101
|
Tóvári J, Futosi K, Bartal A, Tátrai E, Gacs A, Kenessey I, Paku S. Boyden chamber-based method for characterizing the distribution of adhesions and cytoskeletal structure in HT1080 fibrosarcoma cells. Cell Adh Migr 2014; 8:509-16. [PMID: 25482525 DOI: 10.4161/cam.28734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 2D model was previously presented that describes the gliding motility of human fibrosarcoma cells. The model was based on the observation that adhesions are present only on the outer rim of the leading lamella of the semicircular cell. The present model describes the organization of adhesions and the cytoskeleton of migrating HT1080 fibrosarcoma and LX2 hepatic stellate cells in three dimensions. The migration assays were performed in a modified Boyden chamber using fibronectin, Matrigel, or collagen I as chemoattractants. The distribution of the adhesions was analyzed by confocal laser scanning microscope, and following decoration with heavy meromyosin, the organization of actin filaments was analyzed by electron microscopy. Double labeling was performed to study the relationship of the actin and vimentin filament network in the moving cells. Vinculin containing adhesions were observed only at the front of the cell in the form of a ring while passing through a filter pore of the Boyden chamber. Actin filaments were present only below the plasma membrane, except the very tip of the leading lamella. Vimentin intermediate filaments were localized around the cell nucleus behind the actin filament-rich lamella. This paper describes a model of the organization of adhesions and the cytoskeleton of migrating cells in the Boyden chamber. The model is based on the observation that adhesions are present only at the leading edge of the cell. The results extend the earlier 2D model of cell locomotion into 3D.
Collapse
Affiliation(s)
- József Tóvári
- a Department of Experimental Pharmacology; National Institute of Oncology ; Budapest , Hungary
| | | | | | | | | | | | | |
Collapse
|
102
|
Auernheimer V, Goldmann WH. Vinculin E29R mutation changes cellular mechanics. Biochem Biophys Res Commun 2014; 452:661-4. [DOI: 10.1016/j.bbrc.2014.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
|
103
|
Liang Q, Han Q, Huang W, Nan G, Xu BQ, Jiang JL, Chen ZN. HAb18G/CD147 regulates vinculin-mediated focal adhesion and cytoskeleton organization in cultured human hepatocellular carcinoma cells. PLoS One 2014; 9:e102496. [PMID: 25033086 PMCID: PMC4102505 DOI: 10.1371/journal.pone.0102496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Focal adhesions (FAs), integrin-mediated macromolecular complexes located at the cell membrane extracellular interface, have been shown to regulate cell adhesion and migration. Our previous studies have indicated that HAb18G/CD147 (CD147) is involved in cytoskeleton reorganization and FA formation in human hepatocellular carcinoma (HCC) cells. However, the precise mechanisms underlying these processes remain unclear. In the current study, we determined that CD147 was involved in vinculin-mediated FA focal adhesion formation in HCC cells. We also found that deletion of CD147 led to reduced vinculin-mediated FA areas (P<0.0001), length/width ratios (P<0.0001), and mean intensities (P<0.0001). CD147 promoted lamellipodia formation by localizing Arp2/3 to the leading edge of the cell. Deletion of CD147 significantly reduced the fluorescence (t1/2) recovery times (22.7±3.3 s) of vinculin-mediated focal adhesions (P<0.0001). In cell-spreading assays, CD147 was found to be essential for dynamic focal adhesion enlargement and disassembly. Furthermore, the current data showed that CD147 reduced tyrosine phosphorylation in vinculin-mediated focal adhesions, and enhanced the accumulation of the acidic phospholipid phosphatidylinositol-4, 5-bisphosphate (PIP2). Together, these results revealed that CD147 is involved in vinculin-mediated focal adhesion formation, which subsequently promotes cytoskeleton reorganization to facilitate invasion and migration of human HCC cells.
Collapse
Affiliation(s)
- Qiang Liang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’ an, Shaanxi, China
| | - Wan Huang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gang Nan
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bao-Qing Xu
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian-Li Jiang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| |
Collapse
|
104
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
105
|
Braunsmann C, Seifert J, Rheinlaender J, Schäffer TE. High-speed force mapping on living cells with a small cantilever atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:073703. [PMID: 25085142 DOI: 10.1063/1.4885464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.
Collapse
Affiliation(s)
- Christoph Braunsmann
- Institute of Applied Physics and LISA+, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Jan Seifert
- Institute of Applied Physics and LISA+, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Johannes Rheinlaender
- Institute of Applied Physics and LISA+, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics and LISA+, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
106
|
Auernheimer V, Goldmann WH. Serine phosphorylation on position 1033 of vinculin impacts cellular mechanics. Biochem Biophys Res Commun 2014; 450:1095-8. [DOI: 10.1016/j.bbrc.2014.06.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
|
107
|
Bonakdar N, Schilling A, Lennert P, Spörrer M, Gerum RC, Alonso JL, Goldmann WH. Measuring mechanical properties in cells: three easy methods for biologists. Cell Biol Int 2014; 38:1227-32. [PMID: 24803101 DOI: 10.1002/cbin.10303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Navid Bonakdar
- Department of Physics, Biophysics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
108
|
Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, Lombardo Y, Frampton AE, Green AR, Ellis IO, Ali S, Lenz HJ, Thanou M, Stebbing J, Giamas G. The kinase LMTK3 promotes invasion in breast cancer through GRB2-mediated induction of integrin β₁. Sci Signal 2014; 7:ra58. [PMID: 24939894 DOI: 10.1126/scisignal.2005170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Hua Zhang
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Lei C Lit
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK. Department of Physiology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arnhild Grothey
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Maria Athanasiadou
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK. Institute of Pharmaceutical Science, Kings College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Marianna Kiritsi
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Simak Ali
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Heinz-Josef Lenz
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Maya Thanou
- Institute of Pharmaceutical Science, Kings College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Georgios Giamas
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
109
|
Abstract
Fibroblast migration is essential to normal wound healing and pathological matrix deposition in fibrosis. This review summarizes our understanding of how fibroblasts navigate 2D and 3D extracellular matrices, how this behavior is influenced by the architecture and mechanical properties of the matrix, and how migration is integrated with the other principle functions of fibroblasts, including matrix deposition, contraction, and degradation.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
110
|
Mierke CT. Phagocytized beads reduce the α5β1 integrin facilitated invasiveness of cancer cells by regulating cellular stiffness. Cell Biochem Biophys 2014; 66:599-622. [PMID: 23329175 DOI: 10.1007/s12013-012-9506-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell invasion through the extracellular matrix (ECM) of connective tissue is an important biomechanical process, which plays a prominent role in tumor progression. The malignancy of tumors depends mainly on the capacity of cancer cells to migrate and metastasize. A prerequisite for metastasis is the invasion of cancer cells through connective tissue to targeted organs. Cellular stiffness and cytoskeletal remodeling dynamics have been proposed to affect the invasiveness of cancer cells. Here, this study investigated whether highly invasive cancer cells are capable of invading into dense 3D-ECMs with an average pore-size of 1.3 or 3.0 μm when phagocytized beads (2.7 and 4.5 μm diameter) increased their cellular stiffness and reduced their cytoskeletal remodeling dynamics compared to weakly invasive cancer cells. The phagocytized beads decreased the invasiveness of the α5β1(high) cancer cells into 3D-ECMs, whereas the invasiveness of the α5β1(low) cancer cells was not affected. The effect of phagocytized beads on the highly invasive α5β1(high) cells was abolished by specific knock-down of the α5 integrin subunit or addition of an anti-α5 integrin blocking antibody. Furthermore, the reduction of contractile forces using MLCK and ROCK inhibitors abolished the effect of phagocytized beads on the invasiveness of α5β1(high) cells. In addition, the cellular stiffness of α5β1(high) cells was increased after bead phagocytosis, whereas the bead phagocytosis did not alter the stiffness of α5β1(low) cells. Taken together, the α5β1 integrin dependent invasiveness was reduced after bead phagocytosis by altered biomechanical properties, suggesting that the α5β1(high) cells need an appropriate intermediate cellular stiffness to overcome the steric hindrance of 3D-ECMs, whereas the α5β1(low) cells were not affected by phagocytized beads.
Collapse
Affiliation(s)
- Claudia T Mierke
- Biological Physics Division, Institute of Experimental Physics I, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
111
|
Lautscham LA, Lin CY, Auernheimer V, Naumann CA, Goldmann WH, Fabry B. Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 2014; 35:3198-207. [PMID: 24439398 PMCID: PMC4026006 DOI: 10.1016/j.biomaterials.2013.12.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/22/2013] [Indexed: 11/26/2022]
Abstract
Cell behavior such as cell adhesion, spreading, and contraction critically depends on the elastic properties of the extracellular matrix. It is not known, however, how cells respond to viscoelastic or plastic material properties that more closely resemble the mechanical environment cells encounter in the body. In this report, we employ viscoelastic and plastic biomembrane-mimicking cell substrates. The compliance of the substrates can be tuned by increasing the number of polymer-tethered bilayers. This leaves the density and conformation of adhesive ligands on the top bilayer unaltered. We then observe the response of fibroblasts to these property changes. For comparison, we also study the cells on soft polyacrylamide and hard glass surfaces. Cell morphology, motility, cell stiffness, contractile forces and adhesive contact size all decrease on more compliant matrices but are less sensitive to changes in matrix dissipative properties. These data suggest that cells are able to feel and respond predominantly to the effective matrix compliance, which arises as a combination of substrate and adhesive ligand mechanical properties.
Collapse
Affiliation(s)
- Lena A Lautscham
- Department of Biophysics, University of Erlangen-Nuremberg, Erlangen 91052, Germany.
| | - Corey Y Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis 46202, USA
| | - Vera Auernheimer
- Department of Biophysics, University of Erlangen-Nuremberg, Erlangen 91052, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis 46202, USA
| | - Wolfgang H Goldmann
- Department of Biophysics, University of Erlangen-Nuremberg, Erlangen 91052, Germany
| | - Ben Fabry
- Department of Biophysics, University of Erlangen-Nuremberg, Erlangen 91052, Germany
| |
Collapse
|
112
|
Minner DE, Rauch P, Käs J, Naumann CA. Polymer-tethered lipid multi-bilayers: a biomembrane-mimicking cell substrate to probe cellular mechano-sensing. SOFT MATTER 2014; 10:1189-1198. [PMID: 24652490 DOI: 10.1039/c3sm52298a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cells tiptoe through their environment forming highly localized and dynamic focal contacts. Experiments on polymeric gels of adjustable elasticity have shown that cells probe the viscoelasticity of their environment through an adaptive process of focal contact assembly/disassembly that critically affects cell adhesion, morphology, and motility. However, the specific mechanisms of this process have not yet been fully revealed. Here we report, for the first time, that fibroblast adhesion, morphology, and migration can also be controlled by altering the number of bilayers in a stack of multiple polymer-tethered lipid bilayers stabilized via maleimide-sulfhydral coupling chemistry. The observed changes in cell morphology, migration, and cytoskeletal organization in response to bilayer stacking correspond well with those previously observed on polymeric substrates of different polymer crosslinking density suggesting that variations in bilayer stacking are associated with changes in substrate viscoelasticity. This is in conceptual agreement with the existing knowledge about the structural, dynamic, and mechanical properties of polymer-lipid composite materials. Several distinct features, such as the lateral mobility of individual cell linkers and the immobilization of linker clusters, make the described substrates highly attractive tools for the study of dynamic, mechano-regulated cell linkages and cellular mechano-sensing.
Collapse
Affiliation(s)
- Daniel E Minner
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202-3274, USA.
| | | | | | | |
Collapse
|
113
|
Simon NC, Barbieri JT. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion. J Biol Chem 2014; 289:10650-10659. [PMID: 24573681 DOI: 10.1074/jbc.m113.500710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.
Collapse
Affiliation(s)
- Nathan C Simon
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
114
|
|
115
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
116
|
Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, del Álamo JC, Engler AJ. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 2013; 31:2467-77. [PMID: 23897765 PMCID: PMC3833960 DOI: 10.1002/stem.1490] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/24/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stem cell (hMSC) proliferation, migration, and differentiation have all been linked to extracellular matrix stiffness, yet the signaling pathway(s) that are necessary for mechanotransduction remain unproven. Vinculin has been implicated as a mechanosensor in vitro, but here we demonstrate its ability to also regulate stem cell behavior, including hMSC differentiation. RNA interference-mediated vinculin knockdown significantly decreased stiffness-induced MyoD, a muscle transcription factor, but not Runx2, an osteoblast transcription factor, and impaired stiffness-mediated migration. A kinase binding accessibility screen predicted a cryptic MAPK1 signaling site in vinculin which could regulate these behaviors. Indeed, reintroduction of vinculin domains into knocked down cells indicated that MAPK1 binding site-containing vinculin constructs were necessary for hMSC expression of MyoD. Vinculin knockdown does not appear to interfere with focal adhesion assembly, significantly alter adhesive properties, or diminish cell traction force generation, indicating that its knockdown only adversely affected MAPK1 signaling. These data provide some of the first evidence that a force-sensitive adhesion protein can regulate stem cell fate.
Collapse
Affiliation(s)
- Andrew W. Holle
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Xinyi Tang
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Deepthi Vijayraghavan
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Ludovic G. Vincent
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Yu Suk Choi
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
- Department of Biomedical Sciences Program, University of California, San Diego; La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine; La Jolla, CA 92037, USA
| |
Collapse
|
117
|
Koohestani F, Braundmeier AG, Mahdian A, Seo J, Bi J, Nowak RA. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLoS One 2013; 8:e75844. [PMID: 24040420 PMCID: PMC3770620 DOI: 10.1371/journal.pone.0075844] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.
Collapse
Affiliation(s)
- Faezeh Koohestani
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | | | | | | | | | | |
Collapse
|
118
|
Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV, Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL, Waterman CM. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. ACTA ACUST UNITED AC 2013; 202:163-77. [PMID: 23836933 PMCID: PMC3704983 DOI: 10.1083/jcb.201303129] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vinculin functions as a molecular clutch that organizes leading edge F-actin, generates traction, and promotes focal adhesion formation and turnover but not adhesion growth. In migrating cells, integrin-based focal adhesions (FAs) assemble in protruding lamellipodia in association with rapid filamentous actin (F-actin) assembly and retrograde flow. How dynamic F-actin is coupled to FA is not known. We analyzed the role of vinculin in integrating F-actin and FA dynamics by vinculin gene disruption in primary fibroblasts. Vinculin slowed F-actin flow in maturing FA to establish a lamellipodium–lamellum border and generate high extracellular matrix (ECM) traction forces. In addition, vinculin promoted nascent FA formation and turnover in lamellipodia and inhibited the frequency and rate of FA maturation. Characterization of a vinculin point mutant that specifically disrupts F-actin binding showed that vinculin–F-actin interaction is critical for these functions. However, FA growth rate correlated with F-actin flow speed independently of vinculin. Thus, vinculin functions as a molecular clutch, organizing leading edge F-actin, generating ECM traction, and promoting FA formation and turnover, but vinculin is dispensible for FA growth.
Collapse
Affiliation(s)
- Ingo Thievessen
- Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 2013; 71:727-44. [PMID: 23974298 PMCID: PMC3901934 DOI: 10.1007/s00018-013-1450-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.
Collapse
|
120
|
Vielreicher M, Schürmann S, Detsch R, Schmidt MA, Buttgereit A, Boccaccini A, Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 2013; 10:20130263. [PMID: 23864499 DOI: 10.1098/rsif.2013.0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.
Collapse
Affiliation(s)
- M Vielreicher
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Strasse 3, 91052 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
121
|
Dimensions in cell migration. Curr Opin Cell Biol 2013; 25:642-9. [PMID: 23850350 DOI: 10.1016/j.ceb.2013.06.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
The importance of cell migration for both normal physiological functions and disease processes has been clear for the past 50 years. Although investigations of two-dimensional (2D) migration in regular tissue culture have elucidated many important molecular mechanisms, recent evidence suggests that cell migration depends profoundly on the dimensionality of the extracellular matrix (ECM). Here we review a number of evolving concepts revealed when cell migration is examined in different dimensions.
Collapse
|
122
|
Moreira CGA, Jacinto A, Prag S. Drosophila integrin adhesion complexes are essential for hemocyte migration in vivo. Biol Open 2013; 2:795-801. [PMID: 23951405 PMCID: PMC3744071 DOI: 10.1242/bio.20134564] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023] Open
Abstract
Cell migration is an important biological process which has been intensively studied in the past decades. Numerous techniques, mainly involving two-dimensional cell culture systems, have contributed to dissecting the essential mechanisms underlying this process. However, the development of three-dimensional cell culture and in vivo systems has shown some differences with what was previously believed to be well-established cell migration mechanisms, suggesting that two-dimensional cell motility would be a poor predictor of in vivo behaviour. Drosophila is a widely recognized model organism to study developmental and homeostatic processes and has been widely used to investigate cell migration. Here, we focus on the migration of small groups of pupal hemocytes that accumulate during larval stages in dorsal patches. We show that integrins, and other known nascent adhesion-related proteins such as Rhea and Fermitin 1, are crucial for this process and that their depletion does not affect polarization in response to environmental cues. We also present evidence for the importance of adhesion maturation-related proteins in hemocyte migration, namely Zyxin. Zyxin depletion in hemocytes leads to a significant increase of cell speed without affecting their response to a chemotactic cue. This is the first report of a systematic analysis using Drosophila melanogaster hemocytes to study adhesion-related proteins and their function in cell migration in vivo. Our data point to mechanisms of cell migration similar to those described in three-dimensional in vitro systems and other in vivo model organisms.
Collapse
Affiliation(s)
- Carolina G A Moreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , 1649-028 Lisboa , Portugal
| | | | | |
Collapse
|
123
|
Winkler U, Hirrlinger PG, Sestu M, Wilhelm F, Besser S, Zemljic-Harpf AE, Ross RS, Bornschein G, Krügel U, Ziegler WH, Hirrlinger J. Deletion of the cell adhesion adaptor protein vinculin disturbs the localization of GFAP in Bergmann glial cells. Glia 2013; 61:1067-83. [DOI: 10.1002/glia.22495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | - Marcello Sestu
- Mechanisms of Cell Migration; Interdisciplinary Center for Clinical Research (IZKF); Faculty of Medicine; University of Leipzig; Liebigstr. 21; D-04103; Leipzig; Germany
| | - Franziska Wilhelm
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Stefanie Besser
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | | | - Grit Bornschein
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology; Faculty of Medicine; University of Leipzig; Härtelstr. 16-18; D-04107; Leipzig; Germany
| | | | | |
Collapse
|
124
|
Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulidou N, Bryan J, Gosney JR, Field JK, Xinarianos G. Cytoglobin has bimodal: tumour suppressor and oncogene functions in lung cancer cell lines. Hum Mol Genet 2013; 22:3207-17. [PMID: 23591990 DOI: 10.1093/hmg/ddt174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytoglobin (CYGB) is frequently downregulated in many types of human malignancies, and its exogenous overexpression reduces proliferation of cancer cells. Despite its implied tumour suppressor (TSG) functions, its exact role in carcinogenesis remains unclear as CYGB upregulation is also associated with tumour hypoxia and aggressiveness. In this study, we explore the TSG role of CYGB, its influence on the phenotype of cancerous cells under stress conditions and the clinical significance of CYGB expression and promoter methylation in non-small cell lung cancer (NSCLC). DNA methylation-dependent expression silencing of CYGB is demonstrated in both clinical samples and cell lines. CYGB promoter was more frequently methylated in lung adenocarcinomas (P = 1.4 × 10(-4)). Demethylation by 5'-azadeoxycytidine partially restored CYGB expression in cell lines. Interestingly, trichostatin A triggered upregulation of CYGB expression in cancer cell lines and downregulation in non-tumourigenic ones. CYGB mRNA expression in NSCLC surgical specimens correlated with that of HIF1α and VEGFa (P < 1 × 10(-4)). Overexpression of CYGB in cancer cell lines reduced cell migration, invasion and anchorage-independent growth. Moreover, CYGB impaired cell proliferation, but only in the lung adenocarcinoma cell line (H358). Upon hydrogen peroxide treatment, CYGB protected cell viability, migratory potential and anchorage independence by attenuating oxidative injury. In hypoxia, CYGB overexpression decreased cell viability, augmented migration and anchorage independence in a cell-type-specific manner. In conclusion, CYGB revealed TSG properties in normoxia but promoted tumourigenic potential of the cells exposed to stress, suggesting a bimodal function in lung tumourigenesis, depending on cell type and microenvironmental conditions.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool L3 9TA,UK
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Goldmann WH, Auernheimer V, Thievessen I, Fabry B. Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 2013; 37:397-405. [PMID: 23494917 DOI: 10.1002/cbin.10064] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein, vinculin, is important for transmitting mechanical forces and orchestrating mechanical signalling events. Deregulation of vinculin results in altered cell adhesion, contractility, motility and growth, all of which are important processes in cancer metastasis. This review summarises recent reports on the role of vinculin in cellular force generation and signalling, and discusses implications for a role of vinculin in promoting cancer cell migration in 3D environments.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
126
|
Plotnikov SV, Pasapera AM, Sabass B, Waterman CM. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2013; 151:1513-27. [PMID: 23260139 DOI: 10.1016/j.cell.2012.11.034] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/03/2012] [Accepted: 11/19/2012] [Indexed: 01/05/2023]
Abstract
Cell migration toward areas of higher extracellular matrix (ECM) rigidity via a process called "durotaxis" is thought to contribute to development, immune response, and cancer metastasis. To understand how cells sample ECM rigidity to guide durotaxis, we characterized cell-generated forces on the nanoscale within single mature integrin-based focal adhesions (FAs). We found that individual FAs act autonomously, exhibiting either stable or dynamically fluctuating ("tugging") traction. We show that a FAK/phosphopaxillin/vinculin pathway is essential for high FA traction and to enable tugging FA traction over a broad range of ECM rigidities. We show that tugging FA traction is dispensable for FA maturation, chemotaxis, and haptotaxis but is critical to direct cell migration toward rigid ECM. We conclude that individual FAs dynamically sample rigidity by applying fluctuating pulling forces to the ECM to act as sensors to guide durotaxis, and that FAK/phosphopaxillin/vinculin signaling defines the rigidity range over which this dynamic sensing process operates.
Collapse
Affiliation(s)
- Sergey V Plotnikov
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
127
|
Bliss KT, Chu M, Jones-Weinert CM, Gregorio CC. Investigating lasp-2 in cell adhesion: new binding partners and roles in motility. Mol Biol Cell 2013; 24:995-1006. [PMID: 23389630 PMCID: PMC3608507 DOI: 10.1091/mbc.e12-10-0723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2's potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells-metastatic cancer cell lines-increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.
Collapse
Affiliation(s)
- Katherine T Bliss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
128
|
Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol 2013; 92:89-104. [PMID: 23391781 DOI: 10.1016/j.ejcb.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Accepted: 12/23/2012] [Indexed: 11/23/2022] Open
Abstract
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies.
Collapse
|
129
|
Borisova M, Shi Y, Buntru A, Wörner S, Ziegler WH, Hauck CR. Integrin-mediated internalization of Staphylococcus aureus does not require vinculin. BMC Cell Biol 2013; 14:2. [PMID: 23294665 PMCID: PMC3562162 DOI: 10.1186/1471-2121-14-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/21/2012] [Indexed: 11/23/2022] Open
Abstract
Background Disease manifestations of Staphylococcus aureus are connected to the fibronectin (Fn)-binding capacity of these Gram-positive pathogens. Fn deposition on the surface of S. aureus allows engagement of α5β1 integrins and triggers uptake by host cells. For several integrin- and actin-associated cytoplasmic proteins, including FAK, Src, N-WASP, tensin and cortactin, a functional role during bacterial invasion has been demonstrated. As reorganization of the actin cytoskeleton is critical for bacterial entry, we investigated whether vinculin, an essential protein linking integrins with the actin cytoskeleton, may contribute to the integrin-mediated internalization of S. aureus. Results Complementation of vinculin in vinculin -/- cells, vinculin overexpression, as well as shRNA-mediated vinculin knock-down in different eukaryotic cell types demonstrate, that vinculin does not have a functional role during the integrin-mediated uptake of S. aureus. Conclusions Our results suggest that vinculin is insignificant for the integrin-mediated uptake of S. aureus despite the critical role of vinculin as a linker between integrins and F-actin.
Collapse
Affiliation(s)
- Marina Borisova
- Lehrstuhl Zellbiologie, Universität Konstanz, Postfach X908, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
130
|
Azorín E, Solano-Agama C, Mendoza-Garrido ME. The invasion mode of GH(3) cells is conditioned by collagen subtype, and its efficiency depends on cell-cell adhesion. Arch Biochem Biophys 2012; 528:148-55. [PMID: 22982559 DOI: 10.1016/j.abb.2012.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
The adaptation of GH(3) cells to different microenvironments is a consequence of a partial compromise with the tumor phenotype. A collagen type IV enriched microenvironment favors an invasive phenotype and increases the substrate adhesion capacity, whereas it decreases the phosphorylation of the regulatory myosin light chain and the aggregation capacity. In contrast, the higher internal tension and increased aggregation capacity induced by collagen type I/III are factors that reduce the invasion rate. Our results show, for the first time, the importance of collagen subtypes in determining the migratory strategy: collagen I/III favors mesenchymal-like motility, whereas collagen type IV induces an ameboid-type displacement. The reciprocal modulation of the myosin light chain kinase and the Rho-kinase determines the invasive capacity through changes in tissue cohesion, extracellular matrix affinity, regulatory myosin light chain phosphorylation and spatial distribution. The collagen subtype determines which of the mechano-transduction signaling pathways will regulate the tensional homeostasis and affect the invasion ability as well as the preferred migration strategy of the cells.
Collapse
Affiliation(s)
- Erika Azorín
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, Av. Politécnico Nacional 2508, 07360 Mexico City, Mexico.
| | | | | |
Collapse
|
131
|
Abstract
The critical role of migration and invasion in cancer metastasis warrants new therapeutic approaches targeting the machinery regulating cell migration and invasion. While 2-dimensional (2D) models have helped identify a range of adhesion molecules, cytoskeletal components and regulators that are potentially important for cell migration, the use of models that better mimic the 3-dimensional (3D) environment has yielded new insights into the physiology of cell movement. For example, studying cells in 3D models has revealed that invading cancer cells may switch between heterogeneous invasion modes and thus evade pharmacological inhibition of invasion. Here we summarize published data in which the role of cell adhesion molecules in 2D vs. 3D migration have been directly compared and discuss mechanisms that regulate migration speed and persistence in 2D and 3D. Finally we discuss limits of 3D culture models to recapitulate the in vivo situation.
Collapse
Affiliation(s)
- Peta Bradbury
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Sydney, NSW Australia
| | | | | |
Collapse
|
132
|
Abstract
Cell-matrix and cell-cell adhesions critically influence cell metabolism, protein synthesis, cell survival, cytoskeletal architecture and consequently cell mechanical properties such as migration, spreading and contraction. An important group of adhesive transmembrane receptors that mechanically link the ECM (extracellular matrix) with the internal cytoskeleton are integrins which are intimately connected with the FAs (focal adhesions) which consists of many proteins. The transient formation of FAs is greatly augmented either through externally applied tension to the cell or internally through myosin II-driven cell contractility. Exactly which protein(s) within FAs sense, transmit and respond to mechanical stress is currently debated and numerous candidates have been proposed.
Collapse
|
133
|
|
134
|
Deakin NO, Ballestrem C, Turner CE. Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA. PLoS One 2012; 7:e37990. [PMID: 22629471 PMCID: PMC3358283 DOI: 10.1371/journal.pone.0037990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/01/2012] [Indexed: 12/12/2022] Open
Abstract
Cell migration is of paramount importance to organism development and maintenance as well as multiple pathological processes, including cancer metastasis. The RhoGTPases Rac1 and RhoA are indispensable for cell migration as they regulate cell protrusion, cell-extracellular matrix (ECM) interactions and force transduction. However, the consequences of their activity at a molecular level within the cell remain undetermined. Using a combination of FRET, FRAP and biochemical analyses we show that the interactions between the focal adhesion proteins vinculin and paxillin, as well as the closely related family member Hic-5 are spatially and reciprocally regulated by the activity of Rac1 and RhoA. Vinculin in its active conformation interacts with either paxillin or Hic-5 in adhesions in response to Rac1 and RhoA activation respectively, while inactive vinculin interacts with paxillin in the membrane following Rac1 inhibition. Additionally, Rac1 specifically regulates the dynamics of paxillin as well as its binding partner and F-actin interacting protein actopaxin (α-parvin) in adhesions. Furthermore, FRET analysis of protein:protein interactions within cell adhesions formed in 3D matrices revealed that, in contrast to 2D systems vinculin interacts preferentially with Hic-5. This study provides new insight into the complexity of cell-ECM adhesions in both 2D and 3D matrices by providing the first description of RhoGTPase-coordinated protein:protein interactions in a cellular microenvironment. These data identify discrete roles for paxillin and Hic-5 in Rac1 and RhoA-dependent cell adhesion formation and maturation; processes essential for productive cell migration.
Collapse
Affiliation(s)
- Nicholas O. Deakin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
135
|
Alonso JL, Goldmann WH. Influence of divalent cations on the cytoskeletal dynamics of K562 cells determined by nano-scale bead tracking. Biochem Biophys Res Commun 2012; 421:245-8. [DOI: 10.1016/j.bbrc.2012.03.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 02/07/2023]
|
136
|
Mierke CT. Endothelial cell's biomechanical properties are regulated by invasive cancer cells. MOLECULAR BIOSYSTEMS 2012; 8:1639-49. [PMID: 22498801 DOI: 10.1039/c2mb25024a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most cancer-related deaths are caused by the ability of cancer cells to metastasize. This process includes the dissemination of cancer cells from the primary tumor side and their migration to targeted organ sites. During the migration of cancer cells through the connective tissue microenvironment, which consists of endothelial cells and extracellular matrix components, biomechanical properties are crucial for the efficiency and speed of cancer cell invasion and subsequently, metastases formation. Biomechanics can enable cancer cells to migrate through tissue, transmigrate through basement membranes as well as endothelial monolayers and form metastases in targeted organs. The current focus of cancer research still lies on the investigation of cancer cell's biochemical and molecular capabilities such as molecular genetics and gene signaling, but these approaches ignore the mechanical nature of the invasion process of cancer cells. Moreover, even the role of the endothelium during the transmigration and invasion of cells is not clear, it has been seen as a passive barrier, but this could not explain all novel findings. This review discusses how cancer cells alter the structural, biochemical and mechanical properties of the endothelium to regulate their own invasiveness through extracellular matrices and hence, through the tissue microenvironment. Finally, this review sheds light on the mechanical properties of cancer cells and the interacting endothelium and points out the importance of the mechanical properties as a critical determinant for the efficiency of cancer cell invasion and the overall progression of cancer. In conclusion, the regulation of the endothelial cell's biomechanical properties by cancer cells is a critical determinant of cancer cell invasiveness and may affect the future development of new cancer treatments.
Collapse
Affiliation(s)
- Claudia T Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
137
|
Zhong J, Baquiran JB, Bonakdar N, Lees J, Ching YW, Pugacheva E, Fabry B, O'Neill GM. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration. PLoS One 2012; 7:e35058. [PMID: 22509381 PMCID: PMC3324407 DOI: 10.1371/journal.pone.0035058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.
Collapse
Affiliation(s)
- Jessie Zhong
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jaime B. Baquiran
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Justin Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yu Wooi Ching
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Elena Pugacheva
- Mary Babb Randolph Cancer Center (MBRCC), West Virginia University, Morgantown, West Virginia, United States of America
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Geraldine M. O'Neill
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
138
|
Mierke CT. The biomechanical properties of 3d extracellular matrices and embedded cells regulate the invasiveness of cancer cells. Cell Biochem Biophys 2012; 61:217-36. [PMID: 21516307 DOI: 10.1007/s12013-011-9193-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The malignancy of tumors depends on the biomechanical properties of cancer cells and their microenvironment, which enable cancer cells to migrate through the connective tissue, transmigrate through basement membranes and endothelial monolayers and form metastases in targeted organs. The current focus of cancer research is still based on biological capabilities such as molecular genetics and gene signaling, but these approaches ignore the mechanical nature of the invasion process of cancer cells. This review will focus on how structural, biochemical and mechanical properties of extracellular matrices (ECMs), and adjacent cells regulate the invasiveness of cancer cells. In addition, it presents how cancer cells create their own microenvironment by restructuring of the ECM and by interaction with stromal cells, which then further contribute to the progression of cancer disease. Finally, this review will point out that mechanical properties are a critical determinant for the efficiency of cancer cell invasion and the progression of cancer which might affect the future development of new cancer treatments.
Collapse
Affiliation(s)
- Claudia T Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
139
|
Abé C, Dietrich F, Gajula P, Benz M, Vogel KP, van Gastel M, Illenberger S, Ziegler WH, Steinhoff HJ. Monomeric and dimeric conformation of the vinculin tail five-helix bundle in solution studied by EPR spectroscopy. Biophys J 2012; 101:1772-80. [PMID: 21961604 DOI: 10.1016/j.bpj.2011.08.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/03/2011] [Accepted: 08/31/2011] [Indexed: 11/28/2022] Open
Abstract
The cytoskeletal adaptor protein vinculin plays an important role in the control of cell adhesion and migration, linking the actin cytoskeleton to adhesion receptor complexes in cell adhesion sites. The conformation of the vinculin tail dimer, which is crucial for protein function, was analyzed using site-directed spin labeling in electron paramagnetic resonance spectroscopy. Interspin distances for a set of six singly and four doubly spin-labeled mutants of the tail domain of vinculin were determined and used as constraints for modeling of the vinculin tail dimer. A comparison of the results obtained by molecular dynamic simulations and a rotamer library approach reveals that the crystal structure of the vinculin tail monomer is essentially preserved in aqueous solution. The orientation of monomers within the dimer observed previously by x-ray crystallography agrees with the solution electron paramagnetic resonance data. Furthermore, the distance between positions 1033 is shown to increase by >3 nm upon interaction of the vinculin tail domain with F-actin.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Loehberg CR, Strissel PL, Dittrich R, Strick R, Dittmer J, Dittmer A, Fabry B, Kalender WA, Koch T, Wachter DL, Groh N, Polier A, Brandt I, Lotz L, Hoffmann I, Koppitz F, Oeser S, Mueller A, Fasching PA, Lux MP, Beckmann MW, Schrauder MG. Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR inhibitor RAD001. Biochem Pharmacol 2011; 83:480-8. [PMID: 22142888 DOI: 10.1016/j.bcp.2011.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 01/02/2023]
Abstract
PI3K/Akt/mTOR and p53 signaling pathways are frequently deregulated in tumors. The anticancer drug RAD001 (everolimus) is a known mTOR-inhibitor, but mTOR-inhibition leads to phosphorylation of Akt inducing resistance against RAD001 treatment. There is growing evidence that conflicting signals transduced by the oncogene Akt and the tumorsuppressor p53 are integrated via negative feedback between the two pathways. We previously showed that the anti-malarial Chloroquine, a 4-alkylamino substituted quinoline, is a p53 activator and reduced the incidence of breast tumors in animal models. Additionally, Chloroquine is an effective chemosensitizer when used in combination with PI3K/Akt inhibitors but the mechanism is unknown. Therefore, our aim was to test, if Chloroquine could inhibit tumor growth and prevent RAD001-induced Akt activation. Chloroquine and RAD001 caused G1 cell cycle arrest in luminal MCF7 but not in mesenchymal MDA-MB-231 breast cancer cells, they significantly reduced MCF7 cell proliferation on a collagen matrix and mammospheroid formation. In a murine MCF7 xenograft model, combined treatment of Chloroquine and RAD001 significantly reduced mammary tumor growth by 4.6-fold (p = 0.0002) compared to controls. Chloroquine and RAD001 inhibited phosphorylation of mTOR and its downstream target, S6K1. Furthermore, Chloroquine was able to block the RAD001-induced phosphorylation of Akt serine 473. The Chloroquine effect of overcoming the RAD001-induced activation of the oncogene Akt, as well as the promising antitumor activity in our mammary tumor animal model present Chloroquine as an interesting combination partner for the mTOR-inhibitor RAD001.
Collapse
Affiliation(s)
- Christian R Loehberg
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Sumida GM, Tomita TM, Shih W, Yamada S. Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. BMC Cell Biol 2011; 12:48. [PMID: 22054176 PMCID: PMC3215179 DOI: 10.1186/1471-2121-12-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background Maintaining proper adhesion between neighboring cells depends on the ability of cells to mechanically respond to tension at cell-cell junctions through the actin cytoskeleton. Thus, identifying the molecules involved in responding to cell tension would provide insight into the maintenance, regulation, and breakdown of cell-cell junctions during various biological processes. Vinculin, an actin-binding protein that associates with the cadherin complex, is recruited to cell-cell contacts under increased tension in a myosin II-dependent manner. However, the precise role of vinculin at force-bearing cell-cell junctions and how myosin II activity alters the recruitment of vinculin at quiescent cell-cell contacts have not been demonstrated. Results We generated vinculin knockdown cells using shRNA specific to vinculin and MDCK epithelial cells. These vinculin-deficient MDCK cells form smaller cell clusters in a suspension than wild-type cells. In wound healing assays, GFP-vinculin accumulated at cell-cell junctions along the wound edge while vinculin-deficient cells displayed a slower wound closure rate compared to vinculin-expressing cells. In the presence of blebbistatin (myosin II inhibitor), vinculin localization at quiescent cell-cell contacts was unaffected while in the presence of jasplakinolide (F-actin stabilizer), vinculin recruitment increased in mature MDCK cell monolayers. Conclusion These results demonstrate that vinculin plays an active role at adherens junctions under increased tension at cell-cell contacts where vinculin recruitment occurs in a myosin II activity-dependent manner, whereas vinculin recruitment to the quiescent cell-cell junctions depends on F-actin stabilization.
Collapse
Affiliation(s)
- Grant M Sumida
- Department of Biomedical Engineering, University of California, Davis Davis, CA 95616, USA
| | | | | | | |
Collapse
|
142
|
Klose P, Weise C, Bondzio A, Multhaup G, Einspanier R, Gruber AD, Klopfleisch R. Is There a Malignant Progression Associated with a Linear Change in Protein Expression Levels from Normal Canine Mammary Gland to Metastatic Mammary Tumors? J Proteome Res 2011; 10:4405-15. [DOI: 10.1021/pr200112q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Patricia Klose
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Angelika Bondzio
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Gerd Multhaup
- Institute of Chemistry and Biochemistry, Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| |
Collapse
|
143
|
Dey T, Mann MC, Goldmann WH. Comparing mechano-transduction in fibroblasts deficient of focal adhesion proteins. Biochem Biophys Res Commun 2011; 413:541-4. [PMID: 21924239 DOI: 10.1016/j.bbrc.2011.08.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022]
Abstract
Mechano-transduction was studied in wildtype and focal adhesion (FA) protein-deficient mouse embryonic fibroblasts (MEFs). Using a cell stretcher, we determined the effect of stretch on cell morphology, apoptosis, and phosphorylation of ERK(1/2). After 20% cyclic, uniaxial stretch, FA-deficient MEFs showed morphological changes and levels of apoptosis of the order: focal adhesion kinase>p130Cas>vinculin compared to wildtype cells. ERK(1/2) phosphorylation peaked in wildtype cells at around 10 min, and in all FA-deficient cells at around 5 min. The relative change in strain energy of FA-deficient cells compared to wildtype cells was of the order: vinculin>FAK>p130Cas. Taken together, FAK and p130Cas are more important in the stretch-mediated downstream signaling and cell survival pathway, while vinculin is more critical in maintaining cell contractility.
Collapse
Affiliation(s)
- Tuli Dey
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
144
|
Milla LN, Cogno IS, Rodríguez ME, Sanz-Rodríguez F, Zamarrón A, Gilaberte Y, Carrasco E, Rivarola VA, Juarranz Á. Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J Cell Biochem 2011; 112:2266-78. [DOI: 10.1002/jcb.23145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
145
|
GAI JINHONG, GONG PENGTAO, LI JIANHUA, MAN YANGAO, NI JINSONG, MA HONGXI, HAO FENYUN, ZHANG XICHEN, LIU YING. Cell budding from pre-invasive tumors: Intrinsic precursor of invasive breast lesions? Exp Ther Med 2011; 2:633-639. [PMID: 22977553 PMCID: PMC3440761 DOI: 10.3892/etm.2011.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Our previous studies showed that in patients with ductal carcinoma in situ (DCIS) of the breast, the tumor cells that overlie focal myoepithelial cell layer disruptions (FMCLDs) are generally arranged as finger-like projections that bud into the stroma. These budding cells have significantly more genetic instability and invasion-related gene expression, and less estrogen receptor (ER) expression, than their epithelial cell counterparts. This study aimed to assess these cells for potential molecular markers that are uniquely associated with cell adhesion and motility. Seventeen ER-positive DCIS cases were screened by immunostaining for ER, and 7 cases which harbored FMCLD lesions were used to examine the expression of the potential markers. Two cases with both DCIS and invasive lesions were selected for comparing the differences in molecular expression between these lesion types. The results showed that expression levels of talin, E-cadherin and focal adhesion kinase (FAK) in tumor cells overlying FMCLDs were higher than those within the corresponding duct. Integrin β1 staining was detected only in a small number of the tumor cells overlying the FMCLDs. Vinculin staining was weak (18%) or not detected (82%), and no expression was found in the tumor cells within the corresponding duct or in the pure isolated DCIS. By contrast, the expression levels of talin, vinculin and integrin β1 in the invasive tumors were distinctly higher than those in DCIS, and the expression of FAK and E-cadherin was lower. Using electron microscopy, we found that the tight junctions between tumor cells overlying the FMCLDs were reduced compared to the adjacent tumor cells in the lumen. These results indicate that the tumor cells overlying FMCLDs are likely to represent the specific precursors of invasive breast lesions. Our findings may also facilitate the identification of specific targets for further molecular profiling, which will more completely characterize this important cell population.
Collapse
Affiliation(s)
- JIN-HONG GAI
- Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070
- College of Animal Science and Veterinary Medicine, and
| | - PENG-TAO GONG
- College of Animal Science and Veterinary Medicine, and
| | - JIAN-HUA LI
- College of Animal Science and Veterinary Medicine, and
| | - YAN-GAO MAN
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology and American Registry of Pathology, Washington, DC 20306-6000,
USA
| | - JIN-SONG NI
- Department of Pathologic Anatomy, School of Basic Medical Sciences, Jilin University, Changchun, Jilin
| | - HONGXI MA
- Department of Pathologic Anatomy, School of Basic Medical Sciences, Jilin University, Changchun, Jilin
| | - FEN-YUN HAO
- Department of Pathology, Weifang People's Hospital, Weifang, Shandong 261061, P.R.
China
| | - XI-CHEN ZHANG
- College of Animal Science and Veterinary Medicine, and
- Correspondence to: Dr Xi-Chen Zhang, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, P.R. China, E-mail:
| | - YING LIU
- Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070
| |
Collapse
|
146
|
Higareda-Almaraz JC, Enríquez-Gasca MDR, Hernández-Ortiz M, Resendis-Antonio O, Encarnación-Guevara S. Proteomic patterns of cervical cancer cell lines, a network perspective. BMC SYSTEMS BIOLOGY 2011; 5:96. [PMID: 21696634 PMCID: PMC3152905 DOI: 10.1186/1752-0509-5-96] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/22/2011] [Indexed: 01/24/2023]
Abstract
Background Cervical cancer is a major mortality factor in the female population. This neoplastic is an excellent model for studying the mechanisms involved in cancer maintenance, because the Human Papilloma Virus (HPV) is the etiology factor in most cases. With the purpose of characterizing the effects of malignant transformation in cellular activity, proteomic studies constitute a reliable way to monitor the biological alterations induced by this disease. In this contextual scheme, a systemic description that enables the identification of the common events between cell lines of different origins, is required to distinguish the essence of carcinogenesis. Results With this study, we sought to achieve a systemic perspective of the common proteomic profile of six cervical cancer cell lines, both positive and negative for HPV, and which differ from the profile corresponding to the non-tumourgenic cell line, HaCaT. Our objectives were to identify common cellular events participating in cancer maintenance, as well as the establishment of a pipeline to work with proteomic-derived results. We analyzed by means of 2D SDS-PAGE and MALDI-TOF mass spectrometry the protein extracts of six cervical cancer cell lines, from which we identified a consensus of 66 proteins. We call this group of proteins, the "central core of cervical cancer". Starting from this core set of proteins, we acquired a PPI network that pointed, through topological analysis, to some proteins that may well be playing a central role in the neoplastic process, such as 14-3-3ζ. In silico overrepresentation analysis of transcription factors pointed to the overexpression of c-Myc, Max and E2F1 as key transcription factors involved in orchestrating the neoplastic phenotype. Conclusions Our findings show that there is a "central core of cervical cancer" protein expression pattern, and suggest that 14-3-3ζ is key to determine if the cell proliferates or dies. In addition, our bioinformatics analysis suggests that the neoplastic phenotype is governed by a non-canonical regulatory pathway.
Collapse
Affiliation(s)
- Juan Carlos Higareda-Almaraz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, Postal 565-A, Cuernavaca, Morelos, CP 62210, México
| | | | | | | | | |
Collapse
|
147
|
The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology 2011; 100:199-205. [PMID: 21691715 DOI: 10.1007/s10266-011-0029-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Connective tissue, one of the main components of peri-implant soft tissue, is key to the formation of the peri-implant mucosal seal and helping to prevent epithelial ingrowth. Rough surfaces (Rs), machined surfaces (Ms) or microgrooved surface (MG) are used in the neck area of commercially available titanium implants. In this paper, we aimed to evaluate the influence of surface topography of titanium substratum on connective tissue fibroblasts to gain a better understanding of this effect. Fibroblasts were cultured on titanium plates with Rs, Ms and MG. Adhesion cell number at day 3 was compared and protein distribution of both F-actin and vinculin was determined to observe cellular structure and adhesion. Cell adhesion strength was compared on each surface. At day 3, the number of fibroblasts attached on each substratum was in the order of MG ≈ Ms > Rs. Fibroblasts strongly expressed vinculin in the peripheral area on Ms and MG, and showed strong F-actin architecture. Decreased expression of vinculin and weaker continuity of F-actin were observed on Rs. Fibroblasts on MG were aligned along the grooves, with a significantly higher cell density, whereas cells on Ms and Rs had no clear orientation. The cell adhesion strength was significantly lower on Rs, and no significant difference was seen between MG and Ms. Both MG and Ms showed greater adhesion cell numbers and adhesion strength of fibroblasts when compared with Rs at day 3. The cell density on MG was greater than those on other substrata.
Collapse
|
148
|
Diez G, Auernheimer V, Fabry B, Goldmann WH. Head/tail interaction of vinculin influences cell mechanical behavior. Biochem Biophys Res Commun 2011; 406:85-8. [PMID: 21295550 DOI: 10.1016/j.bbrc.2011.01.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 01/13/2023]
Abstract
This study evaluates the influence of vinculin in closed conformation on the mechanical properties of cells. We demonstrate that MEFvin(-/-) cells transfected with the eGFP-vinculin mutant A50I (talin-binding-deficient-vinculin in a constitutively closed conformation) show 2-fold lower stiffness and focal adhesion density compared to MEFvin(+/+) and MEF(Rescue) cells. MEF(A50I) cells are as stiff as MEFvin(-/-) cells with similar focal adhesion density. Further, 2D traction microscopy indicates that MEF(A50I) and MEFvin(-/-) cells generate 3- to 4-fold less strain energy than MEFvin(+/+) and MEF(Rescue) cells. These results demonstrate that vinculin's mechano-coupling function is dependent on its conformational state.
Collapse
Affiliation(s)
- Gerold Diez
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen, Germany
| | | | | | | |
Collapse
|
149
|
Ruiz C, Holz DR, Oeggerli M, Schneider S, Gonzales IM, Kiefer JM, Zellweger T, Bachmann A, Koivisto PA, Helin HJ, Mousses S, Barrett MT, Azorsa DO, Bubendorf L. Amplification and overexpression of vinculin are associated with increased tumour cell proliferation and progression in advanced prostate cancer. J Pathol 2011; 223:543-52. [DOI: 10.1002/path.2828] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 02/01/2023]
|
150
|
New insights into vinculin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:191-231. [PMID: 21414589 DOI: 10.1016/b978-0-12-386043-9.00005-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vinculin is a cytoplasmic actin-binding protein enriched in focal adhesions and adherens junctions that is essential for embryonic development. Much is now known regarding the role of vinculin in governing cell-matrix adhesion. In the past decade that the crystal structure of vinculin and the molecular details for how vinculin regulates adhesion events have emerged. The recent data suggests a critical function for vinculin in regulating integrin clustering, force generation, and strength of adhesion. In addition to an important role in cell-matrix adhesion, vinculin is also emerging as a regulator of apoptosis, Shigella entry into host cells, and cadherin-based cell-cell adhesion. A close inspection of this work reveals that there are similarities between vinculin's role in focal adhesions and these processes and also some intriguing differences.
Collapse
|