. We review this evidence, and speculate on how PI-3 kinase-independent and -dependent signaling pathways both diverge from the insulin receptor and converge at discrete targets to insure the specificity of insulin action.
Collapse
Affiliation(s)
- C A Baumann
- Department of Cell Biology, Parke-Davis Pharmaceutical Research and the Department of Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
117
|
Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol 2000; 20:6779-98. [PMID: 10958675 PMCID: PMC86204 DOI: 10.1128/mcb.20.18.6779-6798.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 06/13/2000] [Indexed: 11/20/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.
Collapse
Affiliation(s)
- A W Lee
- Departments of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|