101
|
Stephenson JM, Banerjee S, Saxena NK, Cherian R, Banerjee SK. Neuropilin-1 is differentially expressed in myoepithelial cells and vascular smooth muscle cells in preneoplastic and neoplastic human breast: a possible marker for the progression of breast cancer. Int J Cancer 2002; 101:409-14. [PMID: 12216067 DOI: 10.1002/ijc.10611] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The expression and distribution of neuropilin-1 (NRP-1) was examined in the samples of normal human breast tissues and in non-neoplastic and neoplastic areas of breast tissue removed for carcinoma using RT-PCR as well as conventional and tissue microarrays immunohistochemical analyses. The NRP-1 mRNA expression was significantly higher in neoplastic tissues as compared to normal breast samples. Immunohistochemically, the myoepithelial cells of the mammary ducts and lobules display positive reactions for NRP-1, whereas the inner ductal and lobular epithelial cell layers failed to react. The myoepithelial cells of ducts and lobules in both neoplastic and non-neoplastic tissue specimens displayed a stronger positive reaction for NRP-1 than those in the normal breast. A positive reaction for NRP-1, but with a gradual reduction in intensity, was observed in the myoepithelial cells of ducts with atypical epithelial hyperplasia and ductal carcinoma in situ (DCIS). The reaction was undetected or minimally detected in the areas of invasive carcinoma. NRP-1 positive immunolabeling was also localized in the vascular smooth muscle cells and in some endothelial cells of the blood vessels in normal, non-neoplastic and neoplastic breast tissue samples. In areas of breast carcinoma, NRP-1 immunolabeling was more prominent in both vascular smooth muscle cells and in some endothelial cells than in similar cells in normal breast. The specificity of the newly developed antibody for NRP-1 was confirmed by in situ hybridization with DIG-labeled PCR generated probe. These results suggest that NRP-1 may be a multiple function protein in human breast and may be involved in the induction of local invasiveness of neoplasia and angiogenesis and have direct relevance to the progression of breast cancer.
Collapse
MESH Headings
- Base Sequence
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/physiopathology
- DNA Primers
- Disease Progression
- Epithelial Cells/pathology
- Epithelial Cells/physiology
- Female
- Humans
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- Nerve Tissue Proteins/genetics
- Neuropilin-1
- Oligonucleotide Array Sequence Analysis
- Precancerous Conditions/genetics
- Precancerous Conditions/pathology
- RNA, Messenger/genetics
- Receptors, Cell Surface
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
Collapse
Affiliation(s)
- John M Stephenson
- Cancer Research Unit, V.A. Medical Center, and Department of Internal Medicine, Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
102
|
Novak KAP, Fujii N, Guy RK. Investigation of the PDZ domain ligand binding site using chemically modified peptides. Bioorg Med Chem Lett 2002; 12:2471-4. [PMID: 12161160 DOI: 10.1016/s0960-894x(02)00345-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several chemically modified analogues to a tightly binding ligand for the second PDZ domain of MAGI-3 were synthesized and evaluated for their ability to compete with native peptide ligands. N-methyl scanning of the ligand backbone amides revealed the energetically important hydrogen bonds between the ligand backbone and the PDZ domain. Analogues to the ligand's conserved threonine/serine(-2) residue, involved in a side chain to side chain hydrogen bond with a conserved histidine in the PDZ domain, revealed that the interaction is highly sensitive to the steric structure around the hydroxyl group of this residue. Analogues of the ligand carboxy terminus revealed that the full hydrogen bond network of the GLGF loop is important in ligand binding.
Collapse
Affiliation(s)
- Kathleen A P Novak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA
| | | | | |
Collapse
|
103
|
Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002; 85:357-68. [PMID: 11948691 DOI: 10.1002/jcb.10140] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.
Collapse
Affiliation(s)
- Shay Soker
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
104
|
Laura RP, Witt AS, Held HA, Gerstner R, Deshayes K, Koehler MFT, Kosik KS, Sidhu SS, Lasky LA. The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. J Biol Chem 2002; 277:12906-14. [PMID: 11821434 DOI: 10.1074/jbc.m200818200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Erbin is a recently described member of the LAP (leucine-rich repeat and PDZ domain) protein family. We used a C-terminally displayed phage peptide library to identify optimal ligands for the Erbin PDZ domain. Phage-selected peptides were type 1 PDZ ligands that bound with high affinity and specificity to the Erbin PDZ domain in vitro. These peptides most closely resembled the C-terminal PDZ domain-binding motifs of three p120-related catenins: delta-catenin, ARVCF, and p0071 (DSWV-COOH). Analysis of the interactions of the Erbin PDZ domain with synthetic peptides matching the C termini of ARVCF or delta-catenin also demonstrated specific high affinity binding. We characterized the interactions between the Erbin PDZ domain and both ARVCF and delta-catenin in vitro and in vivo. The Erbin PDZ domain co-localized and coprecipitated with ARVCF or delta-catenin complexed with beta-catenin and E/N-cadherin. Mutagenesis and peptide competition experiments showed that the association of Erbin with the cadherin-catenin complex was mediated by the interaction of its PDZ domain with the C-terminal PDZ domain-binding motifs (DSWV-COOH) of ARVCF and delta-catenin. Finally, we showed that endogenous delta-catenin and Erbin co-localized in and co-immunoprecipitated from neurons. These results suggest that delta-catenin and ARVCF may function to mediate the association of Erbin with the junctional cadherin-catenin complex. They also demonstrate that C-terminal phage-display technology can be used to predict physiologically relevant ligands for PDZ domains.
Collapse
Affiliation(s)
- Richard P Laura
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Khuebachova M, Verzillo V, Skrabana R, Ovecka M, Vaccaro P, Panni S, Bradbury A, Novak M. Mapping the C terminal epitope of the Alzheimer's disease specific antibody MN423. J Immunol Methods 2002; 262:205-15. [PMID: 11983234 DOI: 10.1016/s0022-1759(02)00006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mapping of monoclonal antibody epitopes is now predominantly carried out using molecular diversity techniques, phage display in particular. However, until very recently, phage display methods have been inappropriate for the analysis of epitopes that require a free carboxy terminus. Here we describe the use of two different techniques to analyze the known C terminal epitope specificity of MN423, a monoclonal antibody specifically staining truncated tau in Alzheimer's brain. Using a lambda phage based C-terminal random peptide library, and an intracellular expression library based on truncated tau, we show that this antibody has an absolute requirement for a glycine at position -3 with respect to the C terminus. Both methods give similar results, and identify other important residues in the binding site. However, affinity analysis of synthetic peptides revealed that the affinity of the antibody for identified tripeptides was far lower than the pentapeptide sequence in the native target, and that this in turn was considerably below the affinity for the native target itself. This suggests that molecular diversity methods may define minimum, but not necessarily complete epitopes. The methods described here have a general application to the analysis of antibody epitopes suspected to be found at the C terminus.
Collapse
Affiliation(s)
- M Khuebachova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 842 45, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
106
|
DeMarco SJ, Chicka MC, Strehler EE. Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 2002; 277:10506-11. [PMID: 11786550 DOI: 10.1074/jbc.m111616200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spatial and temporal regulation of Ca(2+) signaling require the assembly of multiprotein complexes linking molecules involved in Ca(2+) influx, sensing, buffering, and extrusion. Recent evidence indicates that plasma membrane Ca(2+) ATPases (PMCAs) participate in the control of local Ca(2+) fluxes, but the mechanism of multiprotein complex formation of specific PMCAs is poorly understood. Using the PMCA2b COOH-terminal tail as bait in a yeast two-hybrid screen, we identified the PSD-95, Dlg, ZO-1 (PDZ) domain-containing Na(+)/H(+) exchanger regulatory factor-2 (NHERF2) as an interacting partner. Protein pull-down and coimmunoprecipitation experiments using recombinant PMCA2b and PMCA4b as well as NHERF1 and NHERF2 showed that the interaction of PMCA2b with NHERF2 was specific and selective. PMCA4b did not interact with either of the NHERFs, and PMCA2b selectively preferred NHERF2 over NHERF1. Green fluorescent protein-tagged PMCA2b was expressed at the apical membrane in Madin-Darby canine kidney epithelial cells, where it colocalized with apically targeted NHERF2. Our study identifies NHERF2 as the first specific PDZ partner for PMCA2b not shared with PMCA4b, and demonstrates that PMCA splice forms differing only minimally in their COOH-terminal residues interact with unique PDZ proteins. NHERFs have been implicated in the targeting, retention and regulation of membrane proteins including the beta(2)-adrenergic receptor, cystic fibrosis transmembrane conductance regulator, and Trp4 Ca(2+) channel, and NHERF2 is now shown to also interact with PMCA2b. This interaction may allow the functional assembly of PMCA2b in a multiprotein Ca(2+) signaling complex, facilitating integrated cross-talk between local Ca(2+) influx and efflux.
Collapse
Affiliation(s)
- Steven J DeMarco
- Program in Molecular Neuroscience, Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
107
|
Abstract
A time-resolved fluorescence resonance energy transfer (TR-FRET) detection method based on the formation of a PDZ domain.peptide ligand complex has been developed for enzymatic assays as an alternative to immuno-based detection strategies. The enzyme substrate is a "masked" biotinylated PDZ domain peptide ligand containing the consensus sequence Ser-X-Val-COOH. The critical residues in the binding consensus sequence of the ligand have been modified, for example, by phosphorylation of Ser or C-terminal extensions, providing binding-incompetent PDZ domain peptides. On processing by the corresponding enzyme, the binding epitope is exposed, and the product sequence is recognized specifically by Eu(3+) chelate-labeled GST-PDZ ([Eu(3+)]GST-PDZ) (GST-PDZ-glutathione S-transferase fused to PDZ domain). A ternary complex is subsequently formed by addition of allophycocyanin-labeled streptavidin ([XL665]SA), which binds to the biotinylated N terminus of the peptide, and detected by TR-FRET. Reported here are examples of the applicability of this detection strategy to three enzymatic systems, an endoprotease, an exoprotease, and a Ser/Thr phosphatase.
Collapse
Affiliation(s)
- Marc Ferrer
- Department of Automated Biotechnology, Merck Research Laboratories, 503 Louise Lane, North Wales, Pennsylvania 19454, USA
| | | | | |
Collapse
|
108
|
Hartley O. The use of phage display in the study of receptors and their ligands. J Recept Signal Transduct Res 2002; 22:373-92. [PMID: 12503628 DOI: 10.1081/rrs-120014608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phage display technology presents a rapid means by which proteins and peptides that bind specifically to predefined molecular targets can be isolated from extremely complex combinatorial libraries. There are several important ways by which phage display can provide impetus to receptor-based research. Firstly, phage display can be applied, alongside transcriptome and proteome expression profiling techniques, to the identification and characterisation of receptors whose expression is specific to either a cell lineage, a tissue or a disease state. Secondly, specific monoclonal antibodies that enable researchers to identify, localize and quantify receptors can be produced very rapidly (weeks). Thirdly, it should be possible to apply phage display to the matching of orphan ligands and receptors. Finally, phage display can be used to identify proteins and peptides that modulate receptor activity. As well as being useful in the study of receptor function, biologically active proteins and peptides could also be used therapeutically, or as leads for drug design. Hence phage display is ready to play a central role in the study of receptors in the post-genome era. This review outlines the ways in which phage display has been applied to the study of receptor-ligand systems, and discusses how new developments in the technology may be of even greater utility to the field in the next decade.
Collapse
Affiliation(s)
- Oliver Hartley
- Département de Biochimie Medicale, Centre Médicale Universitaire, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
109
|
Abstract
Many biological processes are mediated by specific molecular recognition between proteins. However, the thermodynamic and structural 'rules' for such recognition are incompletely understood, as is the potential for inhibition by small molecules. Recent progress has included the discovery of small-molecule inhibitors for several targets important in cancer.
Collapse
Affiliation(s)
- A G Cochran
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
110
|
Vaccaro P, Brannetti B, Montecchi-Palazzi L, Philipp S, Helmer Citterich M, Cesareni G, Dente L. Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster. J Biol Chem 2001; 276:42122-30. [PMID: 11509564 DOI: 10.1074/jbc.m104208200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PDZ domains are protein-protein interaction modules that typically bind to short peptide sequences at the carboxyl terminus of target proteins. Proteins containing multiple PDZ domains often bind to different trans-membrane and intracellular proteins, playing a central role as organizers of multimeric complexes. To characterize the rules underlying the binding specificity of different PDZ domains, we have assembled a novel repertoire of random peptides that are displayed at high density at the carboxyl terminus of the capsid D protein of bacteriophage lambda. We have exploited this combinatorial library to determine the peptide binding preference of the seven PDZ domains of human INADL, a multi-PDZ protein that is homologous to the INAD protein of Drosophila melanogaster. This approach has permitted the determination of the consensus ligand for each PDZ domain and the assignment to class I, class II, and to a new specificity class, class IV, characterized by the presence of an acidic residue at the carboxyl-terminal position. Homology modeling and site-directed mutagenesis experiments confirmed the involvement of specific residues at contact positions in determining the domain binding preference. However, these experiments failed to reveal simple rules that would permit the association of the chemical characteristics of any given residue in the peptide binding pocket to the preference for specific amino acid sequences in the ligand peptide. Rather, they suggested that to infer the binding preference of any PDZ domain, it is necessary to simultaneously take into account all contact positions by using computational procedures. For this purpose we extended the SPOT algorithm, originally developed for SH3 domains, to evaluate the probability that any peptide would bind to any given PDZ domain.
Collapse
Affiliation(s)
- P Vaccaro
- Department of Biology Enrico Calef, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
111
|
Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P. Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 2001; 313:965-76. [PMID: 11700053 DOI: 10.1006/jmbi.2001.5111] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Screening a random peptide library displayed on phage as fusion to the major capsid protein pVIII identified a ligand binding the human epidermal growth factor receptor 2 (HER2) specifically. By mutating the sequence of this ligand, a "secondary" library was generated, whose panning on HER2-positive cells isolated a phage-borne peptide with increased specific binding to HER2 (phage NL1.1). The same peptide recognised HER2 specifically when expressed as an N-terminal fusion to the minor coat protein pIII. Phage NL1.1 was engineered to include a mammalian expression cassette for a reporter gene within its genome. This modified phage transduced HER2-expressing cells with very high specificity (more than 1000-fold that of parental HER2-negative cells) and with an efficiency comparable to that of chemical transfection protocols. The gene delivery process was remarkably fast, requiring less than 15 minutes incubation of phage with target cells to generate detectable levels of gene expression.
Collapse
Affiliation(s)
- L Urbanelli
- Department of Molecular & Cell Biology, I.R.B.M. P. Angeletti, Pomezia, Roma, Italy
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
PDZ domains are protein-protein recognition modules that play a central role in organizing diverse cell signaling assemblies. These domains specifically recognize short C-terminal peptide motifs, but can also recognize internal sequences that structurally mimic a terminus. PDZ domains can therefore be used in combination to bind an array of target proteins or to oligomerize into branched networks. Several PDZ-domain-containing proteins play an important role in the transport, localization and assembly of supramolecular signaling complexes. Examples of such PDZ-mediated assemblies exist in Drosophila photoreceptor cells and at mammalian synapses. The predominance of PDZ domains in metazoans indicates that this highly specialized scaffolding module probably evolved in response to the increased signaling needs of multicellular organisms.
Collapse
Affiliation(s)
- B Z Harris
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0450, USA
| | | |
Collapse
|
113
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
114
|
Abstract
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.
Collapse
Affiliation(s)
- S S Sidhu
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
115
|
Charest A, Lane K, McMahon K, Housman DE. Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 2001; 276:29456-65. [PMID: 11384996 DOI: 10.1074/jbc.m104137200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZ domains are involved in the scaffolding and assembly of multi-protein complexes at various subcellular sites. We describe here the isolation and characterization of a novel PDZ domain-containing protein that localizes to the Golgi apparatus. Using an in silico cloning approach, we have identified and isolated a cDNA encoding a ubiquitously expressed 59-kDa protein that we call FIG. It is composed of two coiled coil regions, a leucine zipper, and a single PDZ domain. Cytological studies using indirect immunofluorescence microscopy revealed that FIG is a peripheral protein that uses one of its coiled coil domains to localize to the Golgi apparatus. To ascertain the modalities of this Golgi localization, the same coiled coil region was tested for its ability to interact with a panel of coiled coil domain-containing integral membrane Golgi proteins. Using a series of GST fusion protein binding assays, co-immunofluorescence and co-immunoprecipitation experiments, we show that FIG specifically binds to the coiled coil domain-containing Q-SNARE (Q-soluble NSF attachment protein receptor) protein syntaxin 6 both in vitro and in vivo. The structural features of FIG and its interaction with a SNARE protein suggest that FIG may play a role in membrane vesicle trafficking. This is the first example of a PDZ domain-containing peripheral protein that localizes to the Golgi through a coiled coil-mediated interaction with a resident membrane protein. Our results broaden the scope of PDZ domain-mediated functions.
Collapse
Affiliation(s)
- A Charest
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
116
|
Abstract
Extremely diverse, DNA-encoded libraries of peptides and proteins have been constructed that include a linkage between each polypeptide and the encoding DNA. Library members can be selected by virtue of a particular binding specificity, and their protein sequence can be deduced from the sequence of the cognate DNA. Such combinatorial biology methods have proven invaluable in both identifying natural protein-protein interactions and also in mapping the specificities and energetics of these interactions in fine detail.
Collapse
Affiliation(s)
- J Pelletier
- Université de Montréal, Département de Chimie, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.
| | | |
Collapse
|
117
|
Larocca D, Baird A. Receptor-mediated gene transfer by phage-display vectors: applications in functional genomics and gene therapy. Drug Discov Today 2001; 6:793-801. [PMID: 11470588 DOI: 10.1016/s1359-6446(01)01837-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have demonstrated targeted gene-delivery to mammalian cells using modified phage-display vectors. Specificity is determined by the choice of the genetically displayed targeting ligand. Without targeting, phage particles have virtually no tropism for mammalian cells. Thus, novel ligands can be selected from phage libraries by their ability to deliver a reporter gene to targeted cells. Together with advances in cDNA display technologies, these findings offer new opportunities for the use of phage-display technology in functional genomics. In addition, targeted phage particles have potential as alternative gene therapy vectors that can be further improved using directed evolution.
Collapse
Affiliation(s)
- D Larocca
- Selective Genetics, 11035 Roselle Street San Diego, 92121, San Diego, CA, USA
| | | |
Collapse
|
118
|
Abstract
Among the many techniques available to investigators interested in mapping protein-protein interactions is phage display. With a modest amount of effort, time, and cost, one can select peptide ligands to a wide array of targets from phage-display combinatorial peptide libraries. In this article, protocols and examples are provided to guide scientists who wish to identify peptide ligands to their favorite proteins.
Collapse
Affiliation(s)
- B K Kay
- Department of Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706-1532, USA.
| | | | | |
Collapse
|
119
|
Christensen DJ, Gottlin EB, Benson RE, Hamilton PT. Phage display for target-based antibacterial drug discovery. Drug Discov Today 2001; 6:721-727. [PMID: 11445463 DOI: 10.1016/s1359-6446(01)01853-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increasing bacterial drug resistance and hard-to-eradicate opportunistic infections have created a need for new antibiotics. Sequencing of microbial genomes has yielded many new potential targets for antibacterial drug discovery. However, little is known about the biochemical activities of many of these targets, making it difficult to develop HTS assays for them. Peptides isolated by phage display can be used as 'surrogate ligands' in competition assays for screening of targets of unknown function with small-molecule libraries. These screening assays can be adapted into a variety of high-throughput formats, including those based on radioactive, luminescence or fluorescence detection.
Collapse
Affiliation(s)
- D J. Christensen
- Karo Bio USA, 4222 Emperor Blvd, Suite 560, 27703, Durham, NC, USA
| | | | | | | |
Collapse
|
120
|
DeMarco SJ, Strehler EE. Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 2001; 276:21594-600. [PMID: 11274188 DOI: 10.1074/jbc.m101448200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spatial and temporal regulation of intracellular Ca(2+) signaling depends on localized Ca(2+) microdomains containing the requisite molecular components for Ca(2+) influx, efflux, and signal transmission. Plasma membrane Ca(2+)-ATPase (PMCA) isoforms of the "b" splice type contain predicted PDZ (PSD95/Dlg/ZO-1) interaction domains. The COOH-terminal tail of PMCA2b isolated the membrane-associated guanylate kinase (MAGUK) protein SAP97/hDlg as a binding partner in a yeast two-hybrid screen. The related MAGUKs SAP90/PSD95, PSD93/chapsyn-110, SAP97, and SAP102 all bound to the COOH-terminal tail of PMCA4b, whereas only the first three bound to the tail of PMCA2b. Coimmunoprecipitations confirmed the interaction selectivity between PMCA4b and SAP102 as opposed to the promiscuity of PMCA2b and 4b in interacting with other SAPs. Confocal immunofluorescence microscopy revealed the exclusive presence and colocalization of PMCA4b and SAP97 in the basolateral membrane of polarized Madin-Darby canine kidney epithelial cells. In hippocampal neurons, PMCA2b was abundant throughout the somatodendritic compartment and often extended into the neck and head of individual spines where it colocalized with SAP90/PSD95. These data show that PMCA "b" splice forms interact promiscuously but also with specificity with different members of the PSD95 family of SAPs. PMCA-SAP interactions may play a role in the recruitment and maintenance of the PMCA at specific membrane domains involved in local Ca(2+) regulation.
Collapse
Affiliation(s)
- S J DeMarco
- Program in Molecular Neuroscience, Department of Biochemistry, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
121
|
Karthikeyan S, Leung T, Ladias JA. Structural basis of the Na+/H+ exchanger regulatory factor PDZ1 interaction with the carboxyl-terminal region of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 2001; 276:19683-6. [PMID: 11304524 DOI: 10.1074/jbc.c100154200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PDZ1 domain of the Na(+)/H(+) exchanger regulatory factor (NHERF) binds with nanomolar affinity to the carboxyl-terminal sequence QDTRL of the cystic fibrosis transmembrane conductance regulator (CFTR) and plays a central role in the cellular localization and physiological regulation of this chloride channel. The crystal structure of human NHERF PDZ1 bound to the carboxyl-terminal peptide QDTRL has been determined at 1.7-A resolution. The structure reveals the specificity and affinity determinants of the PDZ1-CFTR interaction and provides insights into carboxyl-terminal leucine recognition by class I PDZ domains. The peptide ligand inserts into the PDZ1 binding pocket forming an additional antiparallel beta-strand to the PDZ1 beta-sheet, and an extensive network of hydrogen bonds and hydrophobic interactions stabilize the complex. Remarkably, the guanido group of arginine at position -1 of the CFTR peptide forms two salt bridges and two hydrogen bonds with PDZ1 residues Glu(43) and Asn(22), respectively, providing the structural basis for the contribution of the penultimate amino acid of the peptide ligand to the affinity of the interaction.
Collapse
Affiliation(s)
- S Karthikeyan
- Molecular Medicine Laboratory and Macromolecular Crystallography Unit, Division of Experimental Medicine, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
122
|
He L, Gunn TM, Bouley DM, Lu XY, Watson SJ, Schlossman SF, Duke-Cohan JS, Barsh GS. A biochemical function for attractin in agouti-induced pigmentation and obesity. Nat Genet 2001; 27:40-7. [PMID: 11137996 DOI: 10.1038/83741] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Agouti protein, a paracrine signaling molecule normally limited to skin, is ectopically expressed in lethal yellow (A(y)) mice, and causes obesity by mimicking agouti-related protein (Agrp), found primarily in the hypothalamus. Mouse attractin (Atrn) is a widely expressed transmembrane protein whose loss of function in mahogany (Atrn(mg-3J)/ Atrn(mg-3J)) mutant mice blocks the pleiotropic effects of A(y). Here we demonstrate in transgenic, biochemical and genetic-interaction experiments that attractin is a low-affinity receptor for agouti protein, but not Agrp, in vitro and in vivo. Additional histopathologic abnormalities in Atrn(mg-3J)/Atrn(mg-3J) mice and cross-species genomic comparisons indicate that Atrn has multiple functions distinct from both a physiologic and an evolutionary perspective.
Collapse
Affiliation(s)
- L He
- Departments of Pediatric, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Over the past year, methods for the construction of M13 phage-display libraries have been significantly improved and new display formats have been developed. Phage-displayed peptide libraries have been used to isolate specific ligands for numerous protein targets. New phage antibody libraries have further expanded the practical applications of the technology and phage cDNA libraries have proven useful in defining natural binding interactions. In addition, phage-display methods have been developed for the rapid determination of binding energetics at protein-protein interfaces.
Collapse
Affiliation(s)
- S S Sidhu
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|