101
|
Serpe M, Ralston A, Blair SS, O'Connor MB. Matching catalytic activity to developmental function: Tolloid-related processes Sog in order to help specify the posterior crossvein in theDrosophilawing. Development 2005; 132:2645-56. [PMID: 15872004 DOI: 10.1242/dev.01838] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila tolloid (tld) and tolloid related(tlr) gene products belong to a family of developmentally important proteases that includes Bone Morphogenetic Protein 1 (Bmp1). Tld is required early in Drosophila development for proper patterning of dorsal embryonic structures, whereas Tlr is required later during larval and pupal stages of development. The major function of Tld is to augment the activity of Decapentaplegic (Dpp) and Screw (Scw), two members of the Bmp subgroup of the Tgfβ superfamily, by cleaving the Bmp inhibitor Short gastrulation (Sog). In this study, we provide evidence that Tlr also contributes to Sog processing. Tlr cleaves Sog in vitro in a Bmp-dependent manner at the same three major sites as does Tld. However, Tlr shows different site selection preferences and cleaves Sog with slower kinetics. To test whether these differences are important in vivo, we investigated the role of Tlr and Tld during development of the posterior crossvein (PCV) in the pupal wing. We show that tlr mutants lack the PCV as a result of too little Bmp signaling. This is probably caused by excess Sog activity, as the phenotype can be suppressed by lowering Sog levels. However, Tld cannot substitute for Tlr in the PCV; in fact, misexpressed Tld can cause loss of the PCV. Reducing levels of Sog can also cause loss of the PCV, indicating that Sog has not only an inhibitory but also a positive effect on signaling in the PCV. We propose that the specific catalytic properties of Tlr and Tld have evolved to achieve the proper balance between the inhibitory and positive activities of Sog in the PCV and early embryo, respectively. We further suggest that, as in the embryo, the positive effect of Sog upon Bmp signaling probably stems from its role in a ligand transport process.
Collapse
Affiliation(s)
- Mihaela Serpe
- Department of Genetics Cell Biology and Development, and the Developmental Biology Center, University of Minnesota and the Howard Hughes Medical Institute, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
102
|
Jones JCR, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, Correa-Meyer E, Gonzales M, Campbell K, Sznajder JI, Budinger S. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. J Cell Sci 2005; 118:2557-66. [PMID: 15928048 PMCID: PMC2820238 DOI: 10.1242/jcs.02395] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mechanical ventilation is a valuable treatment regimen for respiratory failure. However, mechanical ventilation (especially with high tidal volumes) is implicated in the initiation and/or exacerbation of lung injury. Hence, it is important to understand how the cells that line the inner surface of the lung [alveolar epithelial cells (AECs)] sense cyclic stretching. Here, we tested the hypothesis that matrix molecules, via their interaction with surface receptors, transduce mechanical signals in AECs. We first determined that rat AECs secrete an extracellular matrix (ECM) rich in anastamosing fibers composed of the alpha3 laminin subunit, complexed with beta1 and gamma1 laminin subunits (i.e. laminin-6), and perlecan by a combination of immunofluorescence microscopy and immunoblotting analyses. The fibrous network exhibits isotropic expansion when exposed to cyclic stretching (30 cycles per minute, 10% strain). Moreover, this same stretching regimen activates mitogen-activated-protein kinase (MAPK) in AECs. Stretch-induced MAPK activation is not inhibited in AECs treated with antagonists to alpha3 or beta1 integrin. However, MAPK activation is significantly reduced in cells treated with function-inhibiting antibodies against the alpha3 laminin subunit and dystroglycan, and when dystroglycan is knocked down in AECs using short hairpin RNA. In summary, our results support a novel mechanism by which laminin-6, via interaction with dystroglycan, transduces a mechanical signal initiated by stretching that subsequently activates the MAPK pathway in rat AECs. These results are the first to indicate a function for laminin-6. They also provide novel insight into the role of the pericellular environment in dictating the response of epithelial cells to mechanical stimulation and have broad implications for the pathophysiology of lung injury.
Collapse
Affiliation(s)
- Jonathan C R Jones
- Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Tsubota Y, Yasuda C, Kariya Y, Ogawa T, Hirosaki T, Mizushima H, Miyazaki K. Regulation of biological activity and matrix assembly of laminin-5 by COOH-terminal, LG4-5 domain of alpha3 chain. J Biol Chem 2005; 280:14370-7. [PMID: 15695818 DOI: 10.1074/jbc.m413051200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The basement membrane protein laminin-5 (LN5; alpha3beta3gamma2) undergoes specific proteolytic processing of the 190-kDa alpha3 chain to the 160-kDa form after the secretion, releasing its COOH-terminal, LG4-5 domain. To clarify the biological significance of this processing, we tried to express a recombinant precursor LN5 with a 190-kDa alpha3 chain (pre-LN5), in which the cleavage sequence Gln-Asp was changed to Ala-Ala by point mutation. When the wild-type and mutated LN5 heterotrimers were expressed in HEK293 cells, the wild-type alpha3 chain was completely cleaved, whereas the mutated alpha3 chain was partially cleaved at the same cleavage site (Ala-Ala). pre-LN5 was preferentially deposited on the extracellular matrix, but this deposition was effectively blocked by exogenous heparin. This suggests that interaction between the LG4-5 domain and heparan sulfate proteoglycans on the cell surface and/or extracellular matrix is important in the matrix assembly of LN5. Next, we purified both pre-LN5 and the mature LN5 with the processed, 160-kDa alpha3 chain (mat-LN5) from the conditioned medium of the HEK293 cells and compared their biological activities. mat-LN5 showed higher activities to promote cell adhesion, cell scattering, cell migration, and neurite outgrowth than pre-LN5. These results indicate that the proteolytic removal of LG4-5 from the 190-kDa alpha3 chain converts the precursor LN5 from a less active form to a fully active form. Furthermore, the released LG4-5 fragment stimulated the neurite outgrowth in the presence of mat-LN5, suggesting that LG4-5 synergistically enhances integrin signaling as it is released from the precursor LN5.
Collapse
Affiliation(s)
- Yoshiaki Tsubota
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | | | | | | | | | |
Collapse
|
104
|
Capt A, Spirito F, Guaguere E, Spadafora A, Ortonne JP, Meneguzzi G. Inherited junctional epidermolysis bullosa in the German Pointer: establishment of a large animal model. J Invest Dermatol 2005; 124:530-5. [PMID: 15737193 DOI: 10.1111/j.0022-202x.2004.23584.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Junctional epidermolysis bullosa (JEB) is a genodermatosis suitable for gene therapy because conventional treatments are ineffective. Here, we elucidate the genetic basis of mild JEB in a breed of dogs that display all the clinical traits observed in JEB patients. The condition is associated with reduced expression of laminin 5 caused by a homozygous insertion (4818+207ins6.5 kb) of repetitive satellite DNA within intron 35 of the gene (lama3) for the laminin alpha3 chain. The intronic mutation interferes with maturation of the alpha3 pre-messenger RNA resulting in the coexpression of a transcript with a 227 nucleotide insertion and a wild-type mRNA that encodes scant amounts of the alpha3 polypeptide. Our results show that the amino acid sequence and structure of the canine and human alpha3 chain are highly conserved and that the reduced expression of laminin 5 affects the adhesion and clonogenic potential of the JEB keratinocytes. These JEB dogs provide the opportunity to perform gene delivery in a naturally occurring genodermatosis and to evaluate host tolerance to recombinant laminin 5.
Collapse
Affiliation(s)
- Annabelle Capt
- INSERM U634, Faculty of Medicine, University Hospital, Nice Cedex, France
| | | | | | | | | | | |
Collapse
|
105
|
Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M. Membrane-type Matrix Metalloproteinase-1 (MT1-MMP) Is a Processing Enzyme for Human Laminin γ2 Chain. J Biol Chem 2005; 280:88-93. [PMID: 15525652 DOI: 10.1074/jbc.m411824200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of the laminin-5 (Ln-5) gamma 2 chain by membrane-type-1 matrix metalloproteinases (MT1-MMP) promotes migration and invasion of epithelial and tumor cells. We previously demonstrated that MT1-MMP cleaves the rat gamma 2 chain at two sites, producing two major C-terminal fragments of 100 (gamma 2') and 80 (gamma 2 x) kDa and releasing a 30-kDa fragment containing epidermal growth factor (EGF)-like motifs (domain III (DIII) fragment). The DIII fragment bound the EGF receptor (EGF-R) and stimulated cell scattering and migration. However, it is not yet clear whether human Ln-5 is processed in a similar fashion to rat Ln-5 because one of the two MT1-MMP cleavage sites present in rat gamma 2 is not found in human gamma 2. To identify the exact cleavage site for MT1-MMP in human Ln-5, we purified both the whole molecule as well as a monomeric form of human gamma 2 that is frequently expressed by malignant tumor cells. Like rat Ln-5, both the monomer of gamma 2, as well as the gamma 2 derived from intact Ln-5, were cleaved by MT1-MMP in vitro, generating C-terminal gamma 2' (100 kDa) and gamma 2 x (85 kDa) fragments and releasing DIII fragments (25 and 27k Da). In addition to the conserved first cleavage site used to generate gamma 2', two adjacent cleavage sites (Gly(559)-Asp(560) and Gly(579)-Ser(580)) were found that could generate the gamma 2 x and DIII fragments. Two of the three EGF-like motifs present in the rat DIII fragment are present in the 27-kDa human fragment, and like the rat DIII, this fragment can promote breast carcinoma cell migration by engaging the EGF-R. These results suggest that MT1-MMP processing of Ln-5 in human tumors may stimulate the EGF-R, resulting in increased tumor cell scattering and migration that could possibly increase their metastatic potential.
Collapse
Affiliation(s)
- Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
106
|
El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 2005; 124:79-86. [PMID: 15654956 DOI: 10.1111/j.0022-202x.2004.23549.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.
Collapse
|
107
|
Garrigue-Antar L, François V, Kadler KE. Deletion of Epidermal Growth Factor-like Domains Converts Mammalian Tolloid into a Chordinase and Effective Procollagen C-proteinase. J Biol Chem 2004; 279:49835-41. [PMID: 15381708 DOI: 10.1074/jbc.m408134200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP)-1 and mammalian tolloid (mTld) are Ca(2+)-dependent metalloproteinases that result from alternative splicing of the bmp1 gene. They have different proteinase activities, e.g. BMP-1 effectively cleaves procollagen (an extracellular matrix protein) and chordin (a BMP antagonist), whereas mTld is a poor procollagen proteinase and will not cleave chordin in the absence of twisted gastrulation. This is perplexing because mTld (being the longer variant) might be expected to cleave all substrates cleaved by BMP-1. Studies have shown that the minimal structure for procollagen proteinase activity is proteinase-CUB1-CUB2 (BMP-1DeltaEC3) and therefore lacking the epidermal growth factor (EGF)-like domain thought to account for the Ca(2+) dependence of BMP-1. In this study we generated three deletion mutants of mTld that lacked either one or both EGF-like domains (referred to as "mTld-DeltaEGF"). The mutated proteins were poorly but sufficiently secreted from 293-EBNA cells for in vitro assays of procollagen and chordin cleavage. Most surprisingly, the mTld-DeltaEGF mutants required Ca(2+) for proteolytic activity, thereby showing that the EGF-like domains do not account for the Ca(2+) dependence of BMP-1/mTld. Moreover, the mTld-DeltaEGFs are effective procollagen proteinases and cleave chordin. Furthermore, BMP-1DeltaEC3 cleaves chordin and requires Ca(2+) for activity. Studies using nondenaturing gels showed that mTld molecules lacking EGF-like domains have a loose conformation such that in the presence of Ca(2+) binding sites for chordin and procollagen on the "BMP-1-part" of the molecule are exposed. We propose that the EGF-like domains could hold CUB4/5 domains in locations that exclude substrates cleavable by BMP-1.
Collapse
Affiliation(s)
- Laure Garrigue-Antar
- Wellcome Trust Centre for Cell-Matrix Research, the University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
108
|
Kadler K. Matrix loading: assembly of extracellular matrix collagen fibrils during embryogenesis. ACTA ACUST UNITED AC 2004; 72:1-11. [PMID: 15054900 DOI: 10.1002/bdrc.20002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nothing in biology stimulates the imagination like the development of a single fertilized egg into a newborn child. Consequently, a major focus of biomedical research is aimed at understanding cell differentiation, proliferation, and specialization during child health and human development. However, the fact that the increase in size and shape of the growing embryo has as much to do with the extracellular matrix (ECM) as with the cells themselves, is largely overlooked. Cells in developing tissues are surrounded by a fiber-composite ECM that transmits mechanical stimuli, maintains the shape of developing tissues, and functions as a scaffold for cell migration and attachment. The major structural element of the ECM is the collagen fibril. The fibrils, which are indeterminate in length, are arranged in different tissues in exquisite supramolecular architectures, including parallel bundles, orthogonal lamellae, and concentric weaves. This article reviews our current understanding of the synthesis and assembly of collagen fibrils, and discusses challenging questions about how cells assemble an organized ECM during embryogenesis.
Collapse
Affiliation(s)
- Karl Kadler
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
109
|
Ge G, Seo NS, Liang X, Hopkins DR, Höök M, Greenspan DS. Bone morphogenetic protein-1/tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis. J Biol Chem 2004; 279:41626-33. [PMID: 15292192 DOI: 10.1074/jbc.m406630200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian bone morphogenetic protein-1 (BMP-1)/Tolloid-related metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating the mineralization of hard tissue ECMs. They also have been shown to activate several members of the transforming growth factor-beta superfamily, and may serve to coordinate such activation with formation of the ECM in morphogenetic events. Osteoglycin (OGN), a small leucine-rich proteoglycan with unclear functions, is found in cornea, bone, and other tissues, and appears to undergo proteolytic processing in vivo. Here we have successfully generated recombinant OGN and have employed it to demonstrate that a pro-form of OGN is processed to varying extents by all four mammalian BMP-1/Tolloid-like proteinases, to generate a 27-kDa species that corresponds to the major form of OGN found in cornea. Moreover, whereas wild-type mouse embryo fibroblasts (MEFs) produce primarily the processed, mature form of OGN, MEFs homozygous null for genes encoding three of the four mammalian BMP-1/Tolloid-related proteinases produce only unprocessed pro-OGN. Thus, all detectable pro-OGN processing activity in MEFs is accounted for by products of these genes. We also demonstrate that both pro- and mature OGN can regulate type I collagen fibrillogenesis, and that processing of the prodomain by BMP-1 potentiates the ability of OGN to modulate the formation of collagen fibrils.
Collapse
Affiliation(s)
- Gaoxiang Ge
- Department of Pathology and Laboratory , University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
110
|
Hong HH, Pischon N, Santana RB, Palamakumbura AH, Chase HB, Gantz D, Guo Y, Uzel MI, Ma D, Trackman PC. A role for lysyl oxidase regulation in the control of normal collagen deposition in differentiating osteoblast cultures. J Cell Physiol 2004; 200:53-62. [PMID: 15137057 DOI: 10.1002/jcp.10476] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.
Collapse
Affiliation(s)
- Hsiang-Hsi Hong
- Division of Oral Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gopalakrishnan B, Wang WM, Greenspan DS. Biosynthetic Processing of the Pro-α1(V)Pro-α2(V)Pro-α3(V) Procollagen Heterotrimer. J Biol Chem 2004; 279:30904-12. [PMID: 15136578 DOI: 10.1074/jbc.m402252200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type V collagen is a quantitatively minor fibrillar collagen comprised of different chain compositions in different tissues. The most widely distributed form, an alpha1(V)2alpha2(V) heterotrimer, regulates the physical properties of type I/V heterotypic collagen fibrils via partially processed NH2-terminal globular sequences. A less characterized alpha1(V)alpha2(V)alpha3(V) heterotrimer has a much more limited distribution of expression and unknown function(s). We characterized the biosynthetic processing of pro-alpha1(V)2pro-alpha2(V) procollagen previously and showed it to differ in important ways from biosynthetic processing of the major fibrillar procollagens I-III. Here we have successfully produced recombinant pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers. We use these, and mouse embryo fibroblasts doubly homozygous null for the Bmp1 gene, which encodes the metalloproteinase bone morphogenetic protein-1 (BMP-1), and for a gene encoding the closely related metalloproteinase mammalian Tolloid-like 1, to characterize biosynthetic processing of pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers, thus completing characterization of type V collagen biosynthetic processing. Whereas pro-alpha1(V) and pro-alpha2(V) processing in pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers is similar to that which occurs in pro-alpha1(V)2pro-alpha2(V) heterotrimers, the processing of pro-alpha3(V) by BMP-1 occurs at an unexpected site within NH2-terminal globular sequences. We also demonstrate that, despite similarities in NH2-terminal domain structures, pro-alpha2(V) NH2-terminal globular sequences are not cleaved by ADAMTS-2, the metalloproteinase that cleaves the N-propeptides of the major fibrillar procollagen chains.
Collapse
Affiliation(s)
- Bagavathi Gopalakrishnan
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
112
|
Ogawa T, Tsubota Y, Maeda M, Kariya Y, Miyazaki K. Regulation of biological activity of laminin-5 by proteolytic processing of gamma2 chain. J Cell Biochem 2004; 92:701-14. [PMID: 15211568 DOI: 10.1002/jcb.20112] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Laminin-5 (LN5), which regulates both cell adhesion and cell migration, undergoes specific extracellular proteolytic processing at an amino-terminal region of the gamma2 chain as well as at a carboxyl-terminal region of the alpha3 chain. To clarify the biological effect of the gamma2 chain processing, we prepared a human recombinant LN5 with the 150-kDa, non-processed gamma2 chain (GAA-LN5) and natural LN5 with the 105-kDa, processed gamma2 chain (Nat-LN5). Comparison of their biological activities demonstrated that GAA-LN5 had an about five-times higher cell adhesion activity but an about two-times lower cell migration activity than Nat-LN5. This implies that the proteolytic processing of LN5 gamma2 chain converts the LN5 from the cell adhesion type to the cell migration type. It was also found that human gastric carcinoma cells expressing the LN5 with the non-processed gamma2 chain is more adherent but less migratory than the carcinoma cells expressing a mixture of LN5 forms with the processed gamma2 chain and with the unprocessed one. The functional change of LN5 by the proteolytic processing of the gamma2 chain may contribute to elevated cell migration under some pathological conditions such as wound healing and tumor invasion.
Collapse
Affiliation(s)
- Takashi Ogawa
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
113
|
Elkhal A, Tunggal L, Aumailley M. Fibroblasts contribute to the deposition of laminin 5 in the extracellular matrix. Exp Cell Res 2004; 296:223-30. [PMID: 15149852 DOI: 10.1016/j.yexcr.2004.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/19/2004] [Indexed: 11/28/2022]
Abstract
Laminin 5 (alpha3beta3gamma2) is specifically present in the basal lamina underneath epithelia with secretory or protective functions, where it is essential for anchoring basal epithelial cells to the underlying extracellular matrix. Laminin 5 is produced by epithelial cells as a 480-kDa precursor that is converted into forms of 440 and 400 kDa. To analyse the processing of laminin 5, we have used monolayer and co-cultures of epithelial cells and fibroblasts. The processing of the 180-kDa laminin alpha3 chain to 165 kDa in the cell culture medium, and to both 165 and 145 kDa polypeptides in the cell layer, are not modified by the presence of fibroblasts. In contrast, cleavage of the laminin gamma2 chain, occurring in the cell culture medium and in the cell layer, is enhanced by the presence of fibroblasts. Further analysis by immunofluorescence staining and laser-scanning microscopy reveals that deposited laminin 5 is present in a fibroblast-associated filamentous meshwork. Only laminin 5 containing a fully processed gamma2 chain is present in this fibroblast-associated fraction. These studies show that, although laminin 5 is a product of epithelial cells, fibroblasts contribute to its integration into the extracellular matrix architecture.
Collapse
Affiliation(s)
- Abdallah Elkhal
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
114
|
Hintermann E, Quaranta V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 2004; 23:75-85. [PMID: 15246107 DOI: 10.1016/j.matbio.2004.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 01/10/2023]
Abstract
Cell migration plays a central role in a wide variety of biological events, including embryogenesis, inflammatory immune response, wound healing, or cancer invasion. Tight regulation of cell motility is a prerequisite for normal development and maintenance of an organism, and to avoid metastatic spread of tumor cells. An important determinant of migratory efficiency is the substrate over which a cell migrates. Laminin-5 (Ln-5) is an extracellular matrix component prominent in basement membranes and as such it is a substrate in direct contact with epithelial cells. Interestingly, Ln-5 has been shown to both stimulate and downregulate epithelial cell migration. In this article, we plan to give an overview on the different mechanisms cells employ to regulate their migratory behavior on Ln-5. We will discuss how proteolytic processing of Ln-5 acts as posttranslational modification that plays a major role in the regulation of cell migration. The different proteolytic Ln-5 species may bind to distinct cell surface receptors called integrins, which translate substrate binding into a specific cellular response that triggers cell motility. Furthermore, interaction between Ln-5-binding integrins and other transmembrane and cytoplasmic proteins increases complexity and may allow fine-tuning of cell migration in response to the cellular environment.
Collapse
Affiliation(s)
- Edith Hintermann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
115
|
Kariya Y, Yasuda C, Nakashima Y, Ishida K, Tsubota Y, Miyazaki K. Characterization of laminin 5B and NH2-terminal proteolytic fragment of its alpha3B chain: promotion of cellular adhesion, migration, and proliferation. J Biol Chem 2004; 279:24774-84. [PMID: 15044476 DOI: 10.1074/jbc.m400670200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Various laminin isoforms have specific biological functions depending on their structures. Laminin 5A, which consists of the three truncated chains alpha3A, beta3, and gamma2, is known to have strong activity to promote cell adhesion and migration, whereas a laminin 5 variant consisting of a full-sized alpha3 chain (alpha3Beta) and the beta3 and gamma2 chains, laminin 5B, has not been characterized yet. In the present study, we for the first time cloned a full-length human laminin alpha3B cDNA and isolated the human laminin 5B protein. The molecular size of the mature alpha3B chain (335 kDa) was approximately twice as large as the mature alpha3A chain in laminin 5A. Laminin 5B had significantly higher cell adhesion and cell migration activities than laminin 5A. In addition, laminin 5B potently stimulated cell proliferation when added into the culture medium directly. Furthermore, we found that the alpha3B chain undergoes proteolytic cleavage releasing a 190-kDa NH(2)-terminal fragment. The 190-kDa fragment had activities to promote cellular adhesion, migration, and proliferation through its interaction with integrin alpha(3)beta(1). These activities of the NH(2)-terminal structure of the alpha3B chain seem to contribute to the prominent biological activities and the physiological functions of laminin 5B.
Collapse
Affiliation(s)
- Yoshinobu Kariya
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | | | | | | | | | | |
Collapse
|
116
|
Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L. A novel marker of tissue junctions, collagen XXII. J Biol Chem 2004; 279:22514-21. [PMID: 15016833 PMCID: PMC2925840 DOI: 10.1074/jbc.m400536200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe a novel specific component of tissue junctions, collagen XXII. It was first identified by screening an EST data base and subsequently expressed as a recombinant protein and characterized as an authentic tissue component. The COL22A1 gene on human chromosome 8q24.2 encodes a collagen that structurally belongs to the FACIT protein family (fibril-associated collagens with interrupted triple helices). Collagen XXII exhibits a striking restricted localization at tissue junctions such as the myotendinous junction in skeletal and heart muscle, the articular cartilage-synovial fluid junction, or the border between the anagen hair follicle and the dermis in the skin. It is deposited in the basement membrane zone of the myotendinous junction and the hair follicle and associated with the extrafibrillar matrix in cartilage. In situ hybridization of myotendinous junctions revealed that muscle cells produce collagen XXII, and functional tests demonstrated that collagen XXII acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. This novel gene product, collagen XXII, is the first specific extracellular matrix protein present only at tissue junctions.
Collapse
Affiliation(s)
- Manuel Koch
- Center for Biochemistry, Medical Faculty University of Cologne, 50931 Cologne, Germany
| | - Joerg Schulze
- Center for Biochemistry, Medical Faculty University of Cologne, 50931 Cologne, Germany
| | - Uwe Hansen
- Department of Biochemistry, University of Muenster, 48129 Münster, Germany
| | - Todd Ashwodt
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | | | - William J. Brunken
- Anatomy and Cell Biology, Departments of Neuroscience, and Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Robert E. Burgeson
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Peter Bruckner
- Department of Biochemistry, University of Muenster, 48129 Münster, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany
- To whom correspondence should be addressed: Dept. of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany. Tel.: 49-7612706716; Fax: 49-7612706936;
| |
Collapse
|
117
|
Künneken K, Pohlentz G, Schmidt-Hederich A, Odenthal U, Smyth N, Peter-Katalinic J, Bruckner P, Eble JA. Recombinant human laminin-5 domains. Effects of heterotrimerization, proteolytic processing, and N-glycosylation on alpha3beta1 integrin binding. J Biol Chem 2004; 279:5184-93. [PMID: 14612440 DOI: 10.1074/jbc.m310424200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human laminin-5 fragments, comprising the heterotrimeric C-terminal part of the coiled-coil (CC) domain and the globular (G) domain with defined numbers of LG subdomains, were produced recombinantly. The alpha3' chain with all five LG subdomains was processed proteolytically in a manner similar to the wild-type alpha3 chain. Conditions were established under which the proteolytic cleavage was either inhibited in cell culture or was brought to completion in vitro. The shorter chains of the laminin-5CCG molecule, beta3'and gamma2', produced in a bacterial expression system associated into heterodimers, which then combined spontaneously with the alpha3' chains in vitro to form heterotrimeric laminin-5CCG molecules. Only heterotrimeric laminin-5CCG with at least subdomains LG1-3, but not the single chains, supported binding of soluble alpha3beta1 integrin, proving the coiled-coil domain of laminin-5 to be essential for its interaction with alpha3beta1 integrin. The N-glycosylation sites in wild-type alpha3 chain were mapped by mass spectrometry. Their location in a structural model of the LG domain suggested that large regions on both faces of the LG1 and LG2 domains are inaccessible by other proteins. However, neither heterotrimerization nor alpha3beta1 integrin binding was affected by the loss of N-linked glycoconjugates. After the proteolytic cleavage between the subdomains LG3 and LG4, the LG4-5 tandem domain dissociated from the rest of the G domain. Further, the laminin-5CCG molecule with the alpha3'LG1-3 chain showed an increased binding affinity for alpha3beta1 integrin, indicating that proteolytic processing of laminin-5 influences its interaction with alpha3beta1 integrin.
Collapse
Affiliation(s)
- Kerstin Künneken
- Institute for Physiological Chemistry, Muenster University Hospital, Münster 48149, Germany
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Vivinus-Nebot M, Rousselle P, Breittmayer JP, Cenciarini C, Berrih-Aknin S, Spong S, Nokelainen P, Cottrez F, Marinkovich MP, Bernard A. Mature human thymocytes migrate on laminin-5 with activation of metalloproteinase-14 and cleavage of CD44. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:1397-406. [PMID: 14734715 DOI: 10.4049/jimmunol.172.3.1397] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases. Interactions of thymocytes with laminin-5 induced a strong up-regulation of active metalloproteinase-14. However, we found that thymocytes did not cleave the laminin-5 gamma(2) chain, suggesting that they do not use the same pathway as epithelial cells to migrate on laminin-5. Interactions of thymocytes with laminin-5 also induced the release of a soluble fragment of CD44 cell surface molecule. Moreover, CD44-rich supernatants induced thymocyte migration in contrast with supernatants depleted in CD44 by immunoadsorption. CD44 cleavage was recently reported to be due to metalloproteinase-14 activation and led to increased migration in cancer cells. Thus, in this study, we show that laminin-5 promotes human mature thymocyte migration in vitro via a multimolecular mechanism involving laminin-5 integrin receptors, metalloproteinase-14 and CD44. These data suggest that, in vivo, laminin-5 may function in the migration of mature thymocytes within the medulla and be part of the thymic emigration process.
Collapse
Affiliation(s)
- Mylène Vivinus-Nebot
- Institut National de la Santé et de la Recherche Médicale, Unité 576, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Koshikawa N, Schenk S, Moeckel G, Sharabi A, Miyazaki K, Gardner H, Zent R, Quaranta V. Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB J 2004; 18:364-6. [PMID: 14688206 DOI: 10.1096/fj.03-0584fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix macromolecule laminin-5 (Ln-5) is converted by matrix metalloproteinases (MMP) MT1-MMP and MMP-2 into a migration-promoting substrate in vitro. We now report that cleavage of Ln-5 by MT1-MMP occurs in vivo and affects epithelial tissue organization and probably Ln-5 turnover. In MT1-MMP knockout (KO) mice, the kidneys showed increased levels of total Ln-5 gamma2 subunit, but significantly reduced amounts of gamma2', an amino-terminal truncated proteolytic form of gamma2. The kidney tubular epithelia of KO animals were poorly differentiated, a phenotype reminiscent of human congenital mixed hypoplastic/dysplastic disorders. To establish a better link between Ln-5 proteolytic cleavage and epithelial morphology, MT1-MMP expression was reconstituted by transfection of MT1-MMP into a Ln-5 positive, MT1-MMP deficient epithelial cell line. MT1-MMP transfectants demonstrated increased levels of processed Ln-5 gamma2 chain and enhanced spreading on Ln-5, but not fibronectin. Recombinant MT1-MMP cleaved gamma2 constructs in vitro at a known in vivo gamma2 gamma2' processing site. These results strongly indicate that Ln-5 is a physiological substrate of MT1-MMP in vivo. Proteolytic processing of gamma2 subunit by MT1-MMP may influence Ln-5 turnover in epithelial basement membranes and affect epithelial morphogenesis.
Collapse
Affiliation(s)
- Naohiko Koshikawa
- The Scripps Research Institute, Department of Cell Biology, La Jolla California, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Steiglitz BM, Ayala M, Narayanan K, George A, Greenspan DS. Bone Morphogenetic Protein-1/Tolloid-like Proteinases Process Dentin Matrix Protein-1. J Biol Chem 2004; 279:980-6. [PMID: 14578349 DOI: 10.1074/jbc.m310179200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-1 (BMP-1)/Tolloid-like metalloproteinases play key roles in formation of mammalian extracellular matrix (ECM), through the biosynthetic conversion of precursor proteins into their mature functional forms. These proteinases probably play a further role in formation of bone through activation of transforming growth factor beta-like BMPs. Dentin matrix protein-1 (DMP1), deposited into the ECM during assembly and involved in initiating mineralization of bones and teeth, is thought to undergo proteolysis in vivo to generate functional cleavage fragments found in extracts of mineralized tissues. Here, we have generated recombinant DMP1 and demonstrate that it is cleaved, to varying extents, by all four mammalian BMP-1/Tolloid-like proteinases, to generate fragments similar in size to those previously isolated from bone. Consistent with possible roles for the BMP-1/Tolloid-like proteinases in the physiological processing of DMP1, NH2-terminal sequences of products generated by BMP-1 cleavage of DMP1 match those predicted from processing at the predicted DMP1 site that shows greatest cross-species conservation of sequences. Moreover, fibroblasts derived from mouse embryos homozygous null for genes encoding three of the four mammalian BMP-1/Tolloid-like proteinases appear to be deficient in processing of DMP1. Thus, a further role for BMP-1-Tolloid-like proteinases in formation of mineralized tissues is indicated, via proteolytic processing of DMP1.
Collapse
Affiliation(s)
- Barry M Steiglitz
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
121
|
Ido H, Harada K, Futaki S, Hayashi Y, Nishiuchi R, Natsuka Y, Li S, Wada Y, Combs AC, Ervasti JM, Sekiguchi K. Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J Biol Chem 2003; 279:10946-54. [PMID: 14701821 DOI: 10.1074/jbc.m313626200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.
Collapse
Affiliation(s)
- Hiroyuki Ido
- Division of Protein Chemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Capt A, Spirito F, Guyon R, André C, Ortonne JP, Meneguzzi G. Cloning of laminin gamma2 cDNA and chromosome mapping of the genes for the dog adhesion ligand laminin 5. Biochem Biophys Res Commun 2003; 312:1256-65. [PMID: 14652009 DOI: 10.1016/j.bbrc.2003.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Overexpression of the gamma2 chain of laminin-5 has been linked to tumor invasion and an unfavorable prognostic value, but the role of this adhesion molecule in cancer progression remains unclear. Because dog models of human cancers provide the opportunity of clarifying the relation between laminin-5 and tumor malignancy we have isolated and characterized the cDNA of dog gamma2 chain. Comparative analysis of the nucleotide sequence revealed high identity between the dog and the human gamma2, including the intermolecular molecule binding sites and the regulatory promoter sequences. Moreover, expression of a recombinant human gamma2 chain in dog keratinocytes results in assembly and secretion of hybrid laminin-5 molecules, which underscore the functional relevance of the gamma2 conserved domains. We have also determined the syntenic location of the dog laminin-5 loci on CFA7. Our study provides a basis for therapeutical approaches of epithelial cancers of gamma2 using dogs as large animal models.
Collapse
|
123
|
Medeck RJ, Sosa S, Morris N, Oxford JT. BMP-1-mediated proteolytic processing of alternatively spliced isoforms of collagen type XI. Biochem J 2003; 376:361-8. [PMID: 12962540 PMCID: PMC1223788 DOI: 10.1042/bj20030894] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/18/2003] [Accepted: 09/08/2003] [Indexed: 01/30/2023]
Abstract
Collagen type XI is a minor constituent of heterotypic collagen fibrils of developing cartilage and plays a regulatory role in fibril diameter. Collagen type XI is a heterotrimer composed of the alpha1, alpha2 and alpha3 chains. The mRNA encoding exons 6a, 6b and 8 of the alpha1 chain are expressed alternatively to generate six possible isoforms. The 6b-containing isoform has the most restricted distribution of all isoforms. It is first localized in the developing long bone, where mineralized tissue initially forms, and is later restricted to regions of cartilage that will be subsequently converted into bone. Bone morphogenetic protein 1 (BMP-1) and related proteins cleave procollagens I-III, V and VII, yielding triple-helical molecules that associate into collagen fibrils. The present study demonstrates that the alpha1 chain of collagen type XI can serve as a substrate for BMP-1. In addition, the efficiency with which BMP-1 processes different isoforms of the alpha1 chain varies. The amino acid sequence adjacent to the processing site influences the rate and extent of processing, as do sequences further away. Smaller fragments identified from cartilage extracts indicated that processing by BMP-1, in combination with other processing enzymes, generates small fragments of p6b-containing isoforms.
Collapse
Affiliation(s)
- Ryan J Medeck
- Department of Biology, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | | | | | | |
Collapse
|
124
|
Okamoto O, Bachy S, Odenthal U, Bernaud J, Rigal D, Lortat-Jacob H, Smyth N, Rousselle P. Normal human keratinocytes bind to the alpha3LG4/5 domain of unprocessed laminin-5 through the receptor syndecan-1. J Biol Chem 2003; 278:44168-77. [PMID: 12947106 DOI: 10.1074/jbc.m300726200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Basal keratinocytes of the epidermis adhere to their underlying basement membrane through a specific interaction with laminin-5, which is composed by the association of alpha3, beta3, and gamma2 chains. Laminin-5 has the ability to induce either stable cell adhesion or migration depending on specific processing of different parts of the molecule. One event results in the cleavage of the carboxyl-terminal globular domains 4 and 5 (LG4/5) of the alpha3 chain. In this study, we recombinantly expressed the human alpha3LG4/5 fragment in mammalian cells, and we show that this fragment induces adhesion of normal human keratinocytes and fibrosarcoma-derived HT1080 cells in a heparan- and chondroitin sulfate-dependent manner. Immunoprecipitation experiments with Na2 35SO4-labeled keratinocyte and HT1080 cell lysates as well as immunoblotting experiments revealed that the major proteoglycan receptor for the alpha3LG4/5 fragment is syndecan-1. Syndecan-4 from keratinocytes also bound to alpha3LG4/5. Furthermore we could show for the first time that unprocessed laminin-5 specifically binds syndecan-1, while processed laminin-5 does not. These results demonstrate that the LG4/5 modules within unprocessed laminin-5 permit its cell binding activity through heparan and chondroitin sulfate chains of syndecan-1 and reinforce previous data suggesting specific properties for the precursor molecule.
Collapse
Affiliation(s)
- Osamu Okamoto
- Institut de Biologie et Chimie des Protéines, Unité Mixte de Recherche 5086, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Hisamatsu Y, Nishiyama T, Amano S, Matsui C, Ghohestani R, Hashimoto T. Usefulness of immunoblotting using purified laminin 5 in the diagnosis of anti-laminin 5 cicatricial pemphigoid. J Dermatol Sci 2003; 33:113-9. [PMID: 14581137 DOI: 10.1016/s0923-1811(03)00158-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Anti-laminin 5 cicatricial pemphigoid (CP) is a mucosal-dominant subepithelial blistering disease characterized by IgG anti-basement membrane zone autoantibodies, that bind to dermal side of 1 M NaCl split skin and immunoprecipitate laminin 5. Laminin 5 is an epidermis-specific extracellular matrix consisting of alpha3, beta3 and gamma2 subunits. Recent studies have suggested that autoantibodies of anti-laminin 5 CP recognize the G domains of alpha3 subunit. OBJECTIVE We examined the reactivity of anti-laminin 5 CP by immunoblotting using purified laminin 5 and recombinant proteins of alpha3 subunit. METHOD We first examined the reactivity of anti-laminin 5 CP by immunoblotting using purified laminin 5. To further investigate the epitopes in the G domains of alpha3 subunit, we produced recombinant proteins of G1-2, G1-3, G2-3, G3-5 domains, that covered entire G domain, and examined the reactivity of anti-laminin 5 CP sera with these recombinant proteins by immunoblotting. RESULTS By immunoblotting using purified laminin 5, 7 of 21 anti-laminin 5 CP sera reacted with alpha3 subunit, while 8 sera reacted with beta3 subunit and one serum reacted with gamma2 subunit. Two sera reacted with both alpha3 and beta3 subunits, while seven sera did not show positive reactivity. This result indicates that the reactivity of anti-laminin 5 CP sera is much more heterogeneous, although the previous studies suggested that most sera reacted with alpha3 subunit. However, in the studies using recombinant proteins of G domains of alpha3 subunit, none of the CP sera, including the sera reactive with alpha3 subunit in purified laminin 5, reacted with any recombinant proteins. The reason for this negative reactivity with the recombinant proteins is not clear. CONCLUSION The immunoblotting using purified laminin 5 should be useful technique for the diagnosis of anti-laminin 5 CP, although the sensitivity was less than conventional immunoprecipitation analysis.
Collapse
Affiliation(s)
- Yoshiko Hisamatsu
- Department of Dermatology, Kurume University School of Medicine, 67 Asahimachi, Fukuoka 830-0011, Kurume, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Colombo M, Brittingham RJ, Klement JF, Majsterek I, Birk DE, Uitto J, Fertala A. Procollagen VII self-assembly depends on site-specific interactions and is promoted by cleavage of the NC2 domain with procollagen C-proteinase. Biochemistry 2003; 42:11434-42. [PMID: 14516194 DOI: 10.1021/bi034925d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Procollagen VII is a homotrimer of 350-kDa proalpha1(VII) chains. Each chain has a central collagenous domain flanked by a noncollagenous amino-terminal NC1 domain and a carboxy-terminal NC2 domain. After secretion from cells, procollagen VII molecules form antiparallel dimers with a 60 nm overlap. These dimers are stabilized by disulfide bonds formed between cysteines present in the NC2 domain and cysteines present in the triple-helical domain. Electron microscopy has provided direct evidence for the existence of collagen VII dimers, but the dynamic process of dimer formation is not well understood. In the present study, we tested the hypothesis that, during dimer formation, the NC2 domain of one procollagen VII molecule specifically recognizes and binds to the triple-helical region adjacent to Cys-2625 of another procollagen VII molecule. We also investigated the role of processing of the NC2 domain by the procollagen C-proteinase/BMP-1 in dimer assembly. We engineered mini mouse procollagen VII variants consisting of intact NC1 and NC2 domains and a shortened triple helix in which the C-terminal region encompassing Cys-2625 was either preserved or substituted with the region encompassing Cys-1448 derived from the N-terminal part of the triple-helical domain. The results indicate that procollagen VII self-assembly depends on site-specific interactions between the NC2 domain and the triple-helical region adjacent to Cys-2625 and that this process is promoted by the cleavage of the NC2 by procollagen C-proteinase/BMP1.
Collapse
Affiliation(s)
- Morgana Colombo
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Scaturro M, Posteraro P, Mastrogiacomo A, Zaccaria ML, De Luca N, Mazzanti C, Zambruno G, Castiglia D. A missense mutation (G1506E) in the adhesion G domain of laminin-5 causes mild junctional epidermolysis bullosa. Biochem Biophys Res Commun 2003; 309:96-103. [PMID: 12943669 DOI: 10.1016/s0006-291x(03)01533-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Laminin-5 is the major adhesion ligand for epithelial cells. Mutations in the genes encoding laminin-5 cause junctional epidermolysis bullosa (JEB), a recessive inherited disease characterized by extensive epithelial-mesenchymal disadhesion. We describe a JEB patient compound heterozygote for two novel mutations in the gene (LAMA3) encoding the laminin alpha3 chain. The maternal mutation (1644delG) generates mRNA transcripts that undergo nonsense-mediated decay. The paternal mutation results in the Gly1506-->Glu substitution (G1506E) within the C-terminal globular region of the alpha3 chain (G domain). Mutation G1506E affects the proper folding of the fourth module of the G domain and results in the retention of most of the mutated polypeptide within the endoplasmic reticulum (ER). However, scant amounts of the mutated laminin-5 are secreted, undergo physiologic extracellular maturation, and correctly localize within the cutaneous basement membrane zone in patient's skin. Our findings represent the first demonstration of an ER-retained mutant laminin-5 leading to a mild JEB phenotype.
Collapse
MESH Headings
- Adult
- Alleles
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cell Adhesion
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cells, Cultured
- Codon, Nonsense
- DNA Mutational Analysis
- Endoplasmic Reticulum/metabolism
- Epidermolysis Bullosa, Junctional/genetics
- Fathers
- Female
- Genes, Recessive
- Glutamic Acid/chemistry
- Glycine/chemistry
- Heterozygote
- Humans
- Keratinocytes/metabolism
- Laminin/chemistry
- Laminin/genetics
- Male
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Mothers
- Mutation
- Mutation, Missense
- Peptides/chemistry
- Phenotype
- Precipitin Tests
- Protein Folding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Kalinin
Collapse
|
128
|
Natarajan E, Saeb M, Crum CP, Woo SB, McKee PH, Rheinwald JG. Co-expression of p16(INK4A) and laminin 5 gamma2 by microinvasive and superficial squamous cell carcinomas in vivo and by migrating wound and senescent keratinocytes in culture. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:477-91. [PMID: 12875969 PMCID: PMC1868206 DOI: 10.1016/s0002-9440(10)63677-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2003] [Indexed: 11/28/2022]
Abstract
The high frequency of mutation, deletion, and promoter silencing of the gene encoding p16(INK4A) (p16) in premalignant dysplasias and squamous cell carcinomas (SCC) of epidermis and oral epithelium classifies p16 as a tumor suppressor. However, the point during neoplastic progression at which this protein is expressed and presumably impedes formation of an SCC is unknown. Induction of p16 has been found to be responsible for the senescence arrest of normal human keratinocytes in culture, suggesting the possibility that excessive or spatially abnormal cell growth in vivo triggers p16 expression. We examined 73 skin and oral mucosal biopsy specimens immunohistochemically to test this hypothesis. p16 was not detectable in benign hyperplastic lesions, but instead was expressed heterogeneously in some dysplastic and carcinoma in situ lesions and consistently at areas of microinvasion and at superficial margins of advanced SCCs. p16-positive cells in these regions coexpressed the gamma2 chain of laminin 5, identified previously as a marker of invasion in some carcinomas. Normal keratinocytes undergoing senescence arrest in culture proved to coordinately express p16 and gamma2 and this was frequently associated with increased directional motility. Keratinocytes at the edges of wounds made in confluent early passage cultures also coexpressed p16 and gamma2, accompanying migration to fill the wound. These results have identified the point during neoplastic progression in stratified squamous epithelial at which the tumor suppressor p16 is expressed and suggest that normal epithelia may use the same mechanism to generate non-dividing, motile cells for wound repair.
Collapse
Affiliation(s)
- Easwar Natarajan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
129
|
Pappano WN, Steiglitz BM, Scott IC, Keene DR, Greenspan DS. Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases. Mol Cell Biol 2003; 23:4428-38. [PMID: 12808086 PMCID: PMC164836 DOI: 10.1128/mcb.23.13.4428-4438.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD), two proteinases encoded by Bmp1, provide procollagen C-proteinase (pCP) activity that converts procollagens I to III into the major fibrous components of mammalian extracellular matrix (ECM). Yet, although Bmp1(-/-) mice have aberrant collagen fibrils, they have residual pCP activity, indicative of genetic redundancy. Mammals possess two additional proteinases structurally similar to BMP-1 and mTLD: the genetically distinct mammalian Tolloid-like 1 (mTLL-1) and mTLL-2. Mice lacking the mTLL-1 gene Tll1 are embryonic lethal but have pCP activity levels similar to those of the wild type, suggesting that mTLL-1 might not be an in vivo pCP. In vitro studies have shown BMP-1 and mTLL-1 capable of cleaving Chordin, an extracellular antagonist of BMP signaling, suggesting that these proteases might also serve to modulate BMP signaling and to coordinate the latter with ECM formation. However, in vivo evidence of roles for BMP-1 and mTLL-1 in BMP signaling in mammals is lacking. To remove functional redundancy obscuring the in vivo functions of BMP-1-related proteases in mammals, we here characterize Bmp1 Tll1 doubly null mouse embryos. Although these appear morphologically indistinguishable from Tll1(-/-) embryos, biochemical analysis of cells derived from doubly null embryos shows functional redundancy removed to an extent enabling us to demonstrate that (i) products of Bmp1 and Tll1 are responsible for in vivo cleavage of Chordin in mammals and (ii) mTLL-1 is an in vivo pCP that provides residual activity observed in Bmp1(-/-) embryos. Removal of functional redundancy also enabled use of Bmp1(-/-) Tll1(-/-) cells in a proteomics approach for identifying novel substrates of Bmp1 and Tll1 products.
Collapse
Affiliation(s)
- William N Pappano
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
130
|
Abstract
Proteolytic cleavage of extracellular matrix (ECM) proteins by matrix metalloproteinases and/or conformational changes unmask "cryptic" sites and liberate fragments with biological activities that are not observed in the intact molecule. Cryptic sites and fragments of ECM macromolecules have been implicated in many events governed by cell-ECM interactions, such as migration, invasion, adhesion and differentiation. The unmasking of cryptic sites is a tightly controlled process, reflecting the importance of cryptic ECM functions. This review summarizes and evaluates the current developments regarding cryptic regulatory ECM signals found as ECM-tethered protein epitopes or fragments.
Collapse
Affiliation(s)
- Susann Schenk
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
131
|
Wang WM, Lee S, Steiglitz BM, Scott IC, Lebares CC, Allen ML, Brenner MC, Takahara K, Greenspan DS. Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-proteinase. J Biol Chem 2003; 278:19549-57. [PMID: 12646579 DOI: 10.1074/jbc.m300767200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloproteinase ADAMTS-2 has procollagen I N-proteinase activity capable of cleaving procollagens I and II N-propeptides in vitro, whereas mutations in the ADAMTS-2 gene in dermatosparaxis and Ehlers-Danlos syndrome VIIC show this enzyme to be responsible in vivo for most biosynthetic processing of procollagen I N-propeptides in skin. Yet despite its important role in the regulation of collagen deposition, information regarding regulation and substrate specificity of ADAMTS-2 has remained sparse. Here we demonstrate that ADAMTS-2 can, like the procollagen C-proteinases, be regulated by transforming growth factor-beta 1 (TGF-beta 1), with implications for mechanisms whereby this growth factor effects net increases in formation of extracellular matrix. TGF-beta 1 induced ADAMTS-2 mRNA approximately 8-fold in MG-63 osteosarcoma cells in a dose- and time-dependent, cycloheximide-inhibitable manner, which appeared to operate at the transcriptional level. Secreted ADAMTS-2 protein induced by TGF-beta 1 was 132 kDa and was identical in size to the fully processed, active form of the protease. Biosynthetic processing of ADAMTS-2 to yield the 132-kDa form is shown to be a two-step process involving sequential cleavage by furin-like convertases at two sites. Surprisingly, purified recombinant ADAMTS-2 is shown to cleave procollagen III N-propeptides as effectively as those of procollagens I and II, whereas processing of procollagen III is shown to be decreased in Ehlers-Danlos VIIC. Thus, the dogma that procollagen I and procollagen III N-proteinase activities are provided by separate enzymes appears to be false, whereas the phenotypes of dermatosparaxis and Ehlers-Danlos VIIC may arise from defects in both type I and type III collagen biosynthesis.
Collapse
Affiliation(s)
- Wei-Man Wang
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Leighton M, Kadler KE. Paired basic/Furin-like proprotein convertase cleavage of Pro-BMP-1 in the trans-Golgi network. J Biol Chem 2003; 278:18478-84. [PMID: 12637569 DOI: 10.1074/jbc.m213021200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP)-1 is a zinc-dependent metalloproteinase that cleaves a variety of extracellular matrix substrates, including type I procollagen. Little is known about the site of action of BMP-1, although the extracellular matrix seems likely to be it. BMP-1 is synthesized with an N-terminal prodomain. The removal of the prodomain presumably activates the proteinase. In this study we show that the prodomain is cleaved in the trans-Golgi network (TGN) and by furin-like/paired basic proprotein convertases. Inhibitors of furin resulted in the secretion of pro-BMP-1, which could not cleave procollagen. Recombinant furin cleaved the prodomain from pro-BMP-1. Site-directed mutagenesis of the prodomain cleavage site (RSRR) to RSAA resulted in efficient secretion of pro-BMP-1. Therefore, prodomain cleavage was not required for secretion. Using peptide N-glycosidase and neuraminidase digestion to determine the post-translational status of pro-BMP-1 during its conversion to BMP-1, we showed that BMP-1 first appears in the TGN during sialylation of the molecule. Furthermore, immunofluorescence studies using an antibody to the nascent N terminus of BMP-1 showed localization to the TGN and plasma membrane. The observation that BMP-1 occurs inside the cell raises the possibility that BMP-1 might begin to cleave its substrates prior to secretion to the extracellular matrix.
Collapse
Affiliation(s)
- Mat Leighton
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Stopford Building 2.205, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
133
|
Hartigan N, Garrigue-Antar L, Kadler KE. Bone morphogenetic protein-1 (BMP-1). Identification of the minimal domain structure for procollagen C-proteinase activity. J Biol Chem 2003; 278:18045-9. [PMID: 12637537 DOI: 10.1074/jbc.m211448200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-1 (BMP-1) is a shorter spliced variant of mammalian tolloid (mTld), both of which cleave the C-propeptides of type I procollagen during the synthesis of extracellular matrix collagen fibrils. The fact that BMP-1 and mTld both exhibit procollagen C-proteinase (PCP) activity and that BMP-1 is the smaller variant might indicate that BMP-1 comprises the minimal required sequences for PCP activity. BMP-1 comprises a metalloproteinase domain, three CUB domains, and an epidermal growth factor (EGF)-like domain, which is located between the second and third CUB (complement components C1r/C1s, the sea urchin protein Uegf, and BMP-1) domains. In this study we showed the following. 1) The CUB1 domain is required for secretion of the molecule. Domain swapping experiments, in which CUB1 and other CUB domains were interchanged, resulted in retention of the proteins by cells. Therefore, CUB1 and its location immediately adjacent to the metalloproteinase domain are essential for secretion of the protein. 2) Mutants lacking the EGF-like and CUB3 domains exhibited full C-proteinase activity. In contrast, mutants lacking the CUB2 domain were poor C-proteinases. 3) Further studies showed that Glu-483 on the beta4-beta5 loop of CUB2 is essential for C-proteinase activity of BMP-1. In conclusion, the study showed that the minimal domain structure for PCP activity is considerably shorter than expected and comprises the metalloproteinase domain and the CUB1 and CUB2 domains of BMP-1.
Collapse
Affiliation(s)
- Nichola Hartigan
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Stopford Building 2.205, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
134
|
Veitch DP, Nokelainen P, McGowan KA, Nguyen TT, Nguyen NE, Stephenson R, Pappano WN, Keene DR, Spong SM, Greenspan DS, Findell PR, Marinkovich MP. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem 2003; 278:15661-8. [PMID: 12473650 DOI: 10.1074/jbc.m210588200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner. In a proteinase survey, all BMP-1 isoenzymes processed human laminin-5 gamma2 and alpha3 chains to 105- and 165-kDa fragments, respectively. In contrast, MT1-MMP and MMP-2 did not cleave the gamma2 chain of human laminin-5 but processed the rat laminin gamma2 chain to an 80-kDa fragment. An immunoblot and quantitative PCR survey of the BMP-1 isoenzymes revealed expression of mTLD in primary keratinocyte cultures but little or no expression of BMP-1, mTLL-1, or mTLL-2. mTLD was shown to cleave the gamma2 chain at the same site as the previously identified BMP-1 cleavage site. In addition, mTLD/BMP-1 null mice were shown to have deficient laminin-5 processing. Together, these data identify laminin-5 as a substrate for mTLD, suggesting a role for laminin-5 processing by mTLD in the skin.
Collapse
Affiliation(s)
- Dallas P Veitch
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Pirilä E, Sharabi A, Salo T, Quaranta V, Tu H, Heljasvaara R, Koshikawa N, Sorsa T, Maisi P. Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration. Biochem Biophys Res Commun 2003; 303:1012-7. [PMID: 12684035 DOI: 10.1016/s0006-291x(03)00452-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinase (MMP)-2 and membrane type 1-MMP can process the laminin-5 (Ln-5) gamma2-chain, revealing a cryptic site inducing epithelial cell migration. We investigated whether other MMPs process the Ln-5 gamma2-chain and related their ability to induce epithelial cell migration. The N-terminal sequences of the MMP-3, -12, -13, and -20 processed 80kDa Ln-5 gamma2x-chains were identical whereas the N-terminus of the 80kDa(MMP-8) Ln-5 gamma2x-chain was not. MMP-3, -13, -14, and -20 induced MCF-7 cell migration over Ln-5 while MMP-8 was a poor inducer of MCF-7 cell migration. In conclusion, several MMPs can process the Ln-5 gamma2-chain and induce epithelial cell migration.
Collapse
Affiliation(s)
- Emma Pirilä
- Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Helsinki University Central Hospital (HUCH), Institute of Dentistry, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Laminins are a family of multi-functional basement membrane proteins. Their C-terminal domain binds to cell surface receptors and is thereby responsible for cell anchorage and the initiation of specific outside-in and inside-out signals. With their N-terminal parts, laminins interact with proteins of the extracellular matrix scaffold to secure the basement membrane to the underlying mesenchymal tissue. Laminins 5A (alpha3Abeta3gamma2), 5B (alpha3Bbeta3gamma2) and 6 (alpha3Abeta1gamma1) are isoforms specific of the basement membrane underneath the epidermis and they undergo a sequential series of extracellular proteolytic changes, which might successively turn on and off one or several of their biological and mechanical functions. Under physiological conditions, such as in adult human skin, epithelial laminins have lost part of the C- and N-terminal domains of the alpha3 and gamma2 chains, respectively. In contrast, in cylindromatosis, a rare inherited disease characterised by major ultrastructural alterations of the basement membrane and altered expression/distribution of integrin receptors, laminin processing has not been completed. Together, these results suggest that laminin processing may regulate signalling pathways and the architecture of the basement membrane by restricting the repertoire of interactions with cell surface receptors and extracellular matrix components.
Collapse
Affiliation(s)
- Monique Aumailley
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, Germany.
| | | | | | | |
Collapse
|
137
|
Bernocco S, Steiglitz BM, Svergun DI, Petoukhov MV, Ruggiero F, Ricard-Blum S, Ebel C, Geourjon C, Deleage G, Font B, Eichenberger D, Greenspan DS, Hulmes DJS. Low resolution structure determination shows procollagen C-proteinase enhancer to be an elongated multidomain glycoprotein. J Biol Chem 2003; 278:7199-205. [PMID: 12486138 DOI: 10.1074/jbc.m210857200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that can stimulate the action of tolloid metalloproteinases, such as bone morphogenetic protein-1, on a procollagen substrate, by up to 20-fold. The PCPE molecule consists of two CUB domains followed by a C-terminal NTR (netrin-like) domain. In order to obtain structural insights into the function of PCPE, the recombinant protein was characterized by a range of biophysical techniques, including analytical ultracentrifugation, transmission electron microscopy, and small angle x-ray scattering. All three approaches showed PCPE to be a rod-like molecule, with a length of approximately 150 A. Homology modeling of both CUB domains and the NTR domain was consistent with the low-resolution structure of PCPE deduced from the small angle x-ray scattering data. Comparison with the low-resolution structure of the procollagen C-terminal region supports a recently proposed model (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869) for the mechanism of action of PCPE.
Collapse
Affiliation(s)
- Simonetta Bernocco
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-UCBL1, 69367 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
de Wolf F. Chapter V Collagen and gelatin. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0921-0423(03)80005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
139
|
Décline F, Okamoto O, Mallein-Gerin F, Helbert B, Bernaud J, Rigal D, Rousselle P. Keratinocyte motility induced by TGF-beta1 is accompanied by dramatic changes in cellular interactions with laminin 5. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:64-80. [PMID: 12451596 DOI: 10.1002/cm.10086] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) has the ability to induce epithelial cell migration while stopping proliferation. In this study, we show that, concomitant to promoting migration of normal human keratinocytes in vitro, TGF-beta1 induced a marked decrease in their adhesion capacity to processed alpha3-containing laminin 5-coated surfaces. Indeed, the expression levels of alpha3 and alpha6 integrin subunit mRNA and protein, as well as the cell surface alpha3beta1 and alpha6beta4 integrins, were down-regulated. Recent studies showed that keratinocytes over express and deposit laminin 5 during migration and we have shown that laminin 5 found in the matrix of TGF-beta1 induced migrating keratinocytes is present in its unprocessed form [Décline and Rousselle, 2001: J. Cell Sci. 114:811-823]. We show here that TGF-beta1 treatment of the cells promoted a significant increase in their adhesion to the alpha3 chain carboxy-terminal LG4/5 subdomain and that this interaction is likely to be mediated by a heparan sulfate proteoglycan type of receptor. Our results indicate that alpha6beta4 and alpha3beta1 integrin interactions with laminin 5 are diminished during migration while a specific interaction occurs between an additional cellular receptor and the alpha3 LG4/5 module present on unprocessed laminin 5.
Collapse
|
140
|
Dale L, Evans W, Goodman SA. Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech Dev 2002; 119:177-90. [PMID: 12464431 DOI: 10.1016/s0925-4773(02)00359-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have identified a novel Tolloid-like metalloprotease, called Xolloid-related (Xlr), that is expressed during early Xenopus development. Transcripts for xlr are localized to the marginal zone of mid-gastrulae and are most abundant in ventral and lateral sectors. At neurula stages xlr is strongly expressed around the blastopore and in the pharyngeal endoderm, and more weakly expressed throughout the ventral half of the embryo. Transcripts are detected in the nervous system, particularly the hindbrain and spinal cord, and tailbud of tailbud stage embryos, with weaker expression in the anterior nervous system, otic vesicle, heart, and pronephric duct. Transcription of xlr is increased by BMP4 and decreased by Noggin and tBR, indicating that xlr is regulated by BMP signalling. Injection of xlr mRNA inhibits dorsoanterior development and the dorsal axis inducing ability of coinjected chordin, but not noggin or tBR, mRNA. Xlr conditioned media cleaves Chordin in vitro, indicating that this protease may regulate the availability of Chordin in vivo.
Collapse
Affiliation(s)
- Leslie Dale
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
141
|
Garrigue-Antar L, Hartigan N, Kadler KE. Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. J Biol Chem 2002; 277:43327-34. [PMID: 12218058 DOI: 10.1074/jbc.m207342200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn(91) (prodomain), Asn(142) (metalloproteinase domain), Asn(332) and Asn(363) (CUB1 domain), Asn(599) (CUB3 domain), and Asn(726) in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn(726) presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.
Collapse
Affiliation(s)
- Laure Garrigue-Antar
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, School of Biological Sciences, Stopford Building 2.205, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
142
|
|
143
|
Ricard-Blum S, Bernocco S, Font B, Moali C, Eichenberger D, Farjanel J, Burchardt ER, van der Rest M, Kessler E, Hulmes DJS. Interaction properties of the procollagen C-proteinase enhancer protein shed light on the mechanism of stimulation of BMP-1. J Biol Chem 2002; 277:33864-9. [PMID: 12105202 DOI: 10.1074/jbc.m205018200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that binds to the C-propeptide of procollagen I and can enhance the activities of procollagen C-proteinases up to 20-fold. To determine the molecular mechanism of PCPE activity, the interactions of the recombinant protein with the procollagen molecule as well as with its isolated C-propeptide domain were studied using surface plasmon resonance (BIAcore) technology. Binding required the presence of divalent metal cations such as calcium and manganese. By ligand blotting, calcium was found to bind to the C-propeptide domains of procollagens I and III but not to PCPE. By chemical cross-linking, the stoichiometry of the PCPE/C-propeptide interaction was found to be 1:1 in accordance with enzyme kinetic data. The use of a monoclonal antibody directed against the N-terminal region of the C-propeptide suggested that this region is probably not involved in binding to PCPE. Association and dissociation kinetics of the C-propeptide domains of procollagens I and III on immobilized PCPE were rapid. Extrapolation to saturation equilibrium yielded apparent equilibrium dissociation constants in the range 150-400 nM. In contrast, the association/dissociation kinetics of intact procollagen molecules on immobilized PCPE were relatively slow, corresponding to a dissociation constant of 1 nM. Finally, pN-collagen (i.e. procollagen devoid of the C-terminal propeptide domain) was also found to bind to immobilized PCPE, suggesting that PCPE binds to sites on either side of the procollagen cleavage site, thereby facilitating the action of procollagen C-proteinases.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale, CNRS UMR 5075, 38027 Grenoble cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Spirito F, Charlesworth A, Linder K, Ortonne JP, Baird J, Meneguzzi G. Animal models for skin blistering conditions: absence of laminin 5 causes hereditary junctional mechanobullous disease in the Belgian horse. J Invest Dermatol 2002; 119:684-91. [PMID: 12230513 DOI: 10.1046/j.1523-1747.2002.01852.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent achievements in the genetic correction of keratinocytes isolated from patients with junctional epidermolysis bullosa have paved the way to a gene therapy approach for the disease. Because gene therapy protocols require preclinical validation in animals, we have characterized spontaneous animal models of junctional epidermolysis bullosa. In this study we have elucidated the genetic basis of the hereditary junctional mechanobullous disease in the Belgian horse, a condition characterized by blistering of the skin and mouth epithelia, and exungulation (loss of the hoof). Immunofluorescence analysis associated the condition to the absent expression of the gamma2 chain of laminin 5 and designated Lamc2 as the candidate gene. Comparative analysis of the nucleotide sequence of the full-length gamma2 cDNA isolated by reverse transcription polymerase chain reaction amplification of total RNA purified from the epithelium of a junctional epidermolysis bullosa foal and a healthy control disclosed a homozygous basepair insertion (1368insC) in the affected animal. Mutation 1368insC results in a downstream premature termination codon and is predicted to cause absent expression of the laminin gamma2 polypeptide. Our results also show that: (i) the horse junctional epidermolysis bullosa genetically corresponds to the severe Herlitz form of junctional epidermolysis bullosa in man; (ii) the amino acid sequence and structure of the horse laminin gamma2 chain are virtually identical to the human counterpart; (iii) the moderate eruption of skin blisters in the affected animals with respect to the human Herlitz junctional epidermolysis bullosa patients correlates with the protection provided by hair. Our observations suggest that the affected foals are a convenient source of epithelial cells from tissues that cannot be obtained from human junctional epidermolysis bullosa patients, and imply that hairless strains of animals with recessive skin disorders would be the best models for in vivo gene therapy approaches to skin blistering diseases.
Collapse
|
145
|
Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L. Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 2002; 277:26372-8. [PMID: 11986329 DOI: 10.1074/jbc.m203247200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.
Collapse
Affiliation(s)
- Anke Rattenholl
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Sosne G, Hafeez S, Greenberry AL, Kurpakus-Wheater M. Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res 2002; 24:268-73. [PMID: 12324865 DOI: 10.1076/ceyr.24.4.268.8414] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE In this study the effects of thymosin beta4 (Tbeta4) on migration and production of laminin-5 in the human conjunctival cell line HC0597 was analyzed. METHODS Boyden chamber assays assessed the ability of Tbeta4 to stimulate in vitro cell migration. Control or Tbeta4-treated cells were processed for immunofluorescence microscopy using antibodies to vinculin or laminin-5. Cell lysates were processed for Western blot and densitometric analysis using antibodies to laminin-5 alpha3 or gamma2 chains. RESULTS Tbeta4 stimulated migration in a dose-dependent manner. Focal adhesions present in Tbeta4-treated cells were smaller and more rounded compared to the "streaks" characteristic of controls. Western blot analysis and densitometry revealed that Tbeta4-treated cells expressed more laminin-5 alpha3 and gamma2 chain protein. CONCLUSION Tbeta4 stimulates in vitro conjunctival epithelial cell migration, and results in altered focal adhesion formation and increased extracellular laminin-5 deposition. The increased migration may be correlated with increased production of laminin-5.
Collapse
|
147
|
Unsöld C, Pappano WN, Imamura Y, Steiglitz BM, Greenspan DS. Biosynthetic processing of the pro-alpha 1(V)2pro-alpha 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J Biol Chem 2002; 277:5596-602. [PMID: 11741999 DOI: 10.1074/jbc.m110003200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.
Collapse
Affiliation(s)
- Christine Unsöld
- Department of Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
148
|
Tunggal L, Ravaux J, Pesch M, Smola H, Krieg T, Gaill F, Sasaki T, Timpl R, Mauch C, Aumailley M. Defective laminin 5 processing in cylindroma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:459-68. [PMID: 11839566 PMCID: PMC1850666 DOI: 10.1016/s0002-9440(10)64865-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2001] [Indexed: 01/22/2023]
Abstract
Cylindromas are benign skin tumors occurring as multiple nodules characteristically well circumscribed by an excess of basement membrane-like material. To determine the molecular defects leading to extracellular matrix accumulation, the ultrastructural, immunological, and biochemical properties of cylindroma tissue and isolated cells were analyzed. In cylindromas, hemidesmosomes are reduced in number, heterogeneous and immature compared to the normal dermal-epidermal junction. Expression of the alpha6beta4 integrin in tumor cells is weaker than in basal keratinocytes of the epidermis. Moreover, although in the epidermis alpha2beta1-integrin expression is restricted to the basal cell layer, it is found in all neoplastic cells within the nodules. Laminin 5 is present throughout the whole thickness of the basement membrane-like zone whereas laminin 10 is restricted to the interface adjacent to the tumor cells. Furthermore, laminin 5 is not properly processed and most of the alpha3A and gamma2 laminin chains remain as 165-kd and 155-kd polypeptides, respectively. Mature laminin 5 is thought to be necessary for correct hemidesmosome and basement membrane formation and its abnormal processing, as well as the low expression of alpha6beta4 integrins, could explain the lack of mature hemidesmosomes. Together, the results show that multiple molecular defects, including alteration of laminin 5 and its integrin receptors, contribute to structural aberrations of the basement membrane and associated structures in cylindromas.
Collapse
Affiliation(s)
- Lucy Tunggal
- Department of Dermatology, Medical Faculty, Institute for Biochemistry II, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Borel A, Eichenberger D, Farjanel J, Kessler E, Gleyzal C, Hulmes DJ, Sommer P, Font B. Lysyl oxidase-like protein from bovine aorta. Isolation and maturation to an active form by bone morphogenetic protein-1. J Biol Chem 2001; 276:48944-9. [PMID: 11684696 DOI: 10.1074/jbc.m109499200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently several cDNAs have been described encoding lysyl oxidase-like proteins. Their deduced amino acid sequences are characterized by a strong similarity in the C-terminal region, corresponding to the lysyl oxidase family catalytic domain, and by marked differences in the N-terminal regions. Different biological functions have been described for lysyl oxidases in addition to their traditionally assumed cross-linking role. To answer the question of whether these different functions are carried out by different lysyl oxidases, purified and active forms of these enzymes are required. At present only the classical form of lysyl oxidase has been purified and characterized. The purpose of this study was to isolate and characterize the lysyl oxidase-like protein. In view of the strong sequence homology with the C-terminal domain of other lysyl oxidases, we chose to purify the protein from bovine aorta using antibodies specific to the N-terminal domain of the proenzyme. We have isolated a 56-kDa protein identified by amino acid sequencing as the bovine lysyl oxidase-like precursor, which is cleaved at the Arg-Arg-Arg sequence at positions 89-91 by a furin-like activity, as revealed after deblocking of the N-terminal residue. The immunopurified protein was largely inactive, but further processing in vitro by bone morphogenetic protein-1 led to an enzyme that was active on elastin and collagen substrates.
Collapse
Affiliation(s)
- A Borel
- Institut de Biologie et Chimie des Protéines CNRS UMR 5086, Université Claude Bernard Lyon I, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Moschcovich L, Bernocco S, Font B, Rivkin H, Eichenberger D, Chejanovsky N, Hulmes DJ, Kessler E. Folding and activity of recombinant human procollagen C-proteinase enhancer. ACTA ACUST UNITED AC 2001; 268:2991-6. [PMID: 11358517 DOI: 10.1046/j.1432-1327.2001.02189.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant human procollagen C-proteinase enhancer (rPCPE) was expressed using a baculovirus system and purified to homogeneity using a three-step procedure including heparin affinity chromatography. Heparin binding was dependent on the C-terminal netrin-like domain. The recombinant protein was found to be active, increasing the activity of procollagen C-proteinase/bone morphogenetic protein-1 on type I procollagen in a manner comparable to the native protein. Enhancing activity was dependent on intact disulfide bonding within the protein. By circular dichroism, the observed secondary structure of rPCPE was consistent with the known three-dimensional structures of proteins containing homologous domains.
Collapse
Affiliation(s)
- L Moschcovich
- Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|