101
|
De Re E, Schlau-Cohen GS, Leverenz RL, Huxter VM, Oliver TAA, Mathies RA, Fleming GR. Insights into the structural changes occurring upon photoconversion in the orange carotenoid protein from broadband two-dimensional electronic spectroscopy. J Phys Chem B 2014; 118:5382-9. [PMID: 24779893 DOI: 10.1021/jp502120h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. Here, we use broadband two-dimensional electronic spectroscopy to study the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.
Collapse
Affiliation(s)
- Eleonora De Re
- Applied Science and Technology Graduate Group, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|
102
|
Sedoud A, López-Igual R, Ur Rehman A, Wilson A, Perreau F, Boulay C, Vass I, Krieger-Liszkay A, Kirilovsky D. The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher. THE PLANT CELL 2014; 26:1781-1791. [PMID: 24748041 PMCID: PMC4036585 DOI: 10.1105/tpc.114.123802] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 05/18/2023]
Abstract
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the photosynthetic reaction centers under high-light conditions. The photoactive orange carotenoid protein (OCP) is essential in this mechanism as a light sensor and energy quencher. When OCP is photoactivated by strong blue-green light, it is able to dissipate excess energy as heat by interacting with phycobilisomes. As a consequence, charge separation and recombination leading to the formation of singlet oxygen diminishes. Here, we demonstrate that OCP has another essential role. We observed that OCP also protects Synechocystis cells from strong orange-red light, a condition in which OCP is not photoactivated. We first showed that this photoprotection is related to a decrease of singlet oxygen concentration due to OCP action. Then, we demonstrated that, in vitro, OCP is a very good singlet oxygen quencher. By contrast, another carotenoid protein having a high similarity with the N-terminal domain of OCP is not more efficient as a singlet oxygen quencher than a protein without carotenoid. Although OCP is a soluble protein, it is able to quench the singlet oxygen generated in the thylakoid membranes. Thus, OCP has dual and complementary photoprotective functions as an energy quencher and a singlet oxygen quencher.
Collapse
Affiliation(s)
- Arezki Sedoud
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France CNRS, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France Phycosource, 95092 Cergy Cedex, France
| | - Rocío López-Igual
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France CNRS, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Adjélé Wilson
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France CNRS, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, INRA Versailles-Grignon, F-78026 Versailles, France
| | | | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France CNRS, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Diana Kirilovsky
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France CNRS, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| |
Collapse
|
103
|
Jallet D, Thurotte A, Leverenz RL, Perreau F, Kerfeld CA, Kirilovsky D. Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures. PLANT PHYSIOLOGY 2014; 164:790-804. [PMID: 24335507 PMCID: PMC3912106 DOI: 10.1104/pp.113.229997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome (PB), the extramembranous light-harvesting antenna. This mechanism is triggered by the photoactive Orange Carotenoid Protein (OCP), which acts both as the photosensor and the energy quencher. The OCP binds the core of the PB. The structure of this core differs in diverse cyanobacterial strains. Here, using two isolated OCPs and four classes of PBs, we demonstrated that differences exist between OCPs related to PB binding, photoactivity, and carotenoid binding. Synechocystis PCC 6803 (hereafter Synechocystis) OCP, but not Arthrospira platensis PCC 7345 (hereafter Arthrospira) OCP, can attach echinenone in addition to hydroxyechinenone. Arthrospira OCP binds more strongly than Synechocystis OCP to all types of PBs. Synechocystis OCP can strongly bind only its own PB in 0.8 m potassium phosphate. However, if the Synechocystis OCP binds to the PB at very high phosphate concentrations (approximately 1.4 m), it is able to quench the fluorescence of any type of PB, even those isolated from strains that lack the OCP-mediated photoprotective mechanism. Thus, the determining step for the induction of photoprotection is the binding of the OCP to PBs. Our results also indicated that the structure of PBs, at least in vitro, significantly influences OCP binding and the stabilization of OCP-PB complexes. Finally, the fact that the OCP induced large fluorescence quenching even in the two-cylinder core of Synechococcus elongatus PBs strongly suggested that OCP binds to one of the basal allophycocyanin cylinders.
Collapse
|
104
|
Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem Photobiol Sci 2014; 12:1135-43. [PMID: 23396391 DOI: 10.1039/c3pp25406b] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the Orange Carotenoid Protein (OCP) which is the first photoactive protein identified containing a carotenoid as the photoresponsive chromophore. This protein is essential for the triggering of a photoprotective mechanism in cyanobacteria which decreases the excess absorbed energy arriving at the photosynthetic reaction centers by increasing thermal dissipation at the level of the phycobilisomes, the cyanobacterial antenna. Blue-green light causes structural changes within the carotenoid and the protein, converting the orange inactive form into a red active form. The activated red form interacts with the phycobilisome and induces the decrease of phycobilisome fluorescence emission and of the energy arriving to the photosynthetic reaction centers. The OCP is the light sensor, the signal propagator and the energy quencher. A second protein, the Fluorescence Recovery Protein (FRP), is needed to detach the red OCP from the phycobilisome and its reversion to the inactive orange form. In the last decade, in vivo and in vitro mechanistic studies combined with structural and genomic data resulted in both the discovery and a detailed picture of the function of the OCP and OCP-mediated photoprotection. Recent structural and functional results are emphasized and important previous results will be reviewed. Similarities to other blue-light responsive proteins will be discussed.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France.
| | | |
Collapse
|
105
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
106
|
Leverenz RL, Jallet D, Li MD, Mathies RA, Kirilovsky D, Kerfeld CA. Structural and functional modularity of the orange carotenoid protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. THE PLANT CELL 2014; 26:426-37. [PMID: 24399299 PMCID: PMC3963587 DOI: 10.1105/tpc.113.118588] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)-associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCP(O), to an active red form, OCP(R). The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP's photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCP(R). A comparison of the spectroscopic properties of the RCP with OCP(R) indicates that critical protein-chromophore interactions within the C-terminal domain are weakened in the OCP(R) form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain.
Collapse
Affiliation(s)
- Ryan L. Leverenz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Denis Jallet
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Ming-De Li
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Cheryl A. Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Berkeley Synthetic Biology Institute, University of California, Berkeley, California 94720
- Address correspondence to
| |
Collapse
|
107
|
Zhang H, Liu H, Niedzwiedzki DM, Prado M, Jiang J, Gross ML, Blankenship RE. Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 2013; 53:13-9. [PMID: 24359496 DOI: 10.1021/bi401539w] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The orange carotenoid protein (OCP) plays a photoprotective role in cyanobacterial photosynthesis similar to that of nonphotochemical quenching in higher plants. Under high-light conditions, the OCP binds to the phycobilisome (PBS) and reduces the extent of transfer of energy to the photosystems. The protective cycle starts from a light-induced activation of the OCP. Detailed information about the molecular mechanism of this process as well as the subsequent recruitment of the active OCP to the phycobilisome are not known. We report here our investigation on the OCP photoactivation from the cyanobacterium Synechocystis sp. PCC 6803 by using a combination of native electrospray mass spectrometry (MS) and protein cross-linking. We demonstrate that native MS can capture the OCP with its intact pigment and further reveal that the OCP undergoes a dimer-to-monomer transition upon light illumination. The reversion of the activated form of the OCP to the inactive, dark form was also observed by using native MS. Furthermore, in vitro reconstitution of the OCP and PBS allowed us to perform protein chemical cross-linking experiments. Liquid chromatography-MS/MS analysis identified cross-linking species between the OCP and the PBS core components. Our result indicates that the N-terminal domain of the OCP is closely involved in the association with a site formed by two allophycocyanin trimers in the basal cylinders of the phycobilisome core. This report improves our understanding of the activation mechanism of the OCP and the structural binding site of the OCP during the cyanobacterial nonphotochemical quenching process.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, ‡Photosynthetic Antenna Research Center (PARC), §Department of Biology, and ∥Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | | | | | | | | | | | | |
Collapse
|
108
|
Hsieh P, Pedersen JZ, Bruno L. Photoinhibition of Cyanobacteria and its Application in Cultural Heritage Conservation. Photochem Photobiol 2013; 90:533-43. [DOI: 10.1111/php.12208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Paul Hsieh
- Laboratory of Biology of Algae; Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| | - Jens Z. Pedersen
- EPR Laboratory; Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| | - Laura Bruno
- Laboratory of Biology of Algae; Department of Biology; University of Rome ‘Tor Vergata’; Rome Italy
| |
Collapse
|
109
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
110
|
Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:137-45. [DOI: 10.1016/j.jphotobiol.2013.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 11/21/2022]
|
111
|
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 2013; 52:539-61. [PMID: 23896007 DOI: 10.1016/j.plipres.2013.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
Abstract
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.
Collapse
Affiliation(s)
- Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
112
|
Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc Natl Acad Sci U S A 2013; 110:10022-7. [PMID: 23716688 DOI: 10.1073/pnas.1303673110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic reaction centers are sensitive to high light conditions, which can cause damage because of the formation of reactive oxygen species. To prevent high-light induced damage, cyanobacteria have developed photoprotective mechanisms. One involves a photoactive carotenoid protein that decreases the transfer of excess energy to the reaction centers. This protein, the orange carotenoid protein (OCP), is present in most cyanobacterial strains; it is activated by high light conditions and able to dissipate excess energy at the site of the light-harvesting antennae, the phycobilisomes. Restoration of normal antenna capacity involves the fluorescence recovery protein (FRP). The FRP acts to dissociate the OCP from the phycobilisomes by accelerating the conversion of the active red OCP to the inactive orange form. We have determined the 3D crystal structure of the FRP at 2.5 Å resolution. Remarkably, the FRP is found in two very different conformational and oligomeric states in the same crystal. Based on amino acid conservation analysis, activity assays of FRP mutants, FRP:OCP docking simulations, and coimmunoprecipitation experiments, we conclude that the dimer is the active form. The second form, a tetramer, may be an inactive form of FRP. In addition, we have identified a surface patch of highly conserved residues and shown that those residues are essential to FRP activity.
Collapse
|
113
|
Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:248-54. [DOI: 10.1016/j.bbabio.2012.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022]
|
114
|
Tian L, van Stokkum IHM, Koehorst RBM, van Amerongen H. Light Harvesting and Blue-Green Light Induced Non-Photochemical Quenching in Two Different C-Phycocyanin Mutants of Synechocystis PCC 6803. J Phys Chem B 2012; 117:11000-6. [DOI: 10.1021/jp309570u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Ivo H. M. van Stokkum
- Biophysics
Group, Department
of Physics and Astronomy, Faculty of Sciences, VU University, DeBoelelaan1081, 1081 HV Amsterdam, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| |
Collapse
|
115
|
Bañares-España E, Kromkamp JC, López-Rodas V, Costas E, Flores-Moya A. Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions. FEMS Microbiol Ecol 2012; 83:700-10. [PMID: 23057858 DOI: 10.1111/1574-6941.12025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 09/24/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022] Open
Abstract
The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M. aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the irradiance-onset saturation parameter. We measured the photosynthetic pigment concentrations, PSII photochemical efficiency, electron transport rate (ETR), irradiance-saturated ETR and ETR efficiency. The relationship between ETR and photosynthetic oxygen production and the excess in PSII capacity were also studied for one strain. Higher values of chlorophyll a and phycocyanin and lower values of total carotenoids were found under LL conditions in the three strains. The strains showed clear differences in the irradiance-saturated ETR and in ETR efficiency under both LL and HL treatments. No differences were found in the linear relationship between ETR and photosynthetic oxygen production under both irradiance treatments. LL-acclimated cells showed higher PSII excess capacity than HL ones, possibly because their higher pigment content could result in a higher light stress than HL cells when forming surface blooms. The fact that the genetically different strains show different photosynthetic physiologies suggests that the very dynamic light climate observed in lakes may allow their coexistence.
Collapse
Affiliation(s)
- Elena Bañares-España
- Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology, Yerseke, The Netherlands.
| | | | | | | | | |
Collapse
|
116
|
Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci U S A 2012; 109:8570-5. [PMID: 22586075 DOI: 10.1073/pnas.1201413109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoids are known to offer protection against the potentially damaging combination of light and oxygen encountered by purple phototrophic bacteria, but the efficiency of such protection depends on the type of carotenoid. Rhodobacter sphaeroides synthesizes spheroidene as the main carotenoid under anaerobic conditions whereas, in the presence of oxygen, the enzyme spheroidene monooxygenase catalyses the incorporation of a keto group forming spheroidenone. We performed ultrafast transient absorption spectroscopy on membranes containing reaction center-light-harvesting 1-PufX (RC-LH1-PufX) complexes and showed that when oxygen is present the incorporation of the keto group into spheroidene, forming spheroidenone, reconfigures the energy transfer pathway in the LH1, but not the LH2, antenna. The spheroidene/spheroidenone transition acts as a molecular switch that is suggested to twist spheroidenone into an s-trans configuration increasing its conjugation length and lowering the energy of the lowest triplet state so it can act as an effective quencher of singlet oxygen. The other consequence of converting carotenoids in RC-LH1-PufX complexes is that S(2)/S(1)/triplet pathways for spheroidene is replaced with a new pathway for spheroidenone involving an activated intramolecular charge-transfer (ICT) state. This strategy for RC-LH1-PufX-spheroidenone complexes maintains the light-harvesting cross-section of the antenna by opening an active, ultrafast S(1)/ICT channel for energy transfer to LH1 Bchls while optimizing the triplet energy for singlet oxygen quenching. We propose that spheroidene/spheroidenone switching represents a simple and effective photoprotective mechanism of likely importance for phototrophic bacteria that encounter light and oxygen.
Collapse
|
117
|
Wilson A, Gwizdala M, Mezzetti A, Alexandre M, Kerfeld CA, Kirilovsky D. The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. THE PLANT CELL 2012; 24:1972-83. [PMID: 22634762 PMCID: PMC3442581 DOI: 10.1105/tpc.112.096909] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Most cyanobacteria, under high light conditions, decrease the amount of energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome, the extramembranous antenna. This mechanism is induced by photoactivation of the Orange Carotenoid Protein (OCP). To identify how the activated OCP interacts with phycobilisomes (PBs), several OCP mutants were constructed, and the influence of mutations on photoactivity, stability, and binding to PBs was characterized. The disruption of the salt bridge between Arg155 and Glu244, which stabilizes the interaction between the N- and C-terminal domains, increased the rate of photoactivity and the stability of the photoactivated OCP, suggesting that the activated OCP has an open structure with decreased interdomain interaction. Changing Glu244 to leucine had no effect on OCP binding to PBs. By contrast, substitution of Arg155 with a neutral or a negatively charged amino acid largely decreased OCP binding to the PBs, whereas substitution with a lysine slightly perturbed the interaction. These results strongly suggest that the surface of the N-terminal domain, containing the Arg155, interacts with the PB and that the positive charge of Arg155 plays a key role in photoprotection.
Collapse
Affiliation(s)
- Adjélé Wilson
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Michal Gwizdala
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
| | - Alberto Mezzetti
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Laboratoire de Spectrochimie Infrarouge et Raman, Unité Mixte de Recherche 8516, Université Lille 1 Sciences et Technologies, Batiment C5, Cité Scientifique, 59655 Villeneuve d’Ascq, France
| | - Maxime Alexandre
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Departement of Physics and Astronomy, Faculty of Sciences, Free University Amsterdam, De Boelelaan 1081 HV Amsterdam, The Netherlands
| | - Cheryl A. Kerfeld
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Berkeley Synthetic Biology Institute, University of California, Berkeley, California 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, 91191 Gif sur Yvette, France
- Address correspondence to
| |
Collapse
|
118
|
Tian L, Gwizdala M, van Stokkum IHM, Koehorst RBM, Kirilovsky D, van Amerongen H. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 2012; 102:1692-700. [PMID: 22500770 DOI: 10.1016/j.bpj.2012.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022] Open
Abstract
In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting phycobilisomes (PBs) to protect the photosynthetic system against photodamage. This process requires the binding of the red active form of the Orange Carotenoid Protein (OCP(r)), which can effectively quench the excited state of one of the allophycocyanin bilins. Recently, an in vitro reconstitution system was developed using isolated OCP and isolated PBs from Synechocystis PCC 6803. Here we have used spectrally resolved picosecond fluorescence to study wild-type and two mutated PBs. The results demonstrate that the quenching for all types of PBs takes place on an allophycocyanin bilin emitting at 660 nm (APC(Q)(660)) with a molecular quenching rate that is faster than (1 ps)(-1). Moreover, it is concluded that both the mechanism and the site of quenching are the same in vitro and in vivo. Thus, utilization of the in vitro system should make it possible in the future to elucidate whether the quenching is caused by charge transfer between APC(Q)(660) and OCP or by excitation energy transfer from APC(Q)(660) to the S(1) state of the carotenoid--a distinction that is very hard, if not impossible, to make in vivo.
Collapse
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
119
|
Berera R, van Stokkum IHM, Gwizdala M, Wilson A, Kirilovsky D, van Grondelle R. The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch. J Phys Chem B 2012; 116:2568-74. [DOI: 10.1021/jp2108329] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rudi Berera
- Division of Physics and Astronomy,
Department of Biophysics, VU University Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Division of Physics and Astronomy,
Department of Biophysics, VU University Amsterdam, The Netherlands
| | - Michal Gwizdala
- Commissariat à l’Energie Atomique, Institute de Biologie et
Technologie de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Adjélé Wilson
- Commissariat à l’Energie Atomique, Institute de Biologie et
Technologie de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institute de Biologie et
Technologie de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Rienk van Grondelle
- Division of Physics and Astronomy,
Department of Biophysics, VU University Amsterdam, The Netherlands
| |
Collapse
|
120
|
Jallet D, Gwizdala M, Kirilovsky D. ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1418-27. [PMID: 22172739 DOI: 10.1016/j.bbabio.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
In cyanobacteria, strong blue-green light induces a photoprotective mechanism involving an increase of energy thermal dissipation at the level of phycobilisome (PB), the cyanobacterial antenna. This leads to a decrease of the energy arriving to the reaction centers. The photoactive Orange Carotenoid Protein (OCP) has an essential role in this mechanism. The binding of the red photoactivated OCP to the core of the PB triggers energy and PB fluorescence quenching. The core of PBs is constituted of allophycocyanin trimers emitting at 660 or 680nm. ApcD, ApcF and ApcE are the responsible of the 680nm emission. In this work, the role of these terminal emitters in the photoprotective mechanism was studied. Single and double Synechocystis PCC 6803 mutants, in which the apcD or/and apcF genes were absent, were constructed. The Cys190 of ApcE which binds the phycocyanobilin was replaced by a Ser. The mutated ApcE attached an unusual chromophore emitting at 710nm. The activated OCP was able to induce the photoprotective mechanism in all the mutants. Moreover, in vitro reconstitution experiments showed similar amplitude and rates of fluorescence quenching. Our results demonstrated that ApcD, ApcF and ApcE are not required for the OCP-related fluorescence quenching and they strongly suggested that the site of quenching is one of the APC trimers emitting at 660nm. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Denis Jallet
- Institut de Biologie et Technologies de Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
121
|
A kinetic model of non-photochemical quenching in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1591-9. [DOI: 10.1016/j.bbabio.2011.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
|
122
|
Tian L, van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, van Amerongen H. Site, Rate, and Mechanism of Photoprotective Quenching in Cyanobacteria. J Am Chem Soc 2011; 133:18304-11. [DOI: 10.1021/ja206414m] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Ivo H. M. van Stokkum
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, VU University, DeBoelelaan1081, 1081 HV Amsterdam, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Aniek Jongerius
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay and Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| |
Collapse
|
123
|
Stadnichuk IN, Yanyushin MF, Zharmukhamedov SK, Maksimov EG, Muronets EM, Pashchenko VZ. Quenching of phycobilisome fluorescence by orange carotenoid protein. DOKL BIOCHEM BIOPHYS 2011; 439:167-70. [DOI: 10.1134/s1607672911040053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/23/2022]
|
124
|
Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011; 10:3674-89. [DOI: 10.1021/pr200299t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John G. Rowland
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J. Simon
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
125
|
Gwizdala M, Wilson A, Kirilovsky D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. THE PLANT CELL 2011; 23:2631-43. [PMID: 21764991 PMCID: PMC3226224 DOI: 10.1105/tpc.111.086884] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 05/19/2023]
Abstract
In conditions of fluctuating light, cyanobacteria thermally dissipate excess absorbed energy at the level of the phycobilisome, the light-collecting antenna. The photoactive Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) have essential roles in this mechanism. Absorption of blue-green light converts the stable orange (inactive) OCP form found in darkness into a metastable red (active) form. Using an in vitro reconstituted system, we studied the interactions between OCP, FRP, and phycobilisomes and demonstrated that they are the only elements required for the photoprotective mechanism. In the process, we developed protocols to overcome the effect of high phosphate concentrations, which are needed to maintain the integrity of phycobilisomes, on the photoactivation of the OCP, and on protein interactions. Our experiments demonstrated that, whereas the dark-orange OCP does not bind to phycobilisomes, the binding of only one red photoactivated OCP to the core of the phycobilisome is sufficient to quench all its fluorescence. This binding, which is light independent, stabilizes the red form of OCP. Addition of FRP accelerated fluorescence recovery in darkness by interacting with the red OCP and destabilizing its binding to the phycobilisome. The presence of phycobilisome rods renders the OCP binding stronger and allows the isolation of quenched OCP-phycobilisome complexes. Using the in vitro system we developed, it will now be possible to elucidate the quenching process and the chemical nature of the quencher.
Collapse
Affiliation(s)
- Michal Gwizdala
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Adjélé Wilson
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| |
Collapse
|
126
|
Kirilovsky D, Kerfeld CA. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:158-66. [PMID: 21565162 DOI: 10.1016/j.bbabio.2011.04.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022]
Abstract
Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), France.
| | | |
Collapse
|
127
|
Wilson A, Punginelli C, Couturier M, Perreau F, Kirilovsky D. Essential role of two tyrosines and two tryptophans on the photoprotection activity of the Orange Carotenoid Protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:293-301. [DOI: 10.1016/j.bbabio.2010.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
128
|
Rakhimberdieva MG, Kuzminov FI, Elanskaya IV, Karapetyan NV. Synechocystis
sp. PCC 6803 mutant lacking both photosystems exhibits strong carotenoid-induced quenching of phycobilisome fluorescence. FEBS Lett 2011; 585:585-9. [DOI: 10.1016/j.febslet.2011.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/05/2011] [Accepted: 01/09/2011] [Indexed: 11/28/2022]
|
129
|
Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:30-5. [DOI: 10.1016/j.bbabio.2010.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/21/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
130
|
Tian B, Hua Y. Carotenoid biosynthesis in extremophilic Deinococcus–Thermus bacteria. Trends Microbiol 2010; 18:512-20. [DOI: 10.1016/j.tim.2010.07.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/19/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
|