101
|
Abstract
Most of the progress in dissecting the Drosophila antimicrobial response over the past decade has centered around intracellular signaling pathways in immune response tissues and expression of genes encoding antimicrobial peptide genes. The past few years, however, have witnessed significant advances in our understanding of the recognition of microbial invaders and subsequent activation of signaling cascades. In particular, the roles of peptidoglycan recognition proteins, which have known homologues in mammals, have been recognized and examined at the structural and functional levels.
Collapse
Affiliation(s)
- Julien Royet
- UPR 9022 Centre national de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, Strasbourg, France
| | | | | |
Collapse
|
102
|
Mellroth P, Karlsson J, Håkansson J, Schultz N, Goldman WE, Steiner H. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc Natl Acad Sci U S A 2005; 102:6455-60. [PMID: 15843462 PMCID: PMC1088352 DOI: 10.1073/pnas.0407559102] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Drosophila knockout mutants have placed peptidoglycan recognition proteins (PGRPs) in the two major pathways controlling immune gene expression. We now examine PGRP affinities for peptidoglycan. PGRP-SA and PGRP-LCx are bona fide pattern recognition receptors, and PGRP-SA, the peptidoglycan receptor of the Toll/Dif pathway, has selective affinity for different peptidoglycans. PGRP-LCx, the default peptidoglycan receptor of the Imd/Relish pathway, has strong affinity for all polymeric peptidoglycans tested and for monomeric peptidoglycan. PGRP-LCa does not have affinity for polymeric or monomeric peptidoglycan. Instead, PGRP-LCa can form heterodimers with LCx when the latter is bound to monomeric peptidoglycan. Hence, PGRP-LCa can be said to function as an adaptor, thus adding a new function to a member of the PGRP family.
Collapse
Affiliation(s)
- Peter Mellroth
- Department of Genetics, Microbiology, and Toxicology, University of Stockholm, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
The innate immune response is the first line of defense against microbial infections in both insects and mammals. Systematic analysis of the innate immune response in the model organism Drosophila melanogaster has provided important insights into the mechanisms of pathogen recognition and host response. Recognition of pathogen-associated molecules, such as peptidoglycans, stimulates the Toll and immune deficiency (Imd) pathways to induce antimicrobial responses. The Toll and Imd pathways are homologous to the mammalian Toll-like receptor (TLR) and tumor necrosis factor receptor (TNFR) signaling pathways, respectively, and are essential for Drosophila to survive infection. In this Review, we will discuss the recent genetic, genomic and RNA interference analyses that have unveiled additional intricacy in the Toll and Imd pathways.
Collapse
Affiliation(s)
- Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
104
|
Guan R, Wang Q, Sundberg EJ, Mariuzza RA. Crystal Structure of Human Peptidoglycan Recognition Protein S (PGRP-S) at 1.70Å Resolution. J Mol Biol 2005; 347:683-91. [PMID: 15769462 DOI: 10.1016/j.jmb.2005.01.070] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind peptidoglycans (PGNs) of bacterial cell walls. These molecules, which are highly conserved from insects to mammals, contribute to host defense against infections by both Gram-positive and Gram-negative bacteria. Here, we present the crystal structure of human PGRP-S at 1.70A resolution. The overall structure of PGRP-S, which participates in intracellular killing of Gram-positive bacteria, is similar to that of other PGRPs, including Drosophila PGRP-LB and PGRP-SA and human PGRP-Ialpha. However, comparison with these PGRPs reveals important differences in both the PGN-binding site and a groove formed by the PGRP-specific segment on the opposite face of the molecule. This groove, which may constitute a binding site for effector or signaling proteins, is less hydrophobic and deeper in PGRP-S than in PGRP-IalphaC, whose PGRP-specific segments vary considerably in amino acid sequence. By docking a PGN ligand into the PGN-binding cleft of PGRP-S based on the known structure of a PGRP-Ialpha-PGN complex, we identified potential PGN-binding residues in PGRP-S. Differences in PGN-contacting residues and interactions suggest that, although PGRPs may engage PGNs in a similar mode, structural differences exist that likely regulate the affinity and fine specificity of PGN recognition.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
105
|
Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Hervé M, Chaput C, Boneca IG, Lee WJ, Lemaitre B, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. THE JOURNAL OF IMMUNOLOGY 2005; 173:7339-48. [PMID: 15585858 DOI: 10.4049/jimmunol.173.12.7339] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.
Collapse
Affiliation(s)
- Carolyn R Stenbak
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Choe KM, Lee H, Anderson KV. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci U S A 2005; 102:1122-6. [PMID: 15657141 PMCID: PMC545828 DOI: 10.1073/pnas.0404952102] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila peptidoglycan recognition protein LC (PGRP-LC), a transmembrane protein required for the response to bacterial infection, acts at the top of a cytoplasmic signaling cascade that requires the death-domain protein Imd and an IkappaB kinase to activate Relish, an NF-kappaB family member. It is not clear how binding of peptidoglycan to the extracellular domain of PGRP-LC activates intracellular signaling because its cytoplasmic domain has no homology to characterized proteins. Here, we demonstrate that PGRP-LC binds Imd and that its cytoplasmic domain is critical for its activity, suggesting that PGRP-LC acts as a signal-transducing receptor. The PGRP-LC cytoplasmic domain is also essential for the formation of dimers, and results suggest that dimerization may be required for receptor activation. The PGRP-LC cytoplasmic domain can mediate formation of heterodimers between different PGRP-LC isoforms, thereby potentially expanding the diversity of ligands that can be recognized by the receptor.
Collapse
Affiliation(s)
- Kwang-Min Choe
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
107
|
Guan R, Roychowdhury A, Ember B, Kumar S, Boons GJ, Mariuzza RA. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci U S A 2004; 101:17168-73. [PMID: 15572450 PMCID: PMC535381 DOI: 10.1073/pnas.0407856101] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern-recognition receptors of the innate immune system that bind and, in some cases, hydrolyze bacterial PGNs. We determined the crystal structure, at 2.30-A resolution, of the C-terminal PGN-binding domain of human PGRP-Ialpha in complex with a muramyl tripeptide representing the core of lysine-type PGNs from Gram-positive bacteria. The peptide stem of the ligand is buried at the deep end of a long binding groove, with N-acetylmuramic acid situated in the middle of the groove, whose shallow end can accommodate a linked N-acetylglucosamine. Although most interactions are with the peptide, the glycan moiety also seems to be essential for specific recognition by PGRPs. Conservation of key PGN-contacting residues shows that all PGRPs employ this basic PGN-binding mode. The structure pinpoints variable residues that likely mediate discrimination between lysine- and diaminopimelic acid-type PGNs. We also propose a mechanism for PGN hydrolysis by Zn(2+)-containing PGRPs.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
The response of the fruit fly Drosophila melanogaster to various microorganism infections relies on a multilayered defense. The epithelia constitute a first and efficient barrier. Innate immunity is activated when microorganisms succeed in entering the body cavity of the fly. Invading microorganisms are killed by the combined action of cellular and humoral processes. They are phagocytosed by specialized blood cells, surrounded by toxic melanin, or lysed by antibacterial peptides secreted into the hemolymph by fat body cells. During the last few years, research has focused on the mechanisms of microbial recognition by various pattern recognition receptors and of the subsequent induction of antimicrobial peptide expression. The cellular arm of the Drosophila innate immune system, which was somehow neglected, now constitutes the new frontier.
Collapse
Affiliation(s)
- Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
109
|
Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 2004; 198:127-48. [PMID: 15199960 DOI: 10.1111/j.0105-2896.2004.0127.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.
Collapse
|
110
|
Abstract
Insects rely on innate immune mechanisms to defend themselves against microbes. The inducible anti-microbial peptides constitute an important arm of this defense. In Drosophila, the Toll and the Imd pathways are the major routes to induce the peptides, and it has become clear that to a certain extent, these pathways can discriminate between different microbes and mount an appropriate response to eliminate the intruder. This review discusses the proteins responsible for this discriminatory recognition, the peptidoglycan recognition proteins (PGRPs). The serum protein PGRP-SA triggers a humoral cascade of proteases upon infection by certain gram-positive bacteria to activate the Toll pathway. The membrane-bound receptor PGRP-LC activates the Imd pathway in response to certain gram-negative bacteria or their peptidoglycans. Other PGRPs have enzymatic activity, cleaving lactylamide bonds in peptidoglycan to eliminate its immunogenicity, thus turning off the immune response. The PGRP family is conserved from insects to man. Short mammalian PGRP variants are synthesized in neutrophils and stored in granules. These PGRPs seem to influence the survival of phagocytosed non-pathogenic bacteria. Long PGRP variants are expressed in the liver and secreted into the bloodstream where their peptidoglycan-degrading activity might serve scavenger functions.
Collapse
Affiliation(s)
- Håkan Steiner
- Department of Microbiology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
111
|
Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 2004; 23:4690-700. [PMID: 15538387 PMCID: PMC533052 DOI: 10.1038/sj.emboj.7600466] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 10/11/2004] [Indexed: 11/09/2022] Open
Abstract
In innate immunity, pattern recognition molecules recognize cell wall components of microorganisms and activate subsequent immune responses, such as the induction of antimicrobial peptides and melanization in Drosophila. The diaminopimelic acid (DAP)-type peptidoglycan potently activates imd-dependent induction of antibacterial peptides. Peptidoglycan recognition protein (PGRP) family members act as pattern recognition molecules. PGRP-LC loss-of-function mutations affect the imd-dependent induction of antibacterial peptides and resistance to Gram-negative bacteria, whereas PGRP-LE binds to the DAP-type peptidoglycan, and a gain-of-function mutation induces constitutive activation of both the imd pathway and melanization. Here, we generated PGRP-LE null mutants and report that PGRP-LE functions synergistically with PGRP-LC in producing resistance to Escherichia coli and Bacillus megaterium infections, which have the DAP-type peptidoglycan. Consistent with this, PGRP-LE acts both upstream and in parallel with PGRP-LC in the imd pathway, and is required for infection-dependent activation of melanization in Drosophila. A role for PGRP-LE in the epithelial induction of antimicrobial peptides is also suggested.
Collapse
Affiliation(s)
- Aya Takehana
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shizuka Mita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Kotani
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan. Tel.: +81 22 217 6823; Fax: +81 22 217 6821; E-mail:
| |
Collapse
|
112
|
Abstract
Drosophila has evolved a potent immune system that is somewhat adapted to the nature of infections through the selective activation of either one of two NF-kappa B-like signalling pathways, the Toll and IMD (Immune deficiency) pathways. In contrast to the mammalian system, the Toll receptor does not act as a pattern recognition receptor (PRR) but as a cytokine receptor. The sensing of microbial infections is achieved by at least four PRRs that belong to two distinct families: the peptidoglycan recognition proteins (PGRPs) and the Gram-negative binding proteins (GNBPs)/beta-glucan recognition proteins (beta GRPs).
Collapse
Affiliation(s)
- Dominique Ferrandon
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, F67084 Strasbourg Cedex, France.
| | | | | |
Collapse
|
113
|
Heddi A, Vallier A, Anselme C, Xin H, Rahbe Y, Wäckers F. Molecular and cellular profiles of insect bacteriocytes: mutualism and harm at the initial evolutionary step of symbiogenesis. Cell Microbiol 2004; 7:293-305. [PMID: 15659072 DOI: 10.1111/j.1462-5822.2004.00461.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular symbiosis is considered to be a driving force in eukaryotic cell evolution. In insects, little is known about the molecular bases of the bacteria-bearing host cells (bacteriocytes), particularly in the initial steps of symbiosis, where the bacterial genome has not experienced severe gene deletions because of evolutionary constraints associated with intracellular and vertical transmission. Here, we have applied polymerase chain reaction (PCR)-subtracted cDNA and reverse Northern analysis on the bacteriocytes of a recently established endosymbiosis, the weevil Sitophilus zeamais, to discover genes of potential relevance to bacteriocyte genetics. We provide a broad characterization of bacteriocyte transcriptional responses to intracellular bacteria, including pathways covering metabolism-transport-stress (MTS), cell signalling and trafficking, growth and apoptosis, as well as innate immunity. MTS genes show an intriguing diabetes-like pathogenic profile associated with increased stress, as indicated by high levels of upregulations of carbohydrate transporters, aldose reductases and stress-related genes. A high-performance liquid chromatography (HPLC) analysis of tissue carbohydrate contents highlighted an increased carbohydrate assimilation in symbiotic insects and the prevalence of a polyol biosynthetic pathway, as indicated by the accumulation of sorbitol, mannitol and fructose in the bacteriocytes. These findings provide the first genetic perspectives on the nature of the interaction between insect and cooperative bacteria. They unravel the profound insect bacteriocyte stress associated with increased metabolism and cell trafficking, and they shed light on the potential role of the innate immunity during the pathogeny-mutualism transition at the initial stage of insect symbiogenesis.
Collapse
Affiliation(s)
- Abdelaziz Heddi
- Laboratoire de Biologie Fonctionnelle Insectes et Interactions, UMR INRA/INSA de Lyon, Bât. Louis Pasteur, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex, France.
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens, together with the molecules that can potentially activate downstream 'non-self' recognition events not in parallel, but as a consequence of tumor antigen processing and presentation.
Collapse
Affiliation(s)
- S S Larin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
115
|
Chang CI, Pili-Floury S, Hervé M, Parquet C, Chelliah Y, Lemaitre B, Mengin-Lecreulx D, Deisenhofer J. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity. PLoS Biol 2004; 2:E277. [PMID: 15361936 PMCID: PMC515366 DOI: 10.1371/journal.pbio.0020277] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 06/21/2004] [Indexed: 11/20/2022] Open
Abstract
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-Å resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG. The Drosophila protein PGRP-SA is found to have an intrinsic activity to cleave L,D-configured peptide bonds, which exist only in prokaryotes. This work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria
Collapse
Affiliation(s)
- Chung-I Chang
- 1Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical CenterDallas, Texas, United States of America
| | - Sébastien Pili-Floury
- 2Centre de Génétique Moléculaire du Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| | - Mireille Hervé
- 3Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueUniversité de Paris-Sud, OrsayFrance
| | - Claudine Parquet
- 3Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueUniversité de Paris-Sud, OrsayFrance
| | - Yogarany Chelliah
- 1Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical CenterDallas, Texas, United States of America
| | - Bruno Lemaitre
- 2Centre de Génétique Moléculaire du Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| | - Dominique Mengin-Lecreulx
- 3Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueUniversité de Paris-Sud, OrsayFrance
| | - Johann Deisenhofer
- 1Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical CenterDallas, Texas, United States of America
| |
Collapse
|
116
|
Lehane MJ, Aksoy S, Levashina E. Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 2004; 20:433-9. [PMID: 15324734 DOI: 10.1016/j.pt.2004.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detailed model of insect immunity being built for Drosophila, allied to mass sequencing programs for blood-feeding insects, has led to advances in our understanding of the interaction between pathogens and insect vectors. An outline of insect immunity is given here based on the Drosophila studies, which is used as a framework to discuss recent work on Plasmodium-mosquito and Trypanosoma-tsetse interactions.
Collapse
Affiliation(s)
- Michael J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | | |
Collapse
|
117
|
Loseva O, Engström Y. Analysis of Signal-dependent Changes in the Proteome of Drosophila Blood Cells During an Immune Response. Mol Cell Proteomics 2004; 3:796-808. [PMID: 15148344 DOI: 10.1074/mcp.m400028-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Innate immunity is based on the recognition of cell-surface molecules of infecting agents. Microbial substances, such as peptidoglycan, lipopolysaccharide, and beta-1,3-glucans, produce functional responses in Drosophila hemocytes that contribute to innate immunity. We have used two-dimensional gel electrophoresis and MS to resolve lipopolysaccharide-induced changes in the protein profile of a Drosophila hemocytic cell line. We identified 24 intracellular proteins that were up- or down-regulated, or modified, in response to immune challenge. Several proteins with predicted immune functions, including lysosomal proteases, actin-binding/remodeling proteins, as well as proteins involved in cellular responses to oxidative stress, were affected by the immune assault. Intriguingly, a number of the proteins identified in this study have recently been implicated in phagocytosis in higher vertebrates. We suggest that phagocytosis is activated in Drosophila hemocytes by the presence of microbial substances, and that this activation constitutes an evolutionarily conserved arm of innate immunity. In addition, a number of proteins involved in calcium-regulated signaling, mRNA processing, and nuclear transport were affected, consistent with a possible role in reprogramming of gene expression. In conclusion, the present proteome analysis identified many proteins previously not linked to innate immunity, demonstrating that differential protein profiling of Drosophila hemocytes is a valuable tool for identification of new players in immune-related cellular processes.
Collapse
Affiliation(s)
- Olga Loseva
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
118
|
Sagisaka A, Tanaka H, Furukawa S, Yamakawa M. Characterization of a homologue of the Rel/NF-kappaB transcription factor from a beetle, Allomyrina dichotoma. ACTA ACUST UNITED AC 2004; 1678:85-93. [PMID: 15157734 DOI: 10.1016/j.bbaexp.2004.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/26/2004] [Accepted: 02/02/2004] [Indexed: 11/21/2022]
Abstract
A cDNA encoding a Rel/NF-kappaB homologue was cloned from a beetle, Allomyrina dichotoma, by reverse transcriptase-polymerase chain reactions (RT-PCR) taking advantage of the conserved Rel homology domain (RHD) to synthesize primers. The Rel/NF-kappaB homologue was designated A. dichotoma (A.d.) Rel A. The amino acid sequence of the A.d. Rel A RHD was compared with those of insect RHDs. The result showed that it has 70% identity with Tribolium castaneum Dorsal, 66% with Drosophila melanogaster Dorsal, 61% with Anopheles gambiae Gambif1, and 55% with D. melanogaster Dif. A putative phosphorylation site in the RHD, RRPS, and two putative nuclear localization signals were conserved in A.d. Rel A. A recombinant fusion protein containing the A.d. Rel A RHD was confirmed to bind specifically to the NF-kappaB site of a gene encoding A.d. coleoptericin A, an antibacterial peptide from A. dichotoma. The activity of A.d. Rel A in modulating a gene construct of the A.d. coleoptericin A promoter-luciferase reporter by expressing the A.d. coleoptericin A cDNA in a Bombyx mori cell line was analyzed. The result showed that A.d. Rel A strongly activates the A.d. coleoptericin A gene construct, whereas A.d. Rel A failed to activate the gene construct containing the mutated NF-kappaB site, suggesting the importance of the interaction between the NF-kappaB site and A.d. Rel A in the signal transduction for gene expression of antibacterial peptides in A. dichotoma.
Collapse
Affiliation(s)
- Aki Sagisaka
- Innate Immunity Laboratory, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | |
Collapse
|
119
|
Honey K. Distinct recognition. Nat Rev Immunol 2004. [DOI: 10.1038/nri1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
120
|
Osta MA, Christophides GK, Vlachou D, Kafatos FC. Innate immunity in the malaria vector Anopheles gambiae:comparative and functional genomics. J Exp Biol 2004; 207:2551-63. [PMID: 15201288 DOI: 10.1242/jeb.01066] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The resurgence of malaria is at least partly attributed to the absence of an effective vaccine, parasite resistance to antimalarial drugs and resistance to insecticides of the anopheline mosquito vectors. Novel strategies are needed to combat the disease on three fronts: protection (vaccines),prophylaxis/treatment (antimalarial drugs) and transmission blocking. The latter entails either killing the mosquitoes (insecticides), preventing mosquito biting (bednets and repellents), blocking parasite development in the vector (transmission blocking vaccines), genetic manipulation or chemical incapacitation of the vector. During the past decade, mosquito research has been energized by several breakthroughs, including the successful transformation of anopheline vectors, analysis of gene function by RNAi,genome-wide expression profiling using DNA microarrays and, most importantly,sequencing of the Anopheles gambiae genome. These breakthroughs helped unravel some of the mechanisms underlying the dynamic interactions between the parasite and the vector and shed light on the mosquito innate immune system as a set of potential targets to block parasite development. In this context, putative pattern recognition receptors of the mosquito that act as positive and negative regulators of parasite development have been identified recently. Characterizing these molecules and others of similar function, and identifying their ligands on the parasite surface, will provide clues on the nature of the interactions that define an efficient parasite–vector system and open up unprecedented opportunities to control the vectorial capacity of anopheline mosquitoes.
Collapse
Affiliation(s)
- Mike A Osta
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
121
|
Guan R, Malchiodi EL, Wang Q, Schuck P, Mariuzza RA. Crystal Structure of the C-terminal Peptidoglycan-binding Domain of Human Peptidoglycan Recognition Protein Iα. J Biol Chem 2004; 279:31873-82. [PMID: 15140887 DOI: 10.1074/jbc.m404920200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind, and in some cases hydrolyze, peptidoglycans (PGNs) on bacterial cell walls. These molecules, which are highly conserved from insects to mammals, participate in host defense against both Gram-positive and Gram-negative bacteria. We report the crystal structure of the C-terminal PGN-binding domain of human PGRP-Ialpha in two oligomeric states, monomer and dimer, to resolutions of 2.80 and 1.65 A, respectively. In contrast to PGRPs with PGN-lytic amidase activity, no zinc ion is present in the PGN-binding site of human PGRP-Ialpha. The structure reveals that PGRPs exhibit extensive topological variability in a large hydrophobic groove, located opposite the PGN-binding site, which may recognize host effector proteins or microbial ligands other than PGN. We also show that full-length PGRP-Ialpha comprises two tandem PGN-binding domains. These domains differ at most potential PGN-contacting positions, implying different fine specificities. Dimerization of PGRP-Ialpha, which occurs through three-dimensional domain swapping, is mediated by specific binding of sodium ions to a flexible hinge loop, stabilizing the conformation found in the dimer. We further demonstrate sodium-dependent dimerization of PGRP-Ialpha in solution, suggesting a possible mechanism for modulating PGRP activity through the formation of multivalent adducts.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
122
|
Hedengren-Olcott M, Olcott MC, Mooney DT, Ekengren S, Geller BL, Taylor BJ. Differential Activation of the NF-κB-like Factors Relish and Dif in Drosophila melanogaster by Fungi and Gram-positive Bacteria. J Biol Chem 2004; 279:21121-7. [PMID: 14985331 DOI: 10.1074/jbc.m313856200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.
Collapse
|
123
|
Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N. Monomeric and Polymeric Gram-Negative Peptidoglycan but Not Purified LPS Stimulate the Drosophila IMD Pathway. Immunity 2004; 20:637-49. [PMID: 15142531 DOI: 10.1016/s1074-7613(04)00104-9] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 03/24/2004] [Accepted: 03/31/2004] [Indexed: 11/30/2022]
Abstract
Insects depend solely upon innate immune responses to survive infection. These responses include the activation of extracellular protease cascades, leading to melanization and clotting, and intracellular signal transduction pathways inducing antimicrobial peptide gene expression. In Drosophila, the IMD pathway is required for antimicrobial gene expression in response to gram-negative bacteria. The exact molecular component(s) from these bacteria that activate the IMD pathway remain controversial. We found that highly purified LPS did not stimulate the IMD pathway. However, lipid A, the active portion of LPS in mammals, activated melanization in the silkworm Bombyx morii. On the other hand, the IMD pathway was remarkably sensitive to polymeric and monomeric gram-negative peptidoglycan. Recognition of peptidoglycan required the stem-peptide sequence specific to gram-negative peptidoglycan and the receptor PGRP-LC. Recognition of monomeric and polymeric peptidoglycan required different PGRP-LC splice isoforms, while lipid A recognition required an unidentified soluble factor in the hemolymph of Bombyx morii.
Collapse
Affiliation(s)
- Takashi Kaneko
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Because of the evolutionary conservation of innate mechanisms of host defense, Drosophila has emerged as an ideal animal in which to study the genetic control of immune recognition and responses. The discovery that the Toll pathway is required for defense against fungal infection in Drosophila was pivotal in studies of both mammalian and Drosophila immunity. Subsequent genetic screens in Drosophila to isolate additional mutants unable to induce humoral responses to infection have identified and ordered the function of components of two signaling cascades, the Toll and Imd pathways, that activate responses to infection. Drosophila blood cells also contribute to host defense through phagocytosis and signaling, and may carry out a form of self-nonself recognition that is independent of microbial pattern recognition. Recent work suggests that Drosophila will be a useful model for dissecting virulence mechanisms of several medically important pathogens.
Collapse
Affiliation(s)
- Catherine A Brennan
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer, New York, New York 10021, USA
| | | |
Collapse
|
125
|
Lee MH, Osaki T, Lee JY, Baek MJ, Zhang R, Park JW, Kawabata SI, Söderhäll K, Lee BL. Peptidoglycan Recognition Proteins Involved in 1,3-β-D-Glucan-dependent Prophenoloxidase Activation System of Insect. J Biol Chem 2004; 279:3218-27. [PMID: 14583608 DOI: 10.1074/jbc.m309821200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prophenoloxidase (proPO) cascade is a major innate immune response in invertebrates, which is triggered into its active form by elicitors, such as lipopolysaccharide, peptidoglycan, and 1,3-beta-D-glucan. A key question of the proPO system is how pattern recognition proteins recognize pathogenic microbes and subsequently activate the system. To investigate the biological function of 1,3-beta-D-glucan pattern recognition protein in the proPO cascade system, we isolated eight different 1,3-beta-D-glucan-binding proteins from the hemolymph of large beetle (Holotrichia diomphalia) larvae by using 1,3-beta-D-glucan immobilized column. Among them, a 20- and 17-kDa protein (referred to as Hd-PGRP-1 and Hd-PGRP-2) show high sequence identity with the short forms of peptidoglycan recognition proteins (PGRPs-S) from human and Drosophila melanogaster. To be able to characterize the biochemical properties of these two proteins, we expressed them in Drosophila S2 cells. Hd-PGRP-1 and Hd-PGRP-2 were found to specifically bind both 1,3-beta-D-glucan and peptidoglycan. By BIAcore analysis, the minimal 1,3-beta-D-glucan structure required for binding to Hd-PGRP-1 was found to be laminaritetraose. Hd-PGRP-1 increased serine protease activity upon binding to 1,3-beta-D-glucan and subsequently induced the phenoloxidase activity in the presence of both 1,3-beta-D-glucan and Ca(2+), but no phenoloxidase activity was elicited under the same conditions in the presence of peptidoglycan and Ca(2+). These results demonstrate that Hd-PGRP-1 can serve as a receptor for 1,3-beta-D-glucan in the insect proPO activation system.
Collapse
Affiliation(s)
- Mi Hee Lee
- College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Bettencourt R, Asha H, Dearolf C, Ip YT. Hemolymph-dependent and -independent responses inDrosophila immune tissue. J Cell Biochem 2004; 92:849-63. [PMID: 15211580 DOI: 10.1002/jcb.20123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insects possess an antimicrobial defense response that is similar to the mammalian innate immune response. The innate immune system is designed to recognize conserved components of microorganisms called pathogen-associated molecular patterns (PAMPs). How host receptors detect PAMPs and transmit the signals to mount the immune response is being elucidated. Using GFP-Dorsal, -Dif, and -Relish reporter proteins in ex vivo assays, we demonstrate that Drosophila fat bodies, a major immune tissue, have both hemolymph-dependent and -independent responses. Microbial preparations such as lipoteichoic acid (LTA) and peptidoglycan (PGN) can stimulate some responses from dissected and rinsed larval fat bodies. Therefore, at least some aspects of recognition can occur on fat body cell surfaces, bypassing the requirement of hemolymph. Our results also show that supernatants from bacterial cultures can stimulate the nuclear translocation of Dorsal in dissected fat bodies, but this stimulation is strictly hemolymph-dependent. Various biochemical assays suggest that the factors from bacterial supernatants that stimulate the hemolymph-dependent nuclear translocation are likely made up of proteins. We further show that Dorsal mutant larvae have much lower phenoloxidase activity, consistent with a more important role of Dorsal in innate immunity than previously shown.
Collapse
Affiliation(s)
- Raul Bettencourt
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
127
|
Wang ZM, Li X, Cocklin RR, Wang M, Wang M, Fukase K, Inamura S, Kusumoto S, Gupta D, Dziarski R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 2003; 278:49044-52. [PMID: 14506276 DOI: 10.1074/jbc.m307758200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules coded by up to 13 genes in insects and 4 genes in mammals. In insects PGRPs activate antimicrobial pathways in the hemolymph and cells, or are peptidoglycan (PGN)-lytic amidases. In mammals one PGRP is an antibacterial neutrophil protein. We report that human PGRP-L is a Zn2+-dependent N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28), an enzyme that hydrolyzes the amide bond between MurNAc and l-Ala of bacterial PGN. The minimum PGN fragment hydrolyzed by PGRP-L is MurNAc-tripeptide. PGRP-L has no direct bacteriolytic activity. The other members of the human PGRP family, PGRP-Ialpha, PGRP-Ibeta, and PGRP-S, do not have the amidase activity. The C-terminal region of PGRP-L, homologous to bacteriophage and bacterial amidases, is required and sufficient for the amidase activity of PGRP-L, although its activity (in the N-terminal delta1-343 deletion mutant) is reduced. The Zn2+ binding amino acids (conserved in PGRP-L and T7 amidase) and Cys-419 (not conserved in T7 amidase) are required for the amidase activity of PGRP-L, whereas three other amino acids, needed for the activity of T7 amidase, are not required for the activity of PGRP-L. These amino acids, although required, are not sufficient for the amidase activity, because changing them to the "active" configuration does not convert PGRP-S into an active amidase. In conclusion, human PGRP-L is an N-acetylmuramoyl-l-alanine amidase and this function is conserved in prokaryotes, insects, and mammals.
Collapse
Affiliation(s)
- Zheng-Ming Wang
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana 46408, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|